Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 13 de 13
Filtrar
Más filtros













Base de datos
Intervalo de año de publicación
1.
FEMS Microbiol Ecol ; 100(2)2024 Jan 24.
Artículo en Inglés | MEDLINE | ID: mdl-38271603

RESUMEN

Rhizosphere microbiome assembly is essential for plant health, but the temporal dimension of this process remains unexplored. We used a chronosequence of 150 years of the retreating Hallstätter glacier (Dachstein, Austria) to disentangle this exemplarily for the rhizosphere of three pioneer alpine plants. Time of deglaciation was an important factor shaping the rhizosphere microbiome. Microbiome functions, i.e. nutrient uptake and stress protection, were carried out by ubiquitous and cosmopolitan bacteria. The rhizosphere succession along the chronosequence was characterized by decreasing microbial richness but increasing specificity of the plant-associated bacterial community. Environmental selection is a critical factor in shaping the ecosystem, particularly in terms of plant-driven recruitment from the available edaphic pool. A higher rhizosphere microbial richness during early succession compared to late succession can be explained by the occurrence of cold-acclimated bacteria recruited from the surrounding soils. These taxa might be sensitive to changing habitat conditions that occurred at the later stages. A stronger influence of the plant host on the rhizosphere microbiome assembly was observed with increased time since deglaciation. Overall, this study indicated that well-adapted, ubiquitous microbes potentially support pioneer plants to colonize new ecosystems, while plant-specific microbes may be associated with the long-term establishment of their hosts.


Asunto(s)
Microbiota , Rizosfera , Cubierta de Hielo/microbiología , Austria , Microbiología del Suelo , Bacterias/genética , Suelo , Plantas
2.
mSystems ; 7(6): e0073922, 2022 12 20.
Artículo en Inglés | MEDLINE | ID: mdl-36377901

RESUMEN

The desiccation of the Aral Sea represents one of the largest human-made environmental regional disasters. The salt- and toxin-enriched dried-out basin provides a natural laboratory for studying ecosystem functioning and rhizosphere assembly under extreme anthropogenic conditions. Here, we investigated the prokaryotic rhizosphere communities of the native pioneer plant Suaeda acuminata (C.A.Mey.) Moq. in comparison to bulk soil across a gradient of desiccation (5, 10, and 40 years) by metagenome and amplicon sequencing combined with quantitative PCR (qPCR) analyses. The rhizosphere effect was evident due to significantly higher bacterial abundances but less diversity in the rhizosphere compared to bulk soil. Interestingly, in the highest salinity (5 years of desiccation), rhizosphere functions were mainly provided by archaeal communities. Along the desiccation gradient, we observed a significant change in the rhizosphere microbiota, which was reflected by (i) a decreasing archaeon-bacterium ratio, (ii) replacement of halophilic archaea by specific plant-associated bacteria, i.e., Alphaproteobacteria and Actinobacteria, and (iii) an adaptation of specific, potentially plant-beneficial biosynthetic pathways. In general, both bacteria and archaea were found to be involved in carbon cycling and fixation, as well as methane and nitrogen metabolism. Analysis of metagenome-assembled genomes (MAGs) showed specific signatures for production of osmoprotectants, assimilatory nitrate reduction, and transport system induction. Our results provide evidence that rhizosphere assembly by cofiltering specific taxa with distinct traits is a mechanism which allows plants to thrive under extreme conditions. Overall, our findings highlight a function-based rhizosphere assembly, the importance of plant-microbe interactions in salinated soils, and their exploitation potential for ecosystem restoration approaches. IMPORTANCE The desertification of the Aral Sea basin in Uzbekistan and Kazakhstan represents one of the most serious anthropogenic environmental disasters of the last century. Since the 1960s, the world's fourth-largest inland body of water has been constantly shrinking, which has resulted in an extreme increase of salinity accompanied by accumulation of many hazardous and carcinogenic substances, as well as heavy metals, in the dried-out basin. Here, we investigated bacterial and archaeal communities in the rhizosphere of pioneer plants by combining classic molecular methods with amplicon sequencing as well as metagenomics for functional insights. By implementing a desiccation gradient, we observed (i) remarkable differences in the archaeon-bacterium ratio of plant rhizosphere samples, (ii) replacement of archaeal indicator taxa during succession, and (iii) the presence of specific, potentially plant-beneficial biosynthetic pathways in archaea present during the early stages. In addition, our results provide hitherto-undescribed insights into the functional redundancy between plant-associated archaea and bacteria.


Asunto(s)
Microbiota , Rizosfera , Humanos , Desecación , Bacterias/genética , Archaea/genética , Microbiota/genética , Suelo , Plantas
3.
Sci Total Environ ; 793: 148494, 2021 Nov 01.
Artículo en Inglés | MEDLINE | ID: mdl-34328954

RESUMEN

The ongoing COVID-19 pandemic has not only globally caused a high number of causalities, but is also an unprecedented challenge for scientists. False-positive virus detection tests not only aggravate the situation in the healthcare sector, but also provide ground for speculations. Previous studies have highlighted the importance of software choice and data interpretation in virome studies. We aimed to further expand theoretical and practical knowledge in bioinformatics-driven virome studies by focusing on short, virus-like DNA sequences in metagenomic data. Analyses of datasets obtained from different sample types (terrestrial, animal and human related samples) and origins showed that coronavirus-like sequences have existed in host-associated and environmental samples before the current COVID-19 pandemic. In the analyzed datasets, various Betacoronavirus-like sequences were detected that also included SARS-CoV-2 matches. Deepening analyses indicated that the detected sequences are not of viral origin and thus should not be considered in virome profiling approaches. Our study confirms the importance of parameter selection, especially in terms of read length, for reliable virome profiling. Natural environments are an important source of coronavirus-like nucleotide sequences that should be taken into account when virome datasets are analyzed and interpreted. We therefore suggest that processing parameters are carefully selected for SARS-CoV-2 profiling in host related as well as environmental samples in order to avoid incorrect identifications.


Asunto(s)
COVID-19 , Pandemias , Animales , Humanos , Metagenoma , Metagenómica , SARS-CoV-2
4.
Front Microbiol ; 11: 566412, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-33240227

RESUMEN

BACKGROUND: With increasing numbers of interplanetary missions, there is a need to establish robust protocols to ensure the protection of extraterrestrial planets being visited from contamination by terrestrial life forms. The current study is the first report comparing the commercial resupply vehicle (CRV) microbiome with the International Space Station (ISS) microbiome to understand the risks of contamination, thus serving as a model system for future planetary missions. RESULTS: Samples obtained from the internal surfaces and ground support equipment of three CRV missions were subjected to various molecular techniques for microbial diversity analysis. In total, 25 samples were collected with eight defined locations from each CRV mission prior to launch. In general, the internal surfaces of vehicles were clean, with an order of magnitude fewer microbes compared to ground support equipment. The first CRV mission had a larger microbial population than subsequent CRV missions, which were clean as compared to the initial CRV locations sampled. Cultivation assays showed the presence of Actinobacteria, Proteobacteria, Firmicutes, and Bacteroidetes and members of Ascomycota and Basidiomycota. As expected, shotgun metagenome analyses revealed the presence of more microbial taxa compared to cultivation-based assays. The internal locations of the CRV microbiome reportedly showed the presence of microorganisms capable of tolerating ultraviolet radiation (e.g., Bacillus firmus) and clustered separately from the ISS microbiome. CONCLUSIONS: The metagenome sequence comparison of the CRV microbiome with the ISS microbiome revealed significant differences showing that CRV microbiomes were a negligible part of the ISS environmental microbiome. These findings suggest that the maintenance protocols in cleaning CRV surfaces are highly effective in controlling the contaminating microbial population during cargo transfer to the ISS via the CRV route.

5.
Microbiome ; 8(1): 150, 2020 10 29.
Artículo en Inglés | MEDLINE | ID: mdl-33121542

RESUMEN

BACKGROUND: The extraordinarily resistant bacterium Deinococcus radiodurans withstands harsh environmental conditions present in outer space. Deinococcus radiodurans was exposed for 1 year outside the International Space Station within Tanpopo orbital mission to investigate microbial survival and space travel. In addition, a ground-based simulation experiment with conditions, mirroring those from low Earth orbit, was performed. METHODS: We monitored Deinococcus radiodurans cells during early stage of recovery after low Earth orbit exposure using electron microscopy tools. Furthermore, proteomic, transcriptomic and metabolomic analyses were performed to identify molecular mechanisms responsible for the survival of Deinococcus radiodurans in low Earth orbit. RESULTS: D. radiodurans cells exposed to low Earth orbit conditions do not exhibit any morphological damage. However, an accumulation of numerous outer-membrane-associated vesicles was observed. On levels of proteins and transcripts, a multi-faceted response was detected to alleviate cell stress. The UvrABC endonuclease excision repair mechanism was triggered to cope with DNA damage. Defense against reactive oxygen species is mirrored by the increased abundance of catalases and is accompanied by the increased abundance of putrescine, which works as reactive oxygen species scavenging molecule. In addition, several proteins and mRNAs, responsible for regulatory and transporting functions showed increased abundances. The decrease in primary metabolites indicates alternations in the energy status, which is needed to repair damaged molecules. CONCLUSION: Low Earth orbit induced molecular rearrangements trigger multiple components of metabolic stress response and regulatory networks in exposed microbial cells. Presented results show that the non-sporulating bacterium Deinococcus radiodurans survived long-term low Earth orbit exposure if wavelength below 200 nm are not present, which mirrors the UV spectrum of Mars, where CO2 effectively provides a shield below 190 nm. These results should be considered in the context of planetary protection concerns and the development of new sterilization techniques for future space missions. Video Abstract.


Asunto(s)
Aclimatación , Deinococcus/fisiología , Viabilidad Microbiana , Vuelo Espacial , Nave Espacial , Daño del ADN , Deinococcus/genética , Deinococcus/metabolismo , Deinococcus/efectos de la radiación , Cooperación Internacional , Metabolómica , Proteómica , Especies Reactivas de Oxígeno , Factores de Tiempo , Transcriptoma , Rayos Ultravioleta
6.
Nat Commun ; 10(1): 3990, 2019 09 05.
Artículo en Inglés | MEDLINE | ID: mdl-31488812

RESUMEN

The International Space Station (ISS) is a unique habitat for humans and microorganisms. Here, we report the results of the ISS experiment EXTREMOPHILES, including the analysis of microbial communities from several areas aboard at three time points. We assess microbial diversity, distribution, functional capacity and resistance profile using a combination of cultivation-independent analyses (amplicon and shot-gun sequencing) and cultivation-dependent analyses (physiological and genetic characterization of microbial isolates, antibiotic resistance tests, co-incubation experiments). We show that the ISS microbial communities are highly similar to those present in ground-based confined indoor environments and are subject to fluctuations, although a core microbiome persists over time and locations. The genomic and physiological features selected by ISS conditions do not appear to be directly relevant to human health, although adaptations towards biofilm formation and surface interactions were observed. Our results do not raise direct reason for concern with respect to crew health, but indicate a potential threat towards material integrity in moist areas.


