Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Front Plant Sci ; 12: 737919, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34745171

RESUMEN

Artificial hybridization plays a fundamental role in plant breeding programs since it generates new genotypic combinations that can result in desirable phenotypes. Depending on the species and mode of reproduction, controlled crosses may be challenging, and contaminating individuals can be introduced accidentally. In this context, the identification of such contaminants is important to avoid compromising further selection cycles, as well as genetic and genomic studies. The main objective of this work was to propose an automated multivariate methodology for the detection and classification of putative contaminants, including apomictic clones (ACs), self-fertilized individuals, half-siblings (HSs), and full contaminants (FCs), in biparental polyploid progenies of tropical forage grasses. We established a pipeline to identify contaminants in genotyping-by-sequencing (GBS) data encoded as allele dosages of single nucleotide polymorphism (SNP) markers by integrating principal component analysis (PCA), genotypic analysis (GA) measures based on Mendelian segregation, and clustering analysis (CA). The combination of these methods allowed for the correct identification of all contaminants in all simulated progenies and the detection of putative contaminants in three real progenies of tropical forage grasses, providing an easy and promising methodology for the identification of contaminants in biparental progenies of tetraploid and hexaploid species. The proposed pipeline was made available through the polyCID Shiny app and can be easily coupled with traditional genetic approaches, such as linkage map construction, thereby increasing the efficiency of breeding programs.

2.
PLoS One ; 16(7): e0241025, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34283830

RESUMEN

Acrocomia (Arecaceae) is a genus widely distributed in tropical and subtropical America that has been achieving economic interest due to the great potential of oil production of some of its species. In particular A. aculeata, due to its vocation to supply oil with the same productive capacity as the oil palm (Elaeis guineenses) even in areas with water deficit. Although eight species are recognized in the genus, the taxonomic classification based on morphology and geographic distribution is still controversial. Knowledge about the genetic diversity and population structure of the species is limited, which has limited the understanding of the genetic relationships and the orientation of management, conservation, and genetic improvement activities of species of the genus. In the present study, we analyzed the genomic diversity and population structure of Acrocomia genus, including 172 samples from seven species, with a focus on A. aculeata with 117 samples covering a wide geographical area of occurrence of the species, using Single Nucleotide Polymorphism (SNP) markers originated from Genotyping By Sequencing (GBS).The genetic structure of the Acrocomia species were partially congruent with the current taxonomic classification based on morphological characters, recovering the separation of the species A. aculeata, A. totai, A. crispa and A. intumescens as distinct taxonomic groups. However, the species A. media was attributed to the cluster of A. aculeata while A. hassleri and A. glauscescens were grouped together with A. totai. The species that showed the highest and lowest genetic diversity were A. totai and A. media, respectively. When analyzed separately, the species A. aculeata showed a strong genetic structure, forming two genetic groups, the first represented mainly by genotypes from Brazil and the second by accessions from Central and North American countries. Greater genetic diversity was found in Brazil when compared to the other countries. Our results on the genetic diversity of the genus are unprecedented, as is also establishes new insights on the genomic relationships between Acrocomia species. It is also the first study to provide a more global view of the genomic diversity of A. aculeata. We also highlight the applicability of genomic data as a reference for future studies on genetic diversity, taxonomy, evolution and phylogeny of the Acrocomia genus, as well as to support strategies for the conservation, exploration and breeding of Acrocomia species and in particular A. aculeata.


Asunto(s)
Arecaceae/genética , Genómica , Polimorfismo de Nucleótido Simple , Genética de Población , Fitomejoramiento
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...