Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Nat Commun ; 13(1): 5722, 2022 09 29.
Artículo en Inglés | MEDLINE | ID: mdl-36175400

RESUMEN

Visceral adiposity is a risk factor for severe COVID-19, and a link between adipose tissue infection and disease progression has been proposed. Here we demonstrate that SARS-CoV-2 infects human adipose tissue and undergoes productive infection in fat cells. However, susceptibility to infection and the cellular response depends on the anatomical origin of the cells and the viral lineage. Visceral fat cells express more ACE2 and are more susceptible to SARS-CoV-2 infection than their subcutaneous counterparts. SARS-CoV-2 infection leads to inhibition of lipolysis in subcutaneous fat cells, while in visceral fat cells, it results in higher expression of pro-inflammatory cytokines. Viral load and cellular response are attenuated when visceral fat cells are infected with the SARS-CoV-2 gamma variant. A similar degree of cell death occurs 4-days after SARS-CoV-2 infection, regardless of the cell origin or viral lineage. Hence, SARS-CoV-2 infects human fat cells, replicating and altering cell function and viability in a depot- and viral lineage-dependent fashion.


Asunto(s)
COVID-19 , SARS-CoV-2 , Tejido Adiposo , Enzima Convertidora de Angiotensina 2 , Citocinas , Humanos
2.
Curr Opin Pharmacol ; 58: 44-51, 2021 06.
Artículo en Inglés | MEDLINE | ID: mdl-33878567

RESUMEN

Adipose tissue (AT) performs immunoregulatory functions beyond fat storage. In addition to adipocytes, AT has a diverse spectrum of resident and infiltrating immune cells in health and disease. Immune cells contribute to the homeostatic function of AT by adapting their metabolism in accordance with the microenvironment. However, how the metabolic reprogramming of immune cells affects their inflammatory profile and the subsequent implication for adipocyte function is not completely elucidated. Here, we discuss the available data on metabolic regulatory processes implicated in the control of adipose tissue-resident immune cells and their crosstalk with adipocytes.


Asunto(s)
Adipocitos , Tejido Adiposo , Homeostasis
3.
J Leukoc Biol ; 106(3): 703-716, 2019 09.
Artículo en Inglés | MEDLINE | ID: mdl-31087711

RESUMEN

Obesity is a pandemic disease affecting around 15% of the global population. Obesity is a major risk factor for other conditions, such as type 2 diabetes and cardiovascular diseases. The adipose tissue is the main secretor of leptin, an adipokine responsible for the regulation of food intake and energy expenditure. Obese individuals become hyperleptinemic due to increased adipogenesis. Leptin acts through the leptin receptor and induces several immunometabolic changes in different cell types, including adipocytes and Mϕs. Adipose tissue resident Mϕs (ATMs) are the largest leukocyte population in the adipose tissue and these ATMs are in constant contact with the excessive leptin levels secreted in obese conditions. Leptin activates both the JAK2-STAT3 and the PI3K-AKT-mTOR pathways. The activation of these pathways leads to intracellular metabolic changes, with increased glucose uptake, upregulation of glycolytic enzymes, and disruption of mitochondrial function, as well as immunologic alterations, such as increased phagocytic activity and proinflammatory cytokines secretion. Here, we discuss the immunometabolic effects of leptin in Mϕs and how hyperleptinemia can contribute to the low-grade systemic inflammation in obesity.


Asunto(s)
Tejido Adiposo/citología , Leptina/metabolismo , Macrófagos/inmunología , Macrófagos/metabolismo , Animales , Humanos , Inmunidad , Receptores de Leptina/metabolismo , Transducción de Señal
4.
Artículo en Inglés | MEDLINE | ID: mdl-31920961

RESUMEN

Background: Leptin is an adipokine with well-known effects on the central nervous system including the induction of energy expenditure and satiety. Leptin also has major relevance when activating immune cells and modulating inflammatory response. In obesity, increases in white adipose tissue accumulation and leptin levels are accompanied by hypothalamic resistance to leptin. Even though the adipose tissue is a leptin-rich environment, the local actions of leptin regarding adipogenesis were not thoroughly investigated until now. Here we evaluate the contributions of leptins direct signaling in preadipocytes and adipose tissue-derived stromal cells (ASCs) for adipogenesis. Methods: Adipocytes were differentiated from the murine lineage of preadipocytes 3T3-L1 or ASCs from subcutaneous and visceral (retroperitoneal) fat depots from C57Bl/6J mice. Differentiating cells were treated with leptin in addition to or in replacement of insulin. The advance of adipogenesis was assessed by the expression and secretion of adipogenesis- and lipogenesis-related proteins by Western blot and immunoenzimatic assays, and the accumulation of lipid droplets by fluorescence microscopy. Results: Leptin treatment in 3T3-L1 preadipocytes or ASCs increased the production of the adipogenesis- and lipogenesis-related proteins PLIN1, CAV-1, PPARγ, SREBP1C, and/or adiponectin at earlier stages of differentiation. In 3T3-L1 preadipocytes, we found that leptin induced lipid droplets' formation in an mTOR-dependent manner. Also, leptin induced a proinflammatory cytokine profile in 3T3-L1 and ASCs, modulating the production of TNF-α, IL-10, and IL-6. Since insulin is considered an essential factor for preadipocyte differentiation, we asked whether leptin would support adipogenesis in the absence of insulin. Importantly, leptin induced the formation of lipid droplets and the expression of adipogenesis-related proteins independently of insulin during the differentiation of 3T3-L1 cells and ASCs. Conclusions: Our results demonstrate that leptin induces intracellular signaling in preadipocytes and adipocytes promoting adipogenesis and modulating the secretion of inflammatory mediators. Also, leptin restores adipogenesis in the absence of insulin. These findings contribute to the understanding of the local signaling of leptin in precursor and mature adipose cells. The proadipogenic role of leptin unraveled here may be of especial relevance during obesity, when its central signaling is defective.

5.
Clin Immunol ; 142(2): 117-26, 2012 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-22019771

RESUMEN

Some organ-transplanted patients achieve a state of "operational tolerance" (OT) in which graft function is maintained after the complete withdrawal of immunosuppressive drugs. We used a gene panel of regulatory/inflammatory molecules (FOXP3, GATA3, IL10, TGFB1, TGFBR1/ TBX21, TNF and IFNG) to investigate the gene expression profile in peripheral blood mononuclear cells of renal-transplanted individuals experiencing OT compared to transplanted individuals not displaying OT and healthy individuals (HI). OT subjects showed a predominant regulatory (REG) profile with higher gene expression of GATA3, FOXP3, TGFB1 and TGFB receptor 1 compared to the other groups. This predominant REG gene expression profile displayed stability over time. The significant GATA3 gene and protein expressions in OT individuals suggest that a Th2 deviation may be a relevant pathway to OT. Moreover, the capacity of the REG/INFLAMMA gene panel to discriminate OT by peripheral blood analysis indicates that this state has systemic repercussions.


Asunto(s)
Factor de Transcripción GATA3 , Inmunosupresores/metabolismo , Trasplante de Riñón/inmunología , Leucocitos Mononucleares/fisiología , Tolerancia al Trasplante , Adulto , Anciano , Femenino , Factores de Transcripción Forkhead/sangre , Factores de Transcripción Forkhead/genética , Factores de Transcripción Forkhead/metabolismo , Factor de Transcripción GATA3/sangre , Factor de Transcripción GATA3/genética , Factor de Transcripción GATA3/metabolismo , Perfilación de la Expresión Génica , Supervivencia de Injerto/inmunología , Humanos , Inmunosupresores/sangre , Masculino , Persona de Mediana Edad , Receptores de Factores de Crecimiento Transformadores beta/sangre , Receptores de Factores de Crecimiento Transformadores beta/genética , Receptores de Factores de Crecimiento Transformadores beta/metabolismo , Estudios Retrospectivos , Células Th2/metabolismo , Factor de Crecimiento Transformador beta1/sangre , Factor de Crecimiento Transformador beta1/genética , Factor de Crecimiento Transformador beta1/metabolismo , Tolerancia al Trasplante/genética , Tolerancia al Trasplante/inmunología
6.
Hum Immunol ; 71(5): 442-50, 2010 May.
Artículo en Inglés | MEDLINE | ID: mdl-20122976

RESUMEN

In organ transplantation, the immunosuppression withdrawal leads, in most cases, to rejection. Nonetheless, a special group of patients maintain stable graft function after complete withdrawal of immunosuppression, achieving a state called "operational tolerance." The study of such patients may be important to understand the mechanisms involved in human transplantation tolerance. We compared the profile of CD4(+)CD25(+)Foxp3(+) T cells and the signaling pathways IL-6/STAT3 (signal transducers and activators of transcription) and IL-4/STAT6 in peripheral blood mononuclear cells of four kidney transplant groups: (i) operational tolerance (OT), (ii) chronic allograft nephropathy (CR), (iii) stable graft function under standard immunosuppression (Sta), (iv) stable graft function under low immunosuppression, and (v) healthy individuals. Both CR and Sta displayed lower numbers and percentages of CD4(+)CD25(+)Foxp3(+) T cells compared with all other groups (p < 0.05). The OT patients displayed a reduced activation of the IL-4/STAT6 pathway in monocytes, compared with all other groups (p < 0.05). The lower numbers of CD4(+)CD25(+)Foxp3(+) T cells observed in CR individuals may be a feature of chronic allograft nephropathy. The differential OT signaling profile, with reduced phosphorylation of STAT6, in monocytes' region, suggests that some altered function of STAT6 signaling may be important for the operational tolerance state.


Asunto(s)
Trasplante de Riñón/inmunología , Monocitos/inmunología , Factor de Transcripción STAT6/metabolismo , Linfocitos T Reguladores/inmunología , Tolerancia al Trasplante/inmunología , Adulto , Separación Celular , Femenino , Citometría de Flujo , Factores de Transcripción Forkhead , Rechazo de Injerto/inmunología , Rechazo de Injerto/prevención & control , Humanos , Inmunosupresores/uso terapéutico , Recuento de Linfocitos , Masculino , Persona de Mediana Edad , Monocitos/metabolismo , Receptores de Interleucina-4 , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa , Transducción de Señal/inmunología , Subgrupos de Linfocitos T/inmunología , Subgrupos de Linfocitos T/metabolismo , Linfocitos T Reguladores/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...