Asunto(s)
Archaea/clasificación , Bacterias/clasificación , Hongos/clasificación , Salud , Microbiota/fisiología , Vuelo Espacial , Archaea/genética , Archaea/aislamiento & purificación , Bacterias/genética , Bacterias/aislamiento & purificación , Biodiversidad , Biopelículas/crecimiento & desarrollo , Extremófilos , Hongos/genética , Hongos/aislamiento & purificación , Interacciones Microbiota-Huesped , Humanos , Metagenómica , Microbiota/genética , Filogenia , ARN Ribosómico 16S/genética
7.
mBio ; 8(6)2017 11 14.
Artículo en Inglés | MEDLINE | ID: mdl-29138298

RESUMEN

Human-associated archaea remain understudied in the field of microbiome research, although in particular methanogenic archaea were found to be regular commensals of the human gut, where they represent keystone species in metabolic processes. Knowledge on the abundance and diversity of human-associated archaea is extremely limited, and little is known about their function(s), their overall role in human health, or their association with parts of the human body other than the gastrointestinal tract and oral cavity. Currently, methodological issues impede the full assessment of the human archaeome, as bacteria-targeting protocols are unsuitable for characterization of the full spectrum of Archaea The goal of this study was to establish conservative protocols based on specifically archaea-targeting, PCR-based methods to retrieve first insights into the archaeomes of the human gastrointestinal tract, lung, nose, and skin. Detection of Archaea was highly dependent on primer selection and the sequence processing pipeline used. Our results enabled us to retrieve a novel picture of the human archaeome, as we found for the first time Methanobacterium and Woesearchaeota (DPANN superphylum) to be associated with the human gastrointestinal tract and the human lung, respectively. Similar to bacteria, human-associated archaeal communities were found to group biogeographically, forming (i) the thaumarchaeal skin landscape, (ii) the (methano)euryarchaeal gastrointestinal tract, (iii) a mixed skin-gastrointestinal tract landscape for the nose, and (iv) a woesearchaeal lung landscape. On the basis of the protocols we used, we were able to detect unexpectedly high diversity of archaea associated with different body parts.IMPORTANCE In summary, our study highlights the importance of the primers and data processing pipeline used to study the human archaeome. We were able to establish protocols that revealed the presence of previously undetected Archaea in all of the tissue samples investigated and to detect biogeographic patterns of the human archaeome in the gastrointestinal tract and on the skin and for the first time in the respiratory tract, i.e., the nose and lungs. Our results are a solid basis for further investigation of the human archaeome and, in the long term, discovery of the potential role of archaea in human health and disease.


Asunto(s)
Archaea/clasificación , Archaea/aislamiento & purificación , Tracto Gastrointestinal/microbiología , Pulmón/microbiología , Microbiota , Nariz/microbiología , Piel/microbiología , Archaea/genética , Humanos , Metagenómica/métodos , Reacción en Cadena de la Polimerasa/métodos
8.
Microbiome ; 4(1): 65, 2016 12 20.
Artículo en Inglés | MEDLINE | ID: mdl-27998314

RESUMEN

BACKGROUND: The International Space Station (ISS) represents a unique biotope for the human crew but also for introduced microorganisms. Microbes experience selective pressures such as microgravity, desiccation, poor nutrient-availability due to cleaning, and an increased radiation level. We hypothesized that the microbial community inside the ISS is modified by adapting to these stresses. For this reason, we analyzed 8-12 years old dust samples from Russian ISS modules with major focus on the long-time surviving portion of the microbial community. We consequently assessed the cultivable microbiota of these samples in order to analyze their extremotolerant potential against desiccation, heat-shock, and clinically relevant antibiotics. In addition, we studied the bacterial and archaeal communities from the stored Russian dust samples via molecular methods (next-generation sequencing, NGS) and compared our new data with previously derived information from the US American ISS dust microbiome. RESULTS: We cultivated and identified in total 85 bacterial, non-pathogenic isolates (17 different species) and 1 fungal isolate from the 8-12 year old dust samples collected in the Russian segment of the ISS. Most of these isolates exhibited robust resistance against heat-shock and clinically relevant antibiotics. Microbial 16S rRNA gene and archaeal 16S rRNA gene targeting Next Generation Sequencing showed signatures of human-associated microorganisms (Corynebacterium, Staphylococcus, Coprococcus etc.), but also specifically adapted extremotolerant microorganisms. Besides bacteria, the detection of archaeal signatures in higher abundance was striking. CONCLUSIONS: Our findings reveal (i) the occurrence of living, hardy microorganisms in archived Russian ISS dust samples, (ii) a profound resistance capacity of ISS microorganisms against environmental stresses, and (iii) the presence of archaeal signatures on board. In addition, we found indications that the microbial community in the Russian segment dust samples was different to recently reported US American ISS microbiota.


Asunto(s)
Archaea/aislamiento & purificación , Bacterias/aislamiento & purificación , Polvo/análisis , Extremófilos/aislamiento & purificación , Microbiota/efectos de los fármacos , Nave Espacial , Aclimatación , Archaea/clasificación , Archaea/efectos de los fármacos , Archaea/genética , Bacterias/clasificación , Bacterias/efectos de los fármacos , Bacterias/genética , Desecación , Ambientes Extremos , Extremófilos/clasificación , Secuenciación de Nucleótidos de Alto Rendimiento , Humanos , Pruebas de Sensibilidad Microbiana , Microbiota/fisiología , ARN Ribosómico 16S/genética , Vuelo Espacial , Ingravidez
9.
Front Microbiol ; 7: 1573, 2016.
Artículo en Inglés | MEDLINE | ID: mdl-27790191

RESUMEN

Indoor environments, where people spend most of their time, are characterized by a specific microbial community, the indoor microbiome. Most indoor environments are connected to the natural environment by high ventilation, but some habitats are more confined: intensive care units, operating rooms, cleanrooms and the international space station (ISS) are extraordinary living and working areas for humans, with a limited exchange with the environment. The purposes for confinement are different: a patient has to be protected from infections (intensive care unit, operating room), product quality has to be assured (cleanrooms), or confinement is necessary due to extreme, health-threatening outer conditions, as on the ISS. The ISS represents the most secluded man-made habitat, constantly inhabited by humans since November 2000 - and, inevitably, also by microorganisms. All of these man-made confined habitats need to be microbiologically monitored and controlled, by e.g., microbial cleaning and disinfection. However, these measures apply constant selective pressures, which support microbes with resistance capacities against antibiotics or chemical and physical stresses and thus facilitate the rise of survival specialists and multi-resistant strains. In this article, we summarize the available data on the microbiome of aforementioned confined habitats. By comparing the different operating, maintenance and monitoring procedures as well as microbial communities therein, we emphasize the importance to properly understand the effects of confinement on the microbial diversity, the possible risks represented by some of these microorganisms and by the evolution of (antibiotic) resistances in such environments - and the need to reassess the current hygiene standards.

10.
Front Microbiol ; 6: 543, 2015.
Artículo en Inglés | MEDLINE | ID: mdl-26106369

RESUMEN

The uncultivated "Candidatus Altiarchaeum hamiconexum" (formerly known as SM1 Euryarchaeon) carries highly specialized nano-grappling hooks ("hami") on its cell surface. Until now little is known about the major protein forming these structured fibrous cell surface appendages, the genes involved or membrane anchoring of these filaments. These aspects were analyzed in depth in this study using environmental transcriptomics combined with imaging methods. Since a laboratory culture of this archaeon is not yet available, natural biofilm samples with high Ca. A. hamiconexum abundance were used for the entire analyses. The filamentous surface appendages spanned both membranes of the cell, which are composed of glycosyl-archaeol. The hami consisted of multiple copies of the same protein, the corresponding gene of which was identified via metagenome-mapped transcriptome analysis. The hamus subunit proteins, which are likely to self-assemble due to their predicted beta sheet topology, revealed no similiarity to known microbial flagella-, archaella-, fimbriae- or pili-proteins, but a high similarity to known S-layer proteins of the archaeal domain at their N-terminal region (44-47% identity). Our results provide new insights into the structure of the unique hami and their major protein and indicate their divergent evolution with S-layer proteins.

11.
Front Microbiol ; 5: 397, 2014.
Artículo en Inglés | MEDLINE | ID: mdl-25140167

RESUMEN

Similarly to Bacteria, Archaea are microorganisms that interact with their surrounding environment in a versatile manner. To date, interactions based on cellular structure and surface appendages have mainly been documented using model systems of cultivable archaea under laboratory conditions. Here, we report on the microbial interactions and ultrastructural features of the uncultivated SM1 Euryarchaeon, which is highly dominant in its biotope. Therefore, biofilm samples taken from the Sippenauer Moor, Germany, were investigated via transmission electron microscopy (TEM; negative staining, thin-sectioning) and scanning electron microscopy (SEM) in order to elucidate the fine structures of the microbial cells and the biofilm itself. The biofilm consisted of small archaeal cocci (0.6 µm diameter), arranged in a regular pattern (1.0-2.0 µm distance from cell to cell), whereas each archaeon was connected to 6 other archaea on average. Extracellular polymeric substances (EPS) were limited to the close vicinity of the archaeal cells, and specific cell surface appendages (hami, Moissl et al., 2005) protruded beyond the EPS matrix enabling microbial interaction by cell-cell contacts among the archaea and between archaea and bacteria. All analyzed hami revealed their previously described architecture of nano-grappling hooks and barb-wire basal structures. Considering the archaeal cell walls, the SM1 Euryarchaea exhibited a double-membrane, which has rarely been reported for members of this phylogenetic domain. Based on these findings, the current generalized picture on archaeal cell walls needs to be revisited, as archaeal cell structures are more complex and sophisticated than previously assumed, particularly when looking into the uncultivated majority.

12.
Appl Environ Microbiol ; 80(15): 4764-70, 2014 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-24858087

RESUMEN

To date, the behavior of hyperthermophilic microorganisms in their biotope has been studied only to a limited degree; this is especially true for motility. One reason for this lack of knowledge is the requirement for high-temperature microscopy-combined, in most cases, with the need for observations under strictly anaerobic conditions-for such studies. We have developed a custom-made, low-budget device that, for the first time, allows analyses in temperature gradients up to 40°C over a distance of just 2 cm (a biotope-relevant distance) with heating rates up to ∼5°C/s. Our temperature gradient-forming device can convert any upright light microscope into one that works at temperatures as high as 110°C. Data obtained by use of this apparatus show how very well hyperthermophiles are adapted to their biotope: they can react within seconds to elevated temperatures by starting motility-even after 9 months of storage in the cold. Using the temperature gradient-forming device, we determined the temperature ranges for swimming, and the swimming speeds, of 15 selected species of the genus Thermococcus within a few months, related these findings to the presence of cell surface appendages, and obtained the first evidence for thermotaxis in Archaea.


Asunto(s)
Microscopía/métodos , Thermococcus/citología , Diseño de Equipo , Calor , Microscopía/instrumentación , Thermococcus/química , Thermococcus/clasificación
13.
Astrobiology ; 13(12): 1125-39, 2013 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-24313230

RESUMEN

Understanding microbial diversity in spacecraft assembly clean rooms is of major interest with respect to planetary protection considerations. A coordinated screening of different clean rooms in Europe and South America by three German institutes [Deutsches Zentrum für Luft- und Raumfahrt (DLR), Leibniz-Institut DSMZ-Deutsche Sammlung von Mikroorganismen und Zellkulturen GmbH (DSMZ), and the Institute of Microbiology and Archaea Center, University of Regensburg] took place during the assembly, test, and launch operations of the Herschel spacecraft in 2006-2009. Through this campaign, we retrieved critical information regarding the microbiome within these clean rooms and on the Herschel spacecraft, which served as a model for upcoming ESA mission preparations. This "lessons learned" document summarizes and discusses the data we obtained during this sampling campaign. Additionally, we have taken the opportunity to create a database that includes all 16S rRNA gene sequences ever retrieved from molecular and cultivable diversity studies of spacecraft assembly clean rooms to compare the microbiomes of US, European, and South American facilities.


Asunto(s)
Microbiota , Nave Espacial , Biodiversidad , Hibridación Fluorescente in Situ , ARN Ribosómico 16S/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA