Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Más filtros













Base de datos
Intervalo de año de publicación
1.
Biol Res ; 57(1): 23, 2024 May 06.
Artículo en Inglés | MEDLINE | ID: mdl-38705984

RESUMEN

Obesity, associated with the intake of a high-fat diet (HFD), and anxiety are common among those living in modern urban societies. Recent studies suggest a role of microbiome-gut-brain axis signaling, including a role for brain serotonergic systems in the relationship between HFD and anxiety. Evidence suggests the gut microbiome and the serotonergic brain system together may play an important role in this response. Here we conducted a nine-week HFD protocol in male rats, followed by an analysis of the gut microbiome diversity and community composition, brainstem serotonergic gene expression (tph2, htr1a, and slc6a4), and anxiety-related defensive behavioral responses. We show that HFD intake decreased alpha diversity and altered the community composition of the gut microbiome in association with obesity, increased brainstem tph2, htr1a and slc6a4 mRNA expression, including in the caudal part of the dorsomedial dorsal raphe nucleus (cDRD), a subregion previously associated with stress- and anxiety-related behavioral responses, and, finally, increased anxiety-related defensive behavioral responses. The HFD increased the Firmicutes/Bacteroidetes ratio relative to control diet, as well as higher relative abundances of Blautia, and decreases in Prevotella. We found that tph2, htr1a and slc6a4 mRNA expression were increased in subregions of the dorsal raphe nucleus in the HFD, relative to control diet. Specific bacterial taxa were associated with increased serotonergic gene expression in the cDRD. Thus, we propose that HFD-induced obesity is associated with altered microbiome-gut-serotonergic brain axis signaling, leading to increased anxiety-related defensive behavioral responses in rats.


Asunto(s)
Ansiedad , Eje Cerebro-Intestino , Dieta Alta en Grasa , Microbioma Gastrointestinal , Animales , Masculino , Dieta Alta en Grasa/efectos adversos , Microbioma Gastrointestinal/fisiología , Ansiedad/microbiología , Eje Cerebro-Intestino/fisiología , Ratas , Ratas Sprague-Dawley , Obesidad/microbiología , Obesidad/psicología , Obesidad/metabolismo , Transducción de Señal/fisiología , Conducta Animal/fisiología
2.
Zoo Biol ; 42(6): 789-796, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37466265

RESUMEN

The global population of Dicotyles tajacu (Linnaeus, 1758) (Cetartiodactyla: Tayassuidae), commonly known as the collared peccary and distributed in the Neotropics, is currently in decline due to anthropogenic pressures. In this study, five microsatellite loci were used to genetically characterize a group of 20 captive-born collared peccaries intended for reintroduction. This study aimed to evaluate the genetic diversity and relatedness of captive individuals using microsatellite markers. The genetic data generated were used to evaluate the viability of the reintroduction and to propose measures for the management and conservation of this species. In this study, we found relatively high genetic diversity indices, indicating that the group was genetically diverse. Inbreeding coefficients with negative values were observed, indicating an excess of alleles in heterozygosis and an absence of inbreeding. One locus showed deviation from Hardy-Weinberg equilibrium, which may have been caused by the mixing of individuals from different origins. Relatedness analysis indicated that some individuals were highly related, with coefficients indicating they may be first-degree relatives. Our findings indicate that the studied group has enough genetic diversity to be released into nature, but the high individual relatedness found would require the adoption of strategies after the release of animals in the wild to ensure their persistence.


Asunto(s)
Animales de Zoológico , Artiodáctilos , Animales , Genotipo , Animales de Zoológico/genética , Artiodáctilos/genética , Repeticiones de Microsatélite/genética , Secuenciación de Nucleótidos de Alto Rendimiento , Variación Genética
3.
Immunobiology ; 228(2): 152339, 2023 03.
Artículo en Inglés | MEDLINE | ID: mdl-36680978

RESUMEN

Preeclampsia is a hypertensive disease of pregnancy associated with intense inflammatory and pro-coagulant responses. Neuroserpin is a serine protease inhibitor that has been involved in neurological and immune processes and has not yet been investigated in preeclampsia. Herein, we evaluated neuroserpin levels in association with other inflammatory mediators (IL-17A, IL-33, and CXCL-16) during severe preeclampsia. The mediators' plasma levels were measured by immunoassays in 24 pregnant women with severe preeclampsia (early preeclampsia: N = 17, late preeclampsia: N = 7), 34 normotensive pregnant women, and 32 non-pregnant women. In general, pregnancy was associated with higher levels of neuroserpin, IL-17A, IL-33, and CXCL-16 than the non-pregnant state. However, this increase was attenuated in pregnancies complicated by severe preeclampsia. Although neuroserpin levels did not differ between normotensive pregnant women and pregnant women with severe preeclampsia, neuroserpin levels tended to be lower in early-onset than in late-onset severe preeclampsia. There were positive correlations between neuroserpin and IL-17A, neuroserpin and CXCL-16, and IL-17A and CXCL-16 levels in women with severe preeclampsia. In addition, although the risk for developing severe preeclampsia was higher in older women in this study, maternal age did not significantly influence the mediators' levels, nor their correlations in the preeclampsia group. In summary, our data suggest that neuroserpin might be a potential biomarker for early-onset severe preeclampsia and, that the imbalance among neuroserpin, IL-17A, IL-33, and CXCL-16 levels may be associated with the pathogenesis of preeclampsia, regardless of the maternal age.


Asunto(s)
Citocinas , Preeclampsia , Embarazo , Femenino , Humanos , Anciano , Interleucina-17 , Interleucina-33 , Biomarcadores , Estudios de Casos y Controles , Neuroserpina
4.
Sci Rep ; 9(1): 18006, 2019 11 29.
Artículo en Inglés | MEDLINE | ID: mdl-31784663

RESUMEN

Serratia liquefaciens strain FG3 (SlFG3), isolated from the flower of Stachytarpheta glabra in the Brazilian ferruginous fields, has distinctive genomic, adaptive, and biotechnological potential. Herein, using a combination of genomics and molecular approaches, we unlocked the evolution of the adaptive traits acquired by S1FG3, which exhibits the second largest chromosome containing the largest conjugative plasmids described for Serratia. Comparative analysis revealed the presence of 18 genomic islands and 311 unique protein families involved in distinct adaptive features. S1FG3 has a diversified repertoire of genes associated with Nonribosomal peptides (NRPs/PKS), a complete and functional cluster related to cellulose synthesis, and an extensive and functional repertoire of oxidative metabolism genes. In addition, S1FG3 possesses a complete pathway related to protocatecuate and chloroaromatic degradation, and a complete repertoire of genes related to DNA repair and protection that includes mechanisms related to UV light tolerance, redox process resistance, and a laterally acquired capacity to protect DNA using phosphorothioation. These findings summarize that SlFG3 is well-adapted to different biotic and abiotic stress situations imposed by extreme conditions associated with ferruginous fields, unlocking the impact of the lateral gene transfer to adjust the genome for extreme environments, and providing insight into the evolution of prokaryotes.


Asunto(s)
Aclimatación/genética , Evolución Biológica , Extremófilos/genética , Lamiales/microbiología , Serratia liquefaciens/genética , Brasil , Ambientes Extremos , Extremófilos/aislamiento & purificación , Flores/microbiología , Genes Bacterianos , Islas Genómicas , Genómica , Filogenia , Plásmidos/genética , Serratia liquefaciens/aislamiento & purificación
5.
Bioinformatics ; 34(6): 1040-1042, 2018 03 15.
Artículo en Inglés | MEDLINE | ID: mdl-29112698

RESUMEN

Motivation: Information about metabolic pathways in a comparative context is one of the most powerful tool to help the understanding of genome-based differences in phenotypes among organisms. Although several platforms exist that provide a wealth of information on metabolic pathways of diverse organisms, the comparison among organisms using metabolic pathways is still a difficult task. Results: We present TabPath (Tables for Metabolic Pathway), a web-based tool to facilitate comparison of metabolic pathways in genomes based on KEGG. From a selection of pathways and genomes of interest on the menu, TabPath generates user-friendly tables that facilitate analysis of variations in metabolism among the selected organisms. Availability and implementation: TabPath is available at http://200.239.132.160:8686. Contact: lmmorei@gmail.com.


Asunto(s)
Redes y Vías Metabólicas , Genoma
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA