Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 29
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Arch Dermatol Res ; 316(6): 274, 2024 May 25.
Artículo en Inglés | MEDLINE | ID: mdl-38796528

RESUMEN

Wound healing is a highly programmed process, in which any abnormalities result in scar formation. MicroRNAs are potent regulators affecting wound repair and scarification. However, the function of microRNAs in wound healing is not fully understood. Here, we analyzed the expression and function of microRNAs in patients with cutaneous wounds. Cutaneous wound biopsies from patients with either hypertrophic scarring or normal wound repair were collected during inflammation, proliferation, and remodeling phases. Fourteen candidate microRNAs were selected for expression analysis by qRT-PCR. The expression of genes involved in inflammation, angiogenesis, proliferation, and migration were measured using qRT-PCR. Cell cycle and scratch assays were used to explore the proliferation and migration rates. Flow cytometry analysis was employed to examine TGF-ß, αSMA and collagen-I expression. Target gene suggestion was performed using Enrichr tool. The results showed that miR-16-5p, miR-152-3p, miR-125b-5p, miR-34c-5p, and miR-182-5p were revealed to be differentially expressed between scarring and non-scarring wounds. Based on the expression patterns obtained, miR-182-5p was selected for functional studies. miR-182-5p induced RELA expression synergistically upon IL-6 induction in keratinocytes and promoted angiogenesis. miR-182-5p prevented keratinocyte migration, while overexpressed TGF-ß3 following induction of inflammation. Moreover, miR-182-5p enhanced fibroblast proliferation, migration, differentiation, and collagen-1 expression. FoxO1 and FoxO3 were found to potentially serve as putative gene targets of miR-182-5p. In conclusion, miR-182-5p is differentially expressed between scarring and non-scarring wounds and affect the behavior of cells involved in cutaneous wound healing. Deregulated expression of miR-182-5p adversely affects the proper transition of wound healing phases, resulting in scar formation.


Asunto(s)
Proliferación Celular , Cicatriz Hipertrófica , MicroARNs , Piel , Cicatrización de Heridas , MicroARNs/genética , MicroARNs/metabolismo , Humanos , Cicatrización de Heridas/genética , Proliferación Celular/genética , Piel/patología , Piel/lesiones , Piel/metabolismo , Cicatriz Hipertrófica/genética , Cicatriz Hipertrófica/patología , Cicatriz Hipertrófica/metabolismo , Movimiento Celular/genética , Inflamación/genética , Inflamación/patología , Queratinocitos/metabolismo , Proteína Forkhead Box O1/metabolismo , Proteína Forkhead Box O1/genética , Masculino , Femenino , Adulto , Factor de Transcripción ReIA/metabolismo , Factor de Transcripción ReIA/genética , Fibroblastos/metabolismo , Regulación de la Expresión Génica , Persona de Mediana Edad , Neovascularización Fisiológica/genética
2.
Int J Cancer ; 154(7): 1131-1142, 2024 Apr 01.
Artículo en Inglés | MEDLINE | ID: mdl-37860922

RESUMEN

As healthcare systems are improving and thereby the life expectancy of human populations is increasing, cancer is representing itself as the second leading cause of death. Although cancer biologists have put enormous effort on cancer research so far, we still have a long way to go before being able to treat cancers efficiently. One interesting approach in cancer biology is to learn from natural resistance and/or predisposition to cancer. Cancer-resistant species and tissues are thought-provoking models whose study shed light on the inherent cancer resistance mechanisms that arose during the course of evolution. On the other hand, there are some syndromes and factors that increase the risk of cancer development, and revealing their underlying mechanisms will increase our knowledge about the process of cancer formation. Here, we review natural resistance and predisposition to cancer and the known mechanisms at play. Further insights from these natural phenomena will help design future cancer research and could ultimately lead to the development of novel cancer therapeutic strategies.


Asunto(s)
Neoplasias , Humanos , Neoplasias/tratamiento farmacológico , Susceptibilidad a Enfermedades , Genotipo , Inmunidad Innata
3.
Stem Cell Rev Rep ; 19(7): 2361-2377, 2023 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-37402099

RESUMEN

Cells of the inner cell mass (ICM) acquire a unique ability for unlimited self-renewal during transition into embryonic stem cells (ESCs) in vitro, while preserving their natural multi-lineage differentiation potential. Several different pathways have been identified to play roles in ESC formation but the function of non-coding RNAs in this process is poorly understood. Here, we describe several microRNAs (miRNAs) that are crucial for efficient generation of mouse ESCs from ICMs. Using small-RNA sequencing, we characterize dynamic changes in miRNA expression profiles during outgrowth of ICMs in a high-resolution, time-course dependent manner. We report several waves of miRNA transcription during ESC formation, to which miRNAs from the imprinted Dlk1-Dio3 locus contribute extensively. In silico analyses followed by functional investigations reveal that Dlk1-Dio3 locus-embedded miRNAs (miR-541-5p, miR-410-3p, and miR-381-3p), miR-183-5p, and miR-302b-3p promote, while miR-212-5p and let-7d-3p inhibit ESC formation. Collectively, these findings offer new mechanistic insights into the role of miRNAs during ESC derivation.

4.
J Cell Biochem ; 124(3): 446-458, 2023 03.
Artículo en Inglés | MEDLINE | ID: mdl-36791227

RESUMEN

Conditioned media (CM) from various cell types contain significant levels of paracrine factors. Recently, therapeutic properties of CM derived from stem cells have been revealed. Based on the fact that heart cancer is extremely rarely, we hypothesized that the CM obtained from human pluripotent stem cell-derived cardiomyocytes might inhibit cancer cell growth and survival. To this end, lung cancer cell line A549 along with human foreskin fibroblasts (HFF) were treated with serial concentrations of cardiomyocyte CM (CCM) or fibroblast CM (FCM). We found that CCM markedly reduced the viability of lung cancer cells, while FCM did not compromise the viability of neither cancer cells nor HFF cells. Furthermore, we determined an optimized CCM concentration, 30 mg/mL, at which the growth, clonogenicity, and migration of A549 and Calu6 lung cancer cell lines were substantially impaired, whereas FCM did not influence these properties. Moreover, lung cancer cells exhibited cell cycle regulation upon treatment with CCM and the rate of apoptosis was markedly increased by cardiomyocyte CM in both lung cancer cell lines tested. Finally, in response to CCM treatment, A549 and Calu6 cells expressed lower levels of antiapoptotic and stemness genes, but higher levels of proapoptotic genes. In conclusion, this study provides cellular and molecular evidence for the antitumor ability of secretome obtained from stem cell-derived cardiomyocytes.


Asunto(s)
Neoplasias Pulmonares , Células Madre Pluripotentes , Humanos , Miocitos Cardíacos/metabolismo , Medios de Cultivo Condicionados/farmacología , Pulmón/patología , Neoplasias Pulmonares/metabolismo
5.
Skin Pharmacol Physiol ; 35(5): 247-265, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35696989

RESUMEN

BACKGROUND: Wound healing is a complex process including hemostasis, inflammation, proliferation, and remodeling during which an orchestrated array of biological and molecular events occurs to promote skin regeneration. Abnormalities in each step of the wound healing process lead to reparative rather than regenerative responses, thereby driving the formation of cutaneous scar. Patients suffering from scars represent serious health problems such as contractures, functional and esthetic concerns as well as painful, thick, and itchy complications, which generally decrease the quality of life and impose high medical costs. Therefore, therapies reducing cutaneous scarring are necessary to improve patients' rehabilitation. SUMMARY: Current approaches to remove scars, including surgical and nonsurgical methods, are not efficient enough, which is in principle due to our limited knowledge about underlying mechanisms of pathological as well as the physiological wound healing process. Thus, therapeutic interventions focused on basic science including genetic and epigenetic knowledge are recently taken into consideration as promising approaches for scar management since they have the potential to provide targeted therapies and improve the conventional treatments as well as present opportunities for combination therapy. In this review, we highlight the recent advances in skin regenerative medicine through genetic and epigenetic approaches to achieve novel insights for the development of safe, efficient, and reproducible therapies and discuss promising approaches for scar management. KEY MESSAGE: Genetic and epigenetic regulatory switches are promising targets for scar management, provided the associated challenges are to be addressed.


Asunto(s)
Cicatriz , Regeneración , Cicatriz/genética , Cicatriz/patología , Cicatriz/terapia , Epigénesis Genética , Humanos , Calidad de Vida , Regeneración/fisiología , Cicatrización de Heridas/genética
6.
PLoS One ; 17(4): e0267291, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35476804

RESUMEN

BACKGROUND: MicroRNAs (miRNAs) are frequently deregulated in various types of cancer. While antisense oligonucleotides are used to block oncomiRs, delivery of tumour-suppressive miRNAs holds great potential as a potent anti-cancer strategy. Here, we aim to determine, and functionally analyse, miRNAs that are lowly expressed in various types of tumour but abundantly expressed in multiple normal tissues. METHODS: The miRNA sequencing data of 14 cancer types were downloaded from the TCGA dataset. Significant differences in miRNA expression between tumor and normal samples were calculated using limma package (R programming). An adjusted p value < 0.05 was used to compare normal versus tumor miRNA expression profiles. The predicted gene targets were obtained using TargetScan, miRanda, and miRDB and then subjected to gene ontology analysis using Enrichr. Only GO terms with an adjusted p < 0.05 were considered statistically significant. All data from wet-lab experiments (cell viability assays and flow cytometry) were expressed as means ± SEM, and their differences were analyzed using GraphPad Prism software (Student's t test, p < 0.05). RESULTS: By compiling all publicly available miRNA profiling data from The Cancer Genome Atlas (TCGA) Pan-Cancer Project, we reveal a small set of tumour-suppressing miRNAs (which we designate as 'normomiRs') that are highly expressed in 14 types of normal tissues but poorly expressed in corresponding tumour tissues. Interestingly, muscle-enriched miRNAs (e.g. miR-133a/b and miR-206) and miRNAs from DLK1-DIO3 locus (e.g. miR-381 and miR-411) constitute a large fraction of the normomiRs. Moreover, we define that the CCCGU motif is absent in the oncomiRs' seed sequences but present in a fraction of tumour-suppressive miRNAs. Finally, the gain of function of candidate normomiRs across several cancer cell types indicates that miR-206 and miR-381 exert the most potent inhibition on multiple cancer types in vitro. CONCLUSION: Our results reveal a pan-cancer set of tumour-suppressing miRNAs and highlight the potential of miRNA-replacement therapies for targeting multiple types of tumour.


Asunto(s)
MicroARNs , Neoplasias , Bases de Datos Factuales , Regulación Neoplásica de la Expresión Génica , Ontología de Genes , Humanos , MicroARNs/genética , MicroARNs/metabolismo , Neoplasias/genética
8.
Front Cell Dev Biol ; 10: 1050856, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36733338

RESUMEN

Induced pluripotent stem cells (iPSCs) exhibit an unlimited ability to self-renew and produce various differentiated cell types, thereby creating high hopes for both scientists and patients as a great tool for basic research as well as for regenerative medicine purposes. The availability and safety of iPSCs for therapeutic purposes require safe and highly efficient methods for production of these cells. Different methods have been used to produce iPSCs, each of which has advantages and disadvantages. Studying these methods would be very helpful in developing an easy, safe, and efficient method for the generation of iPSCs. Since iPSCs can be generated from somatic cells, they can be considered as valuable cellular resources available for important research needs and various therapeutic purposes. Coronavirus disease 2019 (COVID-19) is a disease that has endangered numerous human lives worldwide and currently has no definitive cure. Therefore, researchers have been rigorously studying and examining all aspects of COVID-19 and potential treatment modalities and various drugs in order to enable the treatment, control, and prevention of COVID-19. iPSCs have become one of the most attractive and promising tools in this field by providing the ability to study COVID-19 and the effectiveness of drugs on this disease outside the human body. In this study, we discuss the different methods of generation of iPSCs as well as their respective advantages and disadvantages. We also present recent applications of iPSCs in the study and treatment of COVID-19.

9.
Exp Cell Res ; 406(1): 112737, 2021 09 01.
Artículo en Inglés | MEDLINE | ID: mdl-34324864

RESUMEN

The retina is the innermost part of the eye of most vertebrates and it is essential for vision. The development, maintenance, and function of this laminated structure is tightly regulated by numerous genes. Deficiencies in the expression of these genes as well as deregulation of various molecular mechanisms can cause retinopathies and blindness. MicroRNAs (miRNAs) are one of the most important and effective molecular regulatory mechanisms that underlie the biology of the retina. miRNAs have specific functional roles in the development and maintenance of different retinal layers and retinal cell types. While previous studies have reported a large number of miRNAs linked to development, maintenance and diseases of the retina, no comprehensive study has properly discussed and integrated data from these studies. Given the particular importance of miR-204 in retinal biology, we intend to critically discuss the expression and functional significance of this miRNA in the development, maintenance, and pathologies of the retina. Moreover, we explore biological processes through which miR-204 influences retinal pathophysiology. This review highlights the crucial functions of miR-204 in the retina and suggests the putative mechanism of miR-204 action in retinal biology.


Asunto(s)
Retinopatía Diabética/genética , Glaucoma/genética , Degeneración Macular/genética , MicroARNs/genética , Traumatismos del Nervio Óptico/genética , Retinoblastoma/genética , Animales , Secuencia de Bases , Secuencia Conservada , Retinopatía Diabética/metabolismo , Retinopatía Diabética/patología , Homólogo 1 de la Proteína Discs Large/genética , Homólogo 1 de la Proteína Discs Large/metabolismo , Modelos Animales de Enfermedad , Regulación de la Expresión Génica , Glaucoma/metabolismo , Glaucoma/patología , Humanos , Degeneración Macular/metabolismo , Degeneración Macular/patología , Proteínas de la Membrana/genética , Proteínas de la Membrana/metabolismo , MicroARNs/metabolismo , Traumatismos del Nervio Óptico/metabolismo , Traumatismos del Nervio Óptico/patología , Proteína Asociada al mTOR Insensible a la Rapamicina/genética , Proteína Asociada al mTOR Insensible a la Rapamicina/metabolismo , Retina/metabolismo , Retina/patología , Retinoblastoma/metabolismo , Retinoblastoma/patología , Transducción de Señal
10.
J Pathol ; 254(5): 505-518, 2021 08.
Artículo en Inglés | MEDLINE | ID: mdl-33959951

RESUMEN

Chronic obstructive pulmonary disease (COPD) is a chronic lung disease characterised by airway inflammation and progressive obstruction of the lung airflow. Current pharmacological treatments include bronchodilators, alone or in combination with steroids, or other anti-inflammatory agents, which have only partially contributed to the inhibition of disease progression and mortality. Therefore, further research unravelling the underlying mechanisms is necessary to develop new anti-COPD drugs with both lower toxicity and higher efficacy. Extrinsic signalling pathways play crucial roles in COPD development and exacerbations. In particular, phosphoinositide 3-kinase (PI3K) signalling has recently been shown to be a major driver of the COPD phenotype. Therefore, several small-molecule inhibitors have been identified to block the hyperactivation of this signalling pathway in COPD patients, many of them showing promising outcomes in both preclinical animal models of COPD and human clinical trials. In this review, we discuss the critically important roles played by hyperactivated PI3K signalling in the pathogenesis of COPD. We also critically review current therapeutics based on PI3K inhibition, and provide suggestions focusing on PI3K signalling for the further improvement of the COPD phenotype. © 2021 The Pathological Society of Great Britain and Ireland. Published by John Wiley & Sons, Ltd.


Asunto(s)
Fosfatidilinositol 3-Quinasa/metabolismo , Enfermedad Pulmonar Obstructiva Crónica/metabolismo , Animales , Humanos , Inhibidores de las Quinasa Fosfoinosítidos-3/farmacología , Enfermedad Pulmonar Obstructiva Crónica/tratamiento farmacológico , Transducción de Señal/efectos de los fármacos , Transducción de Señal/fisiología
11.
Sci Rep ; 11(1): 10271, 2021 05 13.
Artículo en Inglés | MEDLINE | ID: mdl-33986351

RESUMEN

COVID-19 has currently become the biggest challenge in the world. There is still no specific medicine for COVID-19, which leaves a critical gap for the identification of new drug candidates for the disease. Recent studies have reported that the small-molecule enoxacin exerts an antiviral activity by enhancing the RNAi pathway. The aim of this study is to analyze if enoxacin can exert anti-SARS-CoV-2 effects. We exploit multiple computational tools and databases to examine (i) whether the RNAi mechanism, as the target pathway of enoxacin, could act on the SARS-CoV-2 genome, and (ii) microRNAs induced by enoxacin might directly silence viral components as well as the host cell proteins mediating the viral entry and replication. We find that the RNA genome of SARS-CoV-2 might be a suitable substrate for DICER activity. We also highlight several enoxacin-enhanced microRNAs which could target SARS-CoV-2 components, pro-inflammatory cytokines, host cell components facilitating viral replication, and transcription factors enriched in lung stem cells, thereby promoting their differentiation and lung regeneration. Finally, our analyses identify several enoxacin-targeted regulatory modules that were critically associated with exacerbation of the SARS-CoV-2 infection. Overall, our analysis suggests that enoxacin could be a promising candidate for COVID-19 treatment through enhancing the RNAi pathway.


Asunto(s)
Antibacterianos/farmacología , Tratamiento Farmacológico de COVID-19 , Enoxacino/farmacología , Interferencia de ARN/efectos de los fármacos , SARS-CoV-2/efectos de los fármacos , COVID-19/genética , Simulación por Computador , Descubrimiento de Drogas , Redes Reguladoras de Genes/efectos de los fármacos , Genómica , Humanos , MicroARNs/genética , SARS-CoV-2/genética
12.
Angiogenesis ; 24(3): 657-676, 2021 08.
Artículo en Inglés | MEDLINE | ID: mdl-33742265

RESUMEN

Localized stimulation of angiogenesis is an attractive strategy to improve the repair of ischemic or injured tissues. Several microRNAs (miRNAs) such as miRNA-92a (miR-92a) have been reported to negatively regulate angiogenesis in ischemic disease. To exploit the clinical potential of miR-92a inhibitors, safe and efficient delivery needs to be established. Here, we used deoxycholic acid-modified polyethylenimine polymeric conjugates (PEI-DA) to deliver a locked nucleic acid (LNA)-based miR-92a inhibitor (LNA-92a) in vitro and in vivo. The positively charged PEI-DA conjugates condense the negatively charged inhibitors into nano-sized polyplexes (135 ± 7.2 nm) with a positive net charge (34.2 ± 10.6 mV). Similar to the 25 kDa-branched PEI (bPEI25) and Lipofectamine RNAiMAX, human umbilical vein endothelial cells (HUVECs) significantly internalized PEI-DA/LNA-92a polyplexes without any obvious cytotoxicity. Down-regulation of miR-92a following the polyplex-mediated delivery of LNA-92a led to a substantial increase in the integrin subunit alpha 5 (ITGA5), the sirtuin-1 (SIRT1) and Krüppel-like factors (KLF) KLF2/4 expression, formation of capillary-like structures by HUVECs, and migration rate of HUVECs in vitro. Furthermore, PEI-DA/LNA-92a resulted in significantly enhanced capillary density in a chicken chorioallantoic membrane (CAM) model. Localized angiogenesis was substantially induced in the subcutaneous tissues of mice by sustained release of PEI-DA/LNA-92a polyplexes from an in situ forming, biodegradable hydrogel based on clickable poly(ethylene glycol) (PEG) macromers. Our results indicate that PEI-DA conjugates efficiently deliver LNA-92a to improve angiogenesis. Localized delivery of RNA interference (RNAi)-based therapeutics via hydrogel-laden PEI-DA polyplex nanoparticles appears to be a safe and effective approach for different therapeutic targets.


Asunto(s)
Sistemas de Liberación de Medicamentos , Células Endoteliales de la Vena Umbilical Humana/metabolismo , Hidrogeles/farmacología , MicroARNs/antagonistas & inhibidores , Nanopartículas/uso terapéutico , Neovascularización Fisiológica/efectos de los fármacos , Animales , Embrión de Pollo , Femenino , Humanos , Hidrogeles/química , Ratones , MicroARNs/metabolismo , Nanopartículas/química
13.
J Dermatol Sci ; 101(1): 49-57, 2021 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-33183906

RESUMEN

BACKGROUND: The exact pathogenic mechanism causes hair miniaturization during androgenic alopecia (AGA) has not been delineated. Recent evidence has shown a role for non-coding regulatory RNAs, such as microRNAs (miRNAs), in skin and hair disease. There is no reported information about the role of miRNAs in hair epithelial cells of AGA. OBJECTIVES: To investigate the roles of miRNAs affecting AGA in normal and patient's epithelial hair cells. METHODS: Normal follicular stem and progenitor cells, as well as follicular patient's stem cells, were sorted from hair follicles, and a miRNA q-PCR profiling to compare the expression of 748 miRNA (miRs) in sorted cells were performed. Further, we examined the putative functional implication of the most differentially regulated miRNA (miR-324-3p) in differentiation, proliferation and migration of cultured keratinocytes by qRT-PCR, immunofluorescence, and scratch assay. To explore the mechanisms underlying the effects of miR-324-3p, we used specific chemical inhibitors targeting pathways influenced by miR-324-3p. RESULT: We provide a comprehensive assessment of the "miRNome" of normal and AGA follicular stem and progenitor cells. Differentially regulated miRNA signatures highlight several miRNA candidates including miRNA-324-3p as mis regulated in patient's stem cells. We find that miR-324-3p promotes differentiation and migration of cultured keratinocytes likely through the regulation of mitogen-activated protein kinase (MAPK) and transforming growth factor (TGF)-ß signaling. Importantly, pharmacological inhibition of the TGF-ß signaling pathway using Alk5i promotes hair shaft elongation in an organ-culture system. CONCLUSION: Together, we offer a platform for understanding miRNA dynamic regulation in follicular stem and progenitor cells in baldness and highlight miR-324-3p as a promising target for its treatment.


Asunto(s)
Alopecia/genética , Folículo Piloso/crecimiento & desarrollo , MicroARNs/metabolismo , Células Madre/metabolismo , Adulto , Alopecia/patología , Diferenciación Celular/efectos de los fármacos , Diferenciación Celular/genética , Línea Celular , Movimiento Celular/efectos de los fármacos , Movimiento Celular/genética , Proliferación Celular/efectos de los fármacos , Proliferación Celular/genética , Perfilación de la Expresión Génica , Folículo Piloso/citología , Humanos , Queratinocitos , Sistema de Señalización de MAP Quinasas/efectos de los fármacos , Sistema de Señalización de MAP Quinasas/genética , Masculino , Persona de Mediana Edad , Inhibidores de Proteínas Quinasas/farmacología , Receptor Tipo I de Factor de Crecimiento Transformador beta/antagonistas & inhibidores , Receptor Tipo I de Factor de Crecimiento Transformador beta/metabolismo , Factor de Crecimiento Transformador beta/metabolismo
14.
EMBO Rep ; 21(10): e47533, 2020 10 05.
Artículo en Inglés | MEDLINE | ID: mdl-33252195

RESUMEN

Naïve pluripotency can be established in human pluripotent stem cells (hPSCs) by manipulation of transcription factors, signaling pathways, or a combination thereof. However, differences exist in the molecular and functional properties of naïve hPSCs generated by different protocols, which include varying similarities with pre-implantation human embryos, differentiation potential, and maintenance of genomic integrity. We show here that short treatment with two chemical agonists (2a) of nuclear receptors, liver receptor homologue-1 (LRH-1) and retinoic acid receptor gamma (RAR-γ), along with 2i/LIF (2a2iL) induces naïve-like pluripotency in human cells during reprogramming of fibroblasts, conversion of pre-established hPSCs, and generation of new cell lines from blastocysts. 2a2iL-hPSCs match several defined criteria of naïve-like pluripotency and contribute to human-mouse interspecies chimeras. Activation of TGF-ß signaling is instrumental for acquisition of naïve-like pluripotency by the 2a2iL induction procedure, and transient activation of TGF-ß signaling substitutes for 2a to generate naïve-like hPSCs. We reason that 2a2iL-hPSCs are an easily attainable system to evaluate properties of naïve-like hPSCs and for various applications.


Asunto(s)
Células Madre Pluripotentes , Animales , Blastocisto , Diferenciación Celular , Línea Celular , Humanos , Ratones , Receptores Citoplasmáticos y Nucleares/genética , Receptores de Ácido Retinoico , Receptor de Ácido Retinoico gamma
15.
Genomics ; 112(5): 3382-3395, 2020 09.
Artículo en Inglés | MEDLINE | ID: mdl-32561347

RESUMEN

MicroRNAs (miRNAs) are small endogenous non-coding RNAs in eukaryotes which regulate the expression of numerous genes post-transcriptionally, thereby playing critical roles in cells and organismal development. The high-throughput sequencing technologies enable the effective detection and annotation of miRNAs. Several miRNA variants with heterogeneous ends, lengths, and sequences can be generated from a single miRNA locus. Discovery of these miRNA variants, also known as miRNA isoforms or isomiRs, has made our understanding of the cells' miRNome deeper than previously pictured. Despite their wide presence in multiple datasets, the different possible origins and true biological significance of isomiRs are yet to be uncovered. Several recent emerging studies suggest that isomiRs are biologically active and non-randomly formed. This review aims to provide a comprehensive insight into the origins and biological importance of isomiRs, highlighting the enormous complexity of miRNA regulatory networks which broadens our knowledge about the post-transcriptional gene regulation in plants.


Asunto(s)
MicroARNs/química , MicroARNs/fisiología , MicroARNs/genética , MicroARNs/metabolismo , Proteínas de Plantas/metabolismo , Edición de ARN , Precursores del ARN/química , Precursores del ARN/metabolismo , ARN de Planta , Ribonucleasa III/metabolismo
16.
Biochem Biophys Res Commun ; 527(3): 811-817, 2020 06 30.
Artículo en Inglés | MEDLINE | ID: mdl-32446562

RESUMEN

The ability of human embryonic stem cells (hESCs) to proliferate unlimitedly and give rise to all tissues makes these cells a promising source for cell replacement therapies. To realize the full potential of hESCs in cell therapy, it is necessary to interrogate regulatory pathways that influence hESC maintenance and commitment. Here, we reveal that pharmacological attenuation of p38 mitogen-activated protein kinase (p38-MAPK) in hESCs concomitantly augments some characteristics associated with pluripotency and the expressions of early lineage markers. Moreover, this blockage capacitates hESCs to differentiate towards an endoderm lineage at the expense of other lineages upon spontaneous hESC differentiation. Notably, hESCs pre-treated with p38-MAPK inhibitor exhibit significantly improved pancreatic progenitor directed differentiation. Together, our findings suggest a new approach to the robust endoderm differentiation of hESCs and potentially enables the facile derivation of various endoderm-derived lineages such as pancreatic cells.


Asunto(s)
Endodermo/citología , Células Madre Embrionarias Humanas/citología , Células Madre Embrionarias Humanas/efectos de los fármacos , Inhibidores de Proteínas Quinasas/farmacología , Proteínas Quinasas p38 Activadas por Mitógenos/antagonistas & inhibidores , Diferenciación Celular/efectos de los fármacos , Línea Celular , Endodermo/efectos de los fármacos , Células Madre Embrionarias Humanas/metabolismo , Humanos , Páncreas/citología , Páncreas/efectos de los fármacos , Proteínas Quinasas p38 Activadas por Mitógenos/metabolismo
18.
Brief Funct Genomics ; 19(4): 309-323, 2020 07 29.
Artículo en Inglés | MEDLINE | ID: mdl-32219422

RESUMEN

RNA interference (RNAi) is an important phenomenon that has diverse genetic regulatory functions at the pre- and posttranscriptional levels. The major trigger for the RNAi pathway is double-stranded RNA (dsRNA). dsRNA is processed to generate various types of major small noncoding RNAs (ncRNAs) that include microRNAs (miRNAs), small interfering RNAs (siRNAs) and PIWI-interacting RNAs (piRNAs) in Drosophila melanogaster (D. melanogaster). Functionally, these small ncRNAs play critical roles in virtually all biological systems and developmental pathways. Identification and processing of dsRNAs and activation of RNAi machinery are the three major academic interests that surround RNAi research. Mechanistically, some of the important biological functions of RNAi are achieved through: (i) supporting genomic stability via degradation of foreign viral genomes; (ii) suppressing the movement of transposable elements and, most importantly, (iii) post-transcriptional regulation of gene expression by miRNAs that contribute to regulation of epigenetic modifications such as heterochromatin formation and genome imprinting. Here, we review various routes of small ncRNA biogenesis, as well as different RNAi-mediated pathways in D. melanogaster with a particular focus on signaling pathways. In addition, a critical discussion of the most relevant and latest findings that concern the significant contribution of small ncRNAs to the regulation of D. melanogaster physiology and pathophysiology is presented.


Asunto(s)
Drosophila melanogaster/genética , Drosophila melanogaster/metabolismo , MicroARNs/metabolismo , Interferencia de ARN , Animales , Elementos Transponibles de ADN/genética , Epigénesis Genética , Regulación de la Expresión Génica/genética , MicroARNs/genética , ARN Interferente Pequeño/genética , ARN Interferente Pequeño/metabolismo , ARN Pequeño no Traducido/genética , ARN Pequeño no Traducido/metabolismo , Transducción de Señal/genética
19.
Exp Eye Res ; 190: 107883, 2020 01.
Artículo en Inglés | MEDLINE | ID: mdl-31758976

RESUMEN

Retinal pigment epithelial (RPE) cells are indispensable for eye organogenesis and vision. To realize the therapeutic potential of in vitro-generated RPE cells for cell-replacement therapy of RPE-related retinopathies, molecular mechanisms of RPE specification and maturation need to be investigated. So far, many attempts have been made to decipher the regulatory networks involved in the differentiation of human pluripotent stem cells into RPE cells. Here, we exploited a highly-efficient RPE differentiation protocol to determine global expression patterns of microRNAs (miRNAs) during human embryonic stem cell (hESC) differentiation into RPE using small RNA sequencing. Our results revealed a significant downregulation of pluripotency-associated miRNAs along with a significant upregulation of RPE-associated miRNAs in differentiating cells. Our functional analyses indicated that two RPE-enriched miRNAs (i.e. miR-125b and let-7a) could promote RPE fate at the expense of neural fate during RPE differentiation. Taken together, these mechanistic interrogations might shed light on a better understanding of RPE cell development and provide insights for the future application of these cells in regenerative medicine.


Asunto(s)
Diferenciación Celular/fisiología , MicroARNs/genética , Epitelio Pigmentado de la Retina/citología , Línea Celular , Citometría de Flujo , Perfilación de la Expresión Génica , Células Madre Embrionarias Humanas/metabolismo , Humanos , Inmunohistoquímica , MicroARNs/fisiología , Microscopía Electrónica de Transmisión , Microscopía Fluorescente , Fagocitosis/fisiología , Reacción en Cadena en Tiempo Real de la Polimerasa , Epitelio Pigmentado de la Retina/metabolismo , Transducción de Señal
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...