Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 72
Filtrar
Más filtros













Base de datos
Intervalo de año de publicación
1.
Heliyon ; 10(10): e30738, 2024 May 30.
Artículo en Inglés | MEDLINE | ID: mdl-38765034

RESUMEN

Controlling the microbial load in the environment is crucial to prevent the spread of organisms. The continuous spread of nosocomial infections in hospital facilities and the emergence of the coronavirus (COVID-19) highlighted the importance of disinfection processes in health safety. This work aimed to evaluate the effectiveness of LED-based disinfection lamps on bacteria from the ESKAPEE group and virus phage in vitro inactivation to be applied in hospital environments and health facilities disinfection. This study evaluated the effect of different UV wavelengths (275 nm, 280 nm (UVC), 310 nm (UVB) and 340 nm (UVA)) on the disinfection process of various microbial indicators including E. coli, S. aureus, P. aeruginosa, B. subtilis and Bacteriophage lambda DSM 4499. Exposure time (5 min-30 min), exposure distance (0.25 m and 0.5 m) and surface materials (glass, steel, and polished wood) were evaluated on the disinfection efficiency. Furthermore, the study determined the recovery capacity of each species after UV damage. UVC-LED lamps could inactivate 99.99 % of microbial indicators after 20 min exposures at a 0.5 m distance. The exposure time needed to completely inactivate E. coli, S. aureus, P. aeruginosa, B. subtilis and Bacteriophage lambda DSM 4499 can be decreased by reducing the exposure distance. UVB-LED and UVA-LED lamps were not able to promote a log reduction of 4 and were not effective on B. subtilis or bacteriophage lambda DSM 4499 inactivation. Thus, only UVC-LED lamps were tested on the decontamination of different surface materials, which was successful. P. aeruginosa showed the ability to recover from UV damage, but its inactivation rate remains 99.99 %, and spores from B. subtilis were not completely inactivated. Nevertheless, the inactivation rate of these indicators remained at 99.99 % with 24 h incubation after UVC irradiation. UVC-LED lamps emitting 280 nm were the most indicated to disinfect surfaces from microorganisms usually found in hospital environments.

2.
Heliyon ; 10(9): e30464, 2024 May 15.
Artículo en Inglés | MEDLINE | ID: mdl-38711646

RESUMEN

The occurrence of healthcare-associated infections is a multifactorial phenomenon related to hospital space contamination by bacteria. The ESKAPE group, specifically Pseudomonas aeruginosa and Klebsiella pneumoniae, play a relevant role in the occurrence of these infections. Therefore, comprehensive research is needed to identify characteristics that justify the prevalence of these species in the healthcare environment. In this line, the study aimed to determine the antimicrobial resistance, biofilm formation, and the potential for polymer degradation in a collection of 33 P. aeruginosa strains and 2 K. pneumoniae strains sampled from various equipment and non-critical surfaces in a Portuguese hospital. Antimicrobial susceptibility tests revealed that none of the strains was categorized as multidrug-resistant (non-MDR). An assessment of their biofilm-forming capabilities indicated that 97 % of the strains exhibited biofilm-producing characteristics. Notably, within this group, the majority of P. aeruginosa and half of K. pneumoniae strains were classified as strong biofilm producers. Furthermore, the strains were evaluated for their potential to cause damage or change medical devices, namely infusion sets, nasal cannula, and urinary catheters. Three P. aeruginosa strains, two strong and one moderate biofilm producers, showed the highest ability to modify surfaces of the nasal cannula and infusion sets. Additionally, the Chi-square test revealed a statistically significant relationship between the presence of P. aeruginosa strains and the water accession spots. In conclusion, this work suggests that bacteria from this group hold a significant ability to grow in the healthcare environment through the degradation of non-critical materials. This suggests a potential concern for the persistence and proliferation of these organisms in hospital environments, emphasizing the importance of robust infection control measures to mitigate the risks associated with bacterial growth on such surfaces.

3.
Membranes (Basel) ; 13(11)2023 Nov 08.
Artículo en Inglés | MEDLINE | ID: mdl-37999363

RESUMEN

Wound infection is a common complication of chronic wounds. It can impair healing, which may not occur without external help. Antimicrobial dressings (AMDs) are a type of external help to infected chronic wounds. In this study, highly porous membranes made of only chitosan and containing the antiseptic polyhexanide (poly(hexamethylene biguanide); PHMB) were prepared by cryogelation, aiming to be used in AMDs. These membranes exhibited a water swelling capacity of 748%, a water drop penetration time of 11 s in a dry membrane and a water vapor transmission rate of 34,400 g H2O/m2/24 h when in contact with water. The best drug loading method involved simultaneous loading by soaking in a PHMB solution and sterilization by autoclaving, resulting in sterilized, drug-loaded membranes. When these membranes and a commercial PHMB-releasing AMD were assayed under the same conditions, albeit far from the in vivo conditions, their drug release kinetics were comparable, releasing PHMB for ca. 6 and 4 h, respectively. These membranes exhibited high antibacterial activity against Escherichia coli, Staphylococcus aureus and Pseudomonas aeruginosa, which are bacterial species commonly found in infected wounds and blood clotting activity. The obtained results suggest that these membranes may have potential for use in the development of AMDs.

4.
Artículo en Inglés | MEDLINE | ID: mdl-37326610

RESUMEN

The genus Belliella belongs to the family Cyclobacteriaceae (order Cytophagales, phylum Bacteroidota) and harbours aerobic chemoheterotrophic bacteria. Members of this genus were isolated from various aquatic habitats, and our analysis based on global amplicon sequencing data revealed that their relative abundance can reach up to 5-10 % of the bacterioplankton in soda lakes and pans. Although a remarkable fraction of the most frequent genotypes that we identified from continental aquatic habitats is still uncultured, five new alkaliphilic Belliella strains were characterized in detail in this study, which were isolated from three different soda lakes and pans of the Carpathian Basin (Hungary). Cells of all strains were Gram-stain-negative, obligate aerobic, rod-shaped, non-motile and non-spore-forming. The isolates were oxidase- and catalase-positive, red-coloured, but did not contain flexirubin-type pigments; they formed bright red colonies that were circular, smooth and convex. Their major isoprenoid quinone was MK-7 and the predominant fatty acids were iso-C15 : 0, iso-C17 : 0 3-OH and summed feature 3 containing C16 : 1 ω6c and/or C16 : 1 ω7c. The polar lipid profiles contained phosphatidylethanolamine, an unidentified aminophospholipid, an unidentified glycolipid, and several unidentified lipids and aminolipids. Based on whole-genome sequences, the DNA G+C content was 37.0, 37.1 and 37.8 mol % for strains R4-6T, DMA-N-10aT and U6F3T, respectively. The distinction of three new species was confirmed by in silico genomic comparison. Orthologous average nucleotide identity (<85.4 %) and digital DNA-DNA hybridization values (<38.9 %) supported phenotypic, chemotaxonomic and 16S rRNA gene sequence data and, therefore, the following three novel species are proposed: Belliella alkalica sp. nov. (represented by strains R4-6T=DSM 111903T=JCM 34281T=UCCCB122T and S4-10), Belliella calami sp. nov. (DMA-N-10aT=DSM 107340T=JCM 34280T=UCCCB121T) and Belliella filtrata sp. nov. (U6F3T=DSM 111904T=JCM 34282T=UCCCB123T and U6F1). Emended descriptions of species Belliella aquatica, Belliella baltica, Belliella buryatensis, Belliella kenyensis and Belliella pelovolcani are also presented.


Asunto(s)
Ácidos Grasos , Fosfolípidos , Ácidos Grasos/química , Fosfolípidos/análisis , ARN Ribosómico 16S/genética , ADN Bacteriano/genética , Análisis de Secuencia de ADN , Composición de Base , Filogenia , Técnicas de Tipificación Bacteriana , Bacteroidetes
5.
Artículo en Inglés | MEDLINE | ID: mdl-36833658

RESUMEN

Environmental challenges related to the mismanagement of plastic waste became even more evident during the COVID-19 pandemic. The need for new solutions regarding the use of plastics came to the forefront again. Polyhydroxyalkanoates (PHA) have demonstrated their ability to replace conventional plastics, especially in packaging. Its biodegradability and biocompatibility makes this material a sustainable solution. The cost of PHA production and some weak physical properties compared to synthetic polymers remain as the main barriers to its implementation in the industry. The scientific community has been trying to solve these disadvantages associated with PHA. This review seeks to frame the role of PHA and bioplastics as substitutes for conventional plastics for a more sustainable future. It is focused on the bacterial production of PHA, highlighting the current limitations of the production process and, consequently, its implementation in the industry, as well as reviewing the alternatives to turn the production of bioplastics into a sustainable and circular economy.


Asunto(s)
COVID-19 , Polihidroxialcanoatos , Humanos , Pandemias , Plásticos , Biopolímeros , Biodiversidad
6.
Front Microbiol ; 13: 970147, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36188007

RESUMEN

Gallium (Ga) is considered a high-tech Critical Metal, used in the manufacture of several microelectronic components containing either gallium arsenide (GaAs) or gallium nitride (GaN). The current high demand for this critical metal urges the development of effective recovery processes from secondary resources such as mine tailings or electronic recycling material. The importance of bioleaching as a biotechnological process to recover metals prompted this study, where an integrative approach combining experimental and genomic analysis was undertaken to identify potential mechanisms involved in bioleaching ability and strategies to cope with high metal(loid)s concentrations in five mine isolates. The Clusters of Orthologous Group (COG) annotation showed that the "amino acid transport and metabolism" [E] was the most predominant functional category in all genomes. In addition, the KEEG pathways analysis also showed predicted genes for the biosynthetic pathways of most amino acids, indicating that amino acids could have an important role in the Ga leaching mechanism. The presence of effective resistance mechanisms to Ga and arsenic (As) was particularly important in GaAs bioleaching batch assays, and might explain the divergence in bioleaching efficiency among the bacterial strains. Rhodanobacter sp. B2A1Ga4 and Sphingomonas sp. A2-49 with higher resistance, mainly to As, were the most efficient bioleaching strains under these conditions. In bioleaching assays using cell-free spent medium Arthrobacter silviterrae A2-55 with lower As resistance outperformed all the other stains. Overall, higher efficiency in Ga leaching was obtained in bioleaching assays using GaAs when compared to GaN.

7.
Artículo en Inglés | MEDLINE | ID: mdl-36078188

RESUMEN

The emergence of the coronavirus disease 2019 (COVID-19) pandemic highlighted the importance of disinfection processes in health safety. Textiles and footwear have been identified as vectors for spreading infections. Therefore, their disinfection can be crucial to controlling pathogens' dissemination. The present work aimed to evaluate the effectiveness of a commercial disinfectant aerosolized by an ultrasonic nebulizer closet as an effective method for disinfecting textiles and footwear. The disinfection was evaluated in three steps: suspension tests; nebulization in a 0.08 m3 closet; nebulization in the upscaled 0.58 m3 closet. The disinfection process of textiles and footwear was followed by the use of bacteriophages, bacterial spores, and bacterial cells. The disinfection in the 0.58 m3 closet was efficient for textiles (4 log reduction) when bacteriophage Lambda, Pseudomonas aeruginosa, and Bacillus subtilis were used. The footwear disinfection was achieved (4 log reduction) in the 0.08 m3 closet for Escherichia coli and Staphylococcus aureus. Disinfection in an ultrasonic nebulization closet has advantages such as being quick, not wetting, being efficient on porous surfaces, and is performed at room temperature. Ultrasonic nebulization disinfection in a closet proves to be useful in clothing and footwear stores to prevent pathogen transmission by the items' widespread handling.


Asunto(s)
COVID-19 , Desinfección , Desinfección/métodos , Humanos , Nebulizadores y Vaporizadores , Textiles , Ultrasonido
8.
iScience ; 25(7): 104566, 2022 Jul 15.
Artículo en Inglés | MEDLINE | ID: mdl-35784792

RESUMEN

Untreated mining wastes and improper disposal of high-tech devices generate an environmental increase of bioavailable metalloids, exerting stress on autochthonous microbial populations. Tellurium is a metalloid, an element with raising economic importance; nevertheless, its interaction with living organisms is not yet fully understood. Here we characterized aerobic heterotrophic bacteria, isolated from high metal-content mining residues, able to resist/reduce tellurite into tellