Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros













Base de datos
Intervalo de año de publicación
1.
Environ Toxicol Chem ; 42(12): 2614-2629, 2023 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-37477462

RESUMEN

Bioavailability models, for example, multiple linear regressions (MLRs) of water quality parameters, are increasingly being used to develop bioavailability-based water quality criteria for metals. However, models developed for the Northern Hemisphere cannot be adopted for Australia and New Zealand without first validating them against local species and local water chemistry characteristics. We investigated the applicability of zinc chronic bioavailability models to predict toxicity in a range of uncontaminated natural waters in Australia and New Zealand. Water chemistry data were compiled to guide a selection of waters with different zinc toxicity-modifying factors. Predicted toxicities using several bioavailability models were compared with observed chronic toxicities for the green alga Raphidocelis subcapitata and the native cladocerans Ceriodaphnia cf. dubia and Daphnia thomsoni. The most sensitive species to zinc in five New Zealand freshwaters was R. subcapitata (72-h growth rate), with toxicity ameliorated by high dissolved organic carbon (DOC) or low pH, and hardness having a minimal influence. Zinc toxicity to D. thomsoni (reproduction) was ameliorated by both high DOC and hardness in these same waters. No single trophic level-specific effect concentration, 10% (EC10) MLR was the best predictor of chronic toxicity to the cladocerans, and MLRs based on EC10 values both over- and under-predicted zinc toxicity. The EC50 MLRs better predicted toxicities to both the Australian and New Zealand cladocerans to within a factor of 2 of the observed toxicities in most waters. These findings suggest that existing MLRs may be useful for normalizing local ecotoxicity data to derive water quality criteria for Australia and New Zealand. The final choice of models will depend on their predictive ability, level of protection, and ease of use. Environ Toxicol Chem 2023;42:2614-2629. © 2023 The Authors. Environmental Toxicology and Chemistry published by Wiley Periodicals LLC on behalf of SETAC.


Asunto(s)
Cladóceros , Contaminantes Químicos del Agua , Animales , Modelos Lineales , Nueva Zelanda , Concentración de Iones de Hidrógeno , Australia , Compuestos Orgánicos , Zinc/toxicidad , Agua Dulce , Contaminantes Químicos del Agua/toxicidad
2.
Environ Pollut ; 243(Pt B): 1450-1459, 2018 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-30292154

RESUMEN

Chemical pollution is considered a factor that may threaten marine protected areas (MPAs), and recent studies have found contamination and associated biological effects in some MPAs. However, organized data on this topic are lacking. This study reviewed the literature on pollution in MPAs in order to compile data, determine whether MPAs are influenced by pollution and, whenever possible, describe how they are being affected by contaminants. The results show that the pollution status is unknown in most MPAs worldwide. When any information is available, it is often insufficient to diagnose the threats to biodiversity or to support further actions. More robust and extensive information is available on a small number of MPAs, and much less information is available regarding the negative effects of pollution. More than 80% of the areas studied exhibited evidence of contamination at potentially toxic concentrations or were found to have a status that produced toxic effects on the biota. The scientific community is encouraged to study pollution in MPAs worldwide.


Asunto(s)
Conservación de los Recursos Naturales , Contaminantes del Agua/toxicidad , Contaminación del Agua/estadística & datos numéricos , Animales , Biodiversidad , Contaminación Ambiental , Peces
3.
Environ Geochem Health ; 40(4): 1465-1480, 2018 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-28612322

RESUMEN

The Ribeira de Iguape River (Southeast Brazil) is metal contaminated by mining activities. Despite it has been cataloged as "in via of restoration" by the literature, this basin is still a sink of pollution in some segments of the fluvial system. This study aimed to assess the sediment quality in the lower part of the RIR basin. The employed approach was based on biological responses of the freshwater clam Corbicula fluminea after 7-day exposure bioassays using as the reference site the Perequê Ecological Park. Toxic responses (burial activity and lethality) and biochemical biomarkers (GST, GR, GPx, LPO, MTs, AChE and DNA damage) were evaluated and then integrated with metal bioavailability and chemical concentrations to address the sediment quality in the area through the weight-of-evidence approach. A multivariate analysis identified linkages between biological responses and contamination. Results pointed that, despite being below the benchmarks of the US Environmental Protection Agency, there is slight metal contamination in the lower part of the basin which induces oxidative stress in C. fluminea; other toxic responses were sometimes attributed to As and Cr bioaccumulation. The sediment quality values (TEL-PEL values in mg/kg) were calculated for the current study for As (0.63-1.31), Cr (3.5-11.05), Cs (1.0-1.17), Cu (6.32-7.32), Ni (6.78-7.46), Ti (42.0-215), V (1.77-8.00). By comparison with other international guidelines, the sediment quality of the lower basin of the Vale de Ribeira does not identify a significant environmental risk.


Asunto(s)
Sedimentos Geológicos/química , Minería , Contaminantes Químicos del Agua/metabolismo , Animales , Biomarcadores/metabolismo , Bivalvos/enzimología , Bivalvos/metabolismo , Brasil , Agua Dulce , Estrés Oxidativo , Contaminantes Químicos del Agua/toxicidad
4.
Environ Monit Assess ; 189(6): 245, 2017 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-28462477

RESUMEN

The sediment quality of Ribeira de Iguape River is affected by former Pb extraction mining. Some studies affirm the restoration status of the basin, however, mobility of metals and its associated risk is still questioned. This study integrates the metal concentrations in the lower part of the basin with different contamination source to determine the existence of risks associated with the mobile fractions of the geochemical matrix. Despite concentrations of metals were low and the environmental risk factor values were negative, our results indicated that As, Mn, Pb, and V were present in the most labile forms. The multivariate analysis conducted using metal concentrations, environmental risk factor values and speciation suggested that any risk would be associated with the labile fractions of the analyzed elements, especially for Pb. The station from Registro was stressed by Co, Pb and Zn; with Pb under the reactive fraction that could be associated with high mobility and potential bioavailability.


Asunto(s)
Monitoreo del Ambiente , Sedimentos Geológicos/química , Metales Pesados/análisis , Contaminantes Químicos del Agua/análisis , Brasil , Fraccionamiento Químico , Sedimentos Geológicos/análisis , Minería , Ríos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA