Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 22
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
J Comp Neurol ; 532(2): e25576, 2024 02.
Artículo en Inglés | MEDLINE | ID: mdl-38189676

RESUMEN

In this review, we focus on human-specific features of neocortical neurogenesis in development and evolution. Two distinct topics will be addressed. In the first section, we discuss the expansion of the neocortex during human evolution and concentrate on the human-specific gene ARHGAP11B. We review the ability of ARHGAP11B to amplify basal progenitors and to expand a primate neocortex. We discuss the contribution of ARHGAP11B to neocortex expansion during human evolution and its potential implications for neurodevelopmental disorders and brain tumors. We then review the action of ARHGAP11B in mitochondria as a regulator of basal progenitor metabolism, and how it promotes glutaminolysis and basal progenitor proliferation. Finally, we discuss the increase in cognitive performance due to the ARHGAP11B-induced neocortical expansion. In the second section, we focus on neocortical development in modern humans versus Neanderthals. Specifically, we discuss two recent findings pointing to differences in neocortical neurogenesis between these two hominins that are due to a small number of amino acid substitutions in certain key proteins. One set of such proteins are the kinetochore-associated proteins KIF18a and KNL1, where three modern human-specific amino acid substitutions underlie the prolongation of metaphase during apical progenitor mitosis. This prolongation in turn is associated with an increased fidelity of chromosome segregation to the apical progenitor progeny during modern human neocortical development, with implications for the proper formation of radial units. Another such key protein is transketolase-like 1 (TKTL1), where a single modern human-specific amino acid substitution endows TKTL1 with the ability to amplify basal radial glia, resulting in an increase in upper-layer neuron generation. TKTL1's ability is based on its action in the pentose phosphate pathway, resulting in increased fatty acid synthesis. The data imply greater neurogenesis during neocortical development in modern humans than Neanderthals due to TKTL1, in particular in the developing frontal lobe.


Asunto(s)
Hombre de Neandertal , Neocórtex , Células-Madre Neurales , Animales , Humanos , Células-Madre Neurales/metabolismo , Hombre de Neandertal/metabolismo , Células Ependimogliales/metabolismo , Neocórtex/metabolismo , Neurogénesis/fisiología , Transcetolasa/metabolismo , Proteínas Activadoras de GTPasa/metabolismo
3.
Sci Adv ; 8(30): eabn7702, 2022 07 29.
Artículo en Inglés | MEDLINE | ID: mdl-35905187

RESUMEN

Since the ancestors of modern humans separated from those of Neanderthals, around 100 amino acid substitutions spread to essentially all modern humans. The biological significance of these changes is largely unknown. Here, we examine all six such amino acid substitutions in three proteins known to have key roles in kinetochore function and chromosome segregation and to be highly expressed in the stem cells of the developing neocortex. When we introduce these modern human-specific substitutions in mice, three substitutions in two of these proteins, KIF18a and KNL1, cause metaphase prolongation and fewer chromosome segregation errors in apical progenitors of the developing neocortex. Conversely, the ancestral substitutions cause shorter metaphase length and more chromosome segregation errors in human brain organoids, similar to what we find in chimpanzee organoids. These results imply that the fidelity of chromosome segregation during neocortex development improved in modern humans after their divergence from Neanderthals.


Asunto(s)
Hominidae , Hombre de Neandertal , Animales , Encéfalo , Segregación Cromosómica/genética , Humanos , Cinesinas , Metafase , Ratones , Hombre de Neandertal/genética
4.
Front Neurosci ; 16: 878950, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35495057

RESUMEN

When considering what makes us human, the development of the neocortex, the seat of our higher cognitive abilities, is of central importance. Throughout this complex developmental process, neocortical stem and progenitor cells (NSPCs) exert a priming role in determining neocortical tissue fate, through a series of cellular and molecular events. In this Perspective article, we address five questions of relevance for potentially human-specific aspects of NSPCs, (i) Are there human-specific NSPC subtypes? (ii) What is the functional significance of the known temporal differences in NSPC dynamics between human and other great apes? (iii) Are there functional interactions between the human-specific genes preferentially expressed in NSPCs? (iv) Do humans amplify certain metabolic pathways for NSPC proliferation? and finally (v) Have differences evolved during human evolution, notably between modern humans and Neandertals, that affect the performance of key genes operating in NSPCs? We discuss potential implications inherent to these questions, and suggest experimental approaches on how to answer them, hoping to provide incentives to further understand key issues of human cortical development.

5.
FEBS J ; 289(6): 1524-1535, 2022 03.
Artículo en Inglés | MEDLINE | ID: mdl-33638923

RESUMEN

Comparing the biology of humans to that of other primates, and notably other hominids, is a useful path to learn more about what makes us human. Some of the most interesting differences among hominids are closely related to brain development and function, for example behaviour and cognition. This makes it particularly interesting to compare the hominid neural cells of the neocortex, a part of the brain that plays central roles in those processes. However, well-preserved tissue from great apes is usually extremely difficult to obtain. A variety of new alternative tools, for example brain organoids, are now beginning to make it possible to search for such differences and analyse their potential biological and biomedical meaning. Here, we present an overview of recent findings from comparisons of the neural stem and progenitor cells (NSPCs) and neurons of hominids. In addition to differences in proliferation and differentiation of NSPCs, and maturation of neurons, we highlight that the regulation of the timing of these processes is emerging as a general foundational difference in the development of the neocortex of hominids.


Asunto(s)
Hominidae , Neocórtex , Células-Madre Neurales , Animales , Neocórtex/fisiología , Neurogénesis , Neuronas
6.
Curr Opin Cell Biol ; 55: 8-16, 2018 12.
Artículo en Inglés | MEDLINE | ID: mdl-30006054

RESUMEN

Since their recent development, organoids that emulate human brain tissue have allowed in vitro neural development studies to go beyond the limits of monolayer culture systems, such as neural rosettes. We present here a review of organoid studies that focuses on cortical wall development, starting with a technical comparison between pre-patterning and self-patterning brain organoid protocols. We then follow neocortex development in space and time and list those aspects where organoids have succeeded in emulating in vivo development, as well as those aspects that continue to be pending tasks. Finally, we present a summary of medical and evolutionary insight made possible by organoid technology.


Asunto(s)
Evolución Biológica , Modelos Biológicos , Neocórtex/embriología , Organoides/metabolismo , Técnicas de Cultivo de Célula , Humanos , Neocórtex/fisiopatología , Organogénesis
7.
Elife ; 52016 09 26.
Artículo en Inglés | MEDLINE | ID: mdl-27669147

RESUMEN

Human neocortex expansion likely contributed to the remarkable cognitive abilities of humans. This expansion is thought to primarily reflect differences in proliferation versus differentiation of neural progenitors during cortical development. Here, we have searched for such differences by analysing cerebral organoids from human and chimpanzees using immunohistofluorescence, live imaging, and single-cell transcriptomics. We find that the cytoarchitecture, cell type composition, and neurogenic gene expression programs of humans and chimpanzees are remarkably similar. Notably, however, live imaging of apical progenitor mitosis uncovered a lengthening of prometaphase-metaphase in humans compared to chimpanzees that is specific to proliferating progenitors and not observed in non-neural cells. Consistent with this, the small set of genes more highly expressed in human apical progenitors points to increased proliferative capacity, and the proportion of neurogenic basal progenitors is lower in humans. These subtle differences in cortical progenitors between humans and chimpanzees may have consequences for human neocortex evolution.


Asunto(s)
Corteza Cerebral/embriología , Células-Madre Neurales/fisiología , Animales , Proliferación Celular , Perfilación de la Expresión Génica , Humanos , Microscopía Intravital , Microscopía Fluorescente , Mitosis , Organoides/crecimiento & desarrollo , Pan troglodytes , Análisis de la Célula Individual
9.
Sci Rep ; 6: 21206, 2016 Feb 16.
Artículo en Inglés | MEDLINE | ID: mdl-26879757

RESUMEN

Apical radial glia (aRG), the stem cells in developing neocortex, are unique bipolar epithelial cells, extending an apical process to the ventricle and a basal process to the basal lamina. Here, we report novel features of the Golgi apparatus, a central organelle for cell polarity, in mouse aRGs. The Golgi was confined to the apical process but not associated with apical centrosome(s). In contrast, in aRG-derived, delaminating basal progenitors that lose apical polarity, the Golgi became pericentrosomal. The aRG Golgi underwent evolutionarily conserved, accordion-like compression and extension concomitant with cell cycle-dependent nuclear migration. Importantly, in line with endoplasmic reticulum but not Golgi being present in the aRG basal process, its plasma membrane contained glycans lacking Golgi processing, consistent with direct ER-to-cell surface membrane traffic. Our study reveals hitherto unknown complexity of neural stem cell polarity, differential Golgi contribution to their specific architecture, and fundamental Golgi re-organization upon cell fate change.


Asunto(s)
Aparato de Golgi/metabolismo , Células-Madre Neurales/metabolismo , Animales , Membrana Celular/metabolismo , Retículo Endoplásmico/metabolismo , Células Epiteliales/metabolismo , Células Epiteliales/ultraestructura , Expresión Génica , Genes Reporteros , Aparato de Golgi/ultraestructura , Ratones , Ratones Transgénicos , Mitosis , Células-Madre Neurales/ultraestructura , Polisacáridos/metabolismo , Transporte de Proteínas
10.
Mol Biol Cell ; 26(24): 4302-6, 2015 Dec 01.
Artículo en Inglés | MEDLINE | ID: mdl-26628750

RESUMEN

During stem cell divisions, mitotic microtubules do more than just segregate the chromosomes. They also determine whether a cell divides virtually symmetrically or asymmetrically by establishing spindle orientation and the plane of cell division. This can be decisive for the fate of the stem cell progeny. Spindle defects have been linked to neurodevelopmental disorders, yet the role of spindle orientation for mammalian neurogenesis has remained controversial. Here we explore recent advances in understanding how the microtubule cytoskeleton influences mammalian neural stem cell division. Our focus is primarily on the role of spindle microtubules in the development of the cerebral cortex. We also highlight unique characteristics in the architecture and dynamics of cortical stem cells that are tightly linked to their mode of division. These features contribute to setting these cells apart as mitotic "rule breakers," control how asymmetric a division is, and, we argue, are sufficient to determine the fate of the neural stem cell progeny in mammals.


Asunto(s)
Células Madre Embrionarias/citología , Microtúbulos/fisiología , Células-Madre Neurales/citología , Animales , División Celular Asimétrica/fisiología , División Celular/fisiología , Corteza Cerebral/citología , Corteza Cerebral/metabolismo , Citoesqueleto/fisiología , Células Madre Embrionarias/metabolismo , Humanos , Ratones , Células-Madre Neurales/metabolismo , Neurogénesis , Neuronas/citología , Huso Acromático/fisiología
11.
PLoS Biol ; 13(8): e1002217, 2015 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-26252244

RESUMEN

The evolutionary expansion of the neocortex in mammals has been linked to enlargement of the subventricular zone (SVZ) and increased proliferative capacity of basal progenitors (BPs), notably basal radial glia (bRG). The transcription factor Pax6 is known to be highly expressed in primate, but not mouse, BPs. Here, we demonstrate that sustaining Pax6 expression selectively in BP-genic apical radial glia (aRG) and their BP progeny of embryonic mouse neocortex suffices to induce primate-like progenitor behaviour. Specifically, we conditionally expressed Pax6 by in utero electroporation using a novel, Tis21-CreERT2 mouse line. This expression altered aRG cleavage plane orientation to promote bRG generation, increased cell-cycle re-entry of BPs, and ultimately increased upper-layer neuron production. Upper-layer neuron production was also increased in double-transgenic mouse embryos with sustained Pax6 expression in the neurogenic lineage. Strikingly, increased BPs existed not only in the SVZ but also in the intermediate zone of the neocortex of these double-transgenic mouse embryos. In mutant mouse embryos lacking functional Pax6, the proportion of bRG among BPs was reduced. Our data identify specific Pax6 effects in BPs and imply that sustaining this Pax6 function in BPs could be a key aspect of SVZ enlargement and, consequently, the evolutionary expansion of the neocortex.


Asunto(s)
Proteínas del Ojo/metabolismo , Proteínas de Homeodominio/metabolismo , Neocórtex/citología , Células-Madre Neurales/metabolismo , Neuroglía/metabolismo , Factores de Transcripción Paired Box/metabolismo , Proteínas Represoras/metabolismo , Animales , Evolución Biológica , Femenino , Técnica del Anticuerpo Fluorescente , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Transgénicos , Neocórtex/embriología , Neocórtex/metabolismo , Neuronas/metabolismo , Factor de Transcripción PAX6 , Primates
12.
Elife ; 32014 Jul 04.
Artículo en Inglés | MEDLINE | ID: mdl-24996848

RESUMEN

Mitotic spindle orientation is crucial for symmetric vs asymmetric cell division and depends on astral microtubules. Here, we show that distinct subpopulations of astral microtubules exist, which have differential functions in regulating spindle orientation and division symmetry. Specifically, in polarized stem cells of developing mouse neocortex, astral microtubules reaching the apical and basal cell cortex, but not those reaching the central cell cortex, are more abundant in symmetrically than asymmetrically dividing cells and reduce spindle orientation variability. This promotes symmetric divisions by maintaining an apico-basal cleavage plane. The greater abundance of apical/basal astrals depends on a higher concentration, at the basal cell cortex, of LGN, a known spindle-cell cortex linker. Furthermore, newly developed specific microtubule perturbations that selectively decrease apical/basal astrals recapitulate the symmetric-to-asymmetric division switch and suffice to increase neurogenesis in vivo. Thus, our study identifies a novel link between cell polarity, astral microtubules, and spindle orientation in morphogenesis.


Asunto(s)
Microtúbulos/fisiología , Células-Madre Neurales/citología , Huso Acromático , Animales , Encéfalo/fisiología , Ciclo Celular , División Celular , Polaridad Celular , Proliferación Celular , Corteza Cerebral/metabolismo , Ratones , Ratones Noqueados , Nocodazol/química , Estructura Terciaria de Proteína , Células Madre/citología , Grabación en Video
13.
Nat Cell Biol ; 15(3): 325-34, 2013 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-23417121

RESUMEN

Coordination of multiple kinesin and myosin motors is required for intracellular transport, cell motility and mitosis. However, comprehensive resources that allow systems analysis of the localization and interplay between motors in living cells do not exist. Here, we generated a library of 243 amino- and carboxy-terminally tagged mouse and human bacterial artificial chromosome transgenes to establish 227 stably transfected HeLa cell lines, 15 mouse embryonic stem cell lines and 1 transgenic mouse line. The cells were characterized by expression and localization analyses and further investigated by affinity-purification mass spectrometry, identifying 191 candidate protein-protein interactions. We illustrate the power of this resource in two ways. First, by characterizing a network of interactions that targets CEP170 to centrosomes, and second, by showing that kinesin light-chain heterodimers bind conventional kinesin in cells. Our work provides a set of validated resources and candidate molecular pathways to investigate motor protein function across cell lineages.


Asunto(s)
Movimiento Celular/fisiología , Células Madre Embrionarias/metabolismo , Genómica , Cinesinas/metabolismo , Proteínas Asociadas a Microtúbulos/metabolismo , Miosinas/metabolismo , Animales , Transporte Biológico , Biomarcadores/metabolismo , Western Blotting , Centrosoma/metabolismo , Cromatografía de Afinidad , Cromosomas Artificiales Bacterianos , Células Madre Embrionarias/citología , Técnica del Anticuerpo Fluorescente , Perfilación de la Expresión Génica , Proteínas Fluorescentes Verdes/genética , Proteínas Fluorescentes Verdes/metabolismo , Células HeLa , Humanos , Inmunoprecipitación , Cinesinas/genética , Ratones , Ratones Transgénicos , Proteínas Asociadas a Microtúbulos/genética , Microtúbulos , Mitosis/fisiología , Miosinas/genética , Neuroblastoma/metabolismo , Neuroblastoma/patología , Neuronas/citología , Neuronas/metabolismo , Análisis de Secuencia por Matrices de Oligonucleótidos , Fosfoproteínas/genética , Fosfoproteínas/metabolismo , Filogenia , Multimerización de Proteína , ARN Mensajero/genética , Reacción en Cadena en Tiempo Real de la Polimerasa , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa , Espectrometría de Masa por Láser de Matriz Asistida de Ionización Desorción , Células Madre/citología , Células Madre/metabolismo , Transgenes/genética
14.
EMBO Rep ; 11(11): 868-75, 2010 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-20890310

RESUMEN

The function of protein phosphatase 1 nuclear-targeting subunit (PNUTS)--one of the most abundant nuclear-targeting subunits of protein phosphatase 1 (PP1c)--remains largely uncharacterized. We show that PNUTS depletion by small interfering RNA activates a G2 checkpoint in unperturbed cells and prolongs G2 checkpoint and Chk1 activation after ionizing-radiation-induced DNA damage. Overexpression of PNUTS-enhanced green fluorescent protein (EGFP)--which is rapidly and transiently recruited at DNA damage sites--inhibits G2 arrest. Finally, γH2AX, p53-binding protein 1, replication protein A and Rad51 foci are present for a prolonged period and clonogenic survival is decreased in PNUTS-depleted cells after ionizing radiation treatment. We identify the PP1c regulatory subunit PNUTS as a new and integral component of the DNA damage response involved in DNA repair.


Asunto(s)
Daño del ADN , Proteínas de Unión al ADN/metabolismo , Proteínas Nucleares/metabolismo , Proteínas de Unión al ARN/metabolismo , Núcleo Celular/enzimología , Núcleo Celular/efectos de la radiación , Proteínas de Unión al ADN/deficiencia , Recuperación de Fluorescencia tras Fotoblanqueo , Fase G2/efectos de la radiación , Técnicas de Silenciamiento del Gen , Proteínas Fluorescentes Verdes/metabolismo , Células HeLa , Humanos , Mitosis/efectos de la radiación , Proteínas Nucleares/deficiencia , ARN Interferente Pequeño/metabolismo , Radiación Ionizante , Proteínas Recombinantes de Fusión/metabolismo
15.
PLoS One ; 5(5): e10581, 2010 May 17.
Artículo en Inglés | MEDLINE | ID: mdl-20498723

RESUMEN

DNA methylation is fundamental for the stability and activity of genomes. Drosophila melanogaster and vertebrates establish a global DNA methylation pattern of their genome during early embryogenesis. Large-scale analyses of DNA methylation patterns have uncovered revealed that DNA methylation patterns are dynamic rather than static and change in a gene-specific fashion during development and in diseased cells. However, the factors and mechanisms involved in dynamic, postembryonic DNA methylation remain unclear. Methylation of lysine 9 in histone H3 (H3-K9) by members of the Su(var)3-9 family of histone methyltransferases (HMTs) triggers embryonic DNA methylation in Arthropods and Chordates. Here, we demonstrate that Drosophila SETDB1 (dSETDB1) can mediate DNA methylation and silencing of genes and retrotransposons. We found that dSETDB1 tri-methylates H3-K9 and binds methylated CpA motifs. Tri-methylation of H3-K9 by dSETDB1 mediates recruitment of DNA methyltransferase 2 (Dnmt2) and Su(var)205, the Drosophila ortholog of mammalian "Heterochromatin Protein 1", to target genes for dSETDB1. By enlisting Dnmt2 and Su(var)205, dSETDB1 triggers DNA methylation and silencing of genes and retrotransposons in Drosophila cells. DSETDB1 is involved in postembryonic DNA methylation and silencing of Rt1b{} retrotransposons and the tumor suppressor gene retinoblastoma family protein 1 (Rb) in imaginal discs. Collectively, our findings implicate dSETDB1 in postembryonic DNA methylation, provide a model for silencing of the tumor suppressor Rb, and uncover a role for cell type-specific DNA methylation in Drosophila development.


Asunto(s)
Metilación de ADN/genética , Proteínas de Drosophila/metabolismo , Drosophila melanogaster/embriología , Drosophila melanogaster/genética , Embrión no Mamífero/metabolismo , Silenciador del Gen , Animales , Homólogo de la Proteína Chromobox 5 , Proteínas Cromosómicas no Histona/metabolismo , ADN (Citosina-5-)-Metiltransferasas/metabolismo , Proteínas de Drosophila/química , Ojo/embriología , Ojo/metabolismo , Heterocromatina/metabolismo , N-Metiltransferasa de Histona-Lisina , Histonas/metabolismo , Lisina/metabolismo , Unión Proteica , Estructura Terciaria de Proteína , Secuencias Reguladoras de Ácidos Nucleicos/genética , Proteína de Retinoblastoma/metabolismo , Retroelementos/genética
16.
Genome Res ; 19(11): 2113-24, 2009 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-19797680

RESUMEN

Live-cell imaging allows detailed dynamic cellular phenotyping for cell biology and, in combination with small molecule or drug libraries, for high-content screening. Fully automated analysis of live cell movies has been hampered by the lack of computational approaches that allow tracking and recognition of individual cell fates over time in a precise manner. Here, we present a fully automated approach to analyze time-lapse movies of dividing cells. Our method dynamically categorizes cells into seven phases of the cell cycle and five aberrant morphological phenotypes over time. It reliably tracks cells and their progeny and can thus measure the length of mitotic phases and detect cause and effect if mitosis goes awry. We applied our computational scheme to annotate mitotic phenotypes induced by RNAi gene knockdown of CKAP5 (also known as ch-TOG) or by treatment with the drug nocodazole. Our approach can be readily applied to comparable assays aiming at uncovering the dynamic cause of cell division phenotypes.


Asunto(s)
División Celular/fisiología , Procesamiento de Imagen Asistido por Computador/métodos , Microscopía Confocal/métodos , Mitosis/fisiología , Algoritmos , Ciclo Celular/fisiología , Linaje de la Célula , Proteínas Fluorescentes Verdes/genética , Proteínas Fluorescentes Verdes/metabolismo , Células HeLa , Histonas/genética , Histonas/metabolismo , Humanos , Cinética , Metafase/fisiología , Proteínas Asociadas a Microtúbulos/antagonistas & inhibidores , Proteínas Asociadas a Microtúbulos/genética , Proteínas Asociadas a Microtúbulos/metabolismo , Nocodazol/farmacología , Interferencia de ARN , Proteínas Recombinantes de Fusión/genética , Proteínas Recombinantes de Fusión/metabolismo , Reproducibilidad de los Resultados , Factores de Tiempo , Moduladores de Tubulina/farmacología
18.
EMBO J ; 27(23): 3151-63, 2008 Dec 03.
Artículo en Inglés | MEDLINE | ID: mdl-18971946

RESUMEN

Neuroepithelial (NE) cells, the primary stem and progenitor cells of the vertebrate central nervous system, are highly polarized and elongated. They retain a basal process extending to the basal lamina, while undergoing mitosis at the apical side of the ventricular zone. By studying NE cells in the embryonic mouse, chick and zebrafish central nervous system using confocal microscopy, electron microscopy and time-lapse imaging, we show here that the basal process of these cells can split during M phase. Splitting occurred in the basal-to-apical direction and was followed by inheritance of the processes by either one or both daughter cells. A cluster of anillin, an essential component of the cytokinesis machinery, appeared at the distal end of the basal process in prophase and was found to colocalize with F-actin at bifurcation sites, in both proliferative and neurogenic NE cells. GFP-anillin in the basal process moved apically to the cell body prior to anaphase onset, followed by basal-to-apical ingression of the cleavage furrow in telophase. The splitting of the basal process of M-phase NE cells has implications for cleavage plane orientation and the relationship between mitosis and cytokinesis.


Asunto(s)
División Celular , Citocinesis , Células Neuroepiteliales/fisiología , Actinas/análisis , Animales , Células Cultivadas , Pollos , Proteínas Contráctiles/análisis , Citoplasma/química , Genes Reporteros , Proteínas Fluorescentes Verdes , Ratones , Microscopía Confocal , Microscopía Electrónica , Microscopía por Video , Células Neuroepiteliales/química , Proteínas Recombinantes de Fusión/análisis , Pez Cebra
19.
Nat Cell Biol ; 9(7): 822-31, 2007 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-17558394

RESUMEN

Eukaryotic cells must first compact their chromosomes before faithfully segregating them during cell division. Failure to do so can lead to segregation defects with pathological consequences, such as aneuploidy and cancer. Duplicated interphase chromosomes are, therefore, reorganized into tight rods before being separated and directed to the newly forming daughter cells. This vital reorganization of chromatin remains poorly understood. To address the dynamics of mitotic condensation of single chromosomes in intact cells, we developed quantitative assays based on confocal time-lapse microscopy of live mammalian cells stably expressing fluorescently tagged core histones. Surprisingly, maximal compaction was not reached in metaphase, but in late anaphase, after sister chromatid segregation. We show that anaphase compaction proceeds by a mechanism of axial shortening of the chromatid arms from telomere to centromere. Chromatid axial shortening was not affected in condensin-depleted cells, but depended instead on dynamic microtubules and Aurora kinase. Acute perturbation of this compaction resulted in failure to rescue segregation defects and in multilobed daughter nuclei, suggesting functions in chromosome segregation and nuclear architecture.


Asunto(s)
Anafase/fisiología , Cromatina/fisiología , Cromosomas Humanos/fisiología , Proteínas Serina-Treonina Quinasas/metabolismo , Aurora Quinasas , Línea Celular , Centrómero/fisiología , Cromátides/fisiología , Cromosomas Humanos/ultraestructura , Histonas/metabolismo , Humanos , Metafase/fisiología , Microtúbulos/fisiología , Telómero/fisiología
20.
Methods ; 41(2): 158-67, 2007 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-17189858

RESUMEN

Mitotic and meiotic chromosomes are the compact packages that faithfully transport the genetic and epigenetic information to the following cell generations. How chromatin dynamically cycles between the decompacted interphase state that supports transcription and replication and the compacted state required for chromosome segregation is not understood. To address this long-standing problem, the structure of chromatin should ideally be studied in the physiological context of intact cells and organisms. We discuss here, the contributions that live-cell imaging can and has made to the study of mitotic chromosome compaction and highlight the power and limitations of this approach. We review methodologies used and suggest that combinatorial approaches and developing new imaging technologies will be key to shedding light on this long-standing question in cell biology.


Asunto(s)
Células/química , Cromosomas/química , Cromosomas/fisiología , Microscopía Fluorescente/métodos , Células/ultraestructura , Cromosomas/ultraestructura , Mitosis
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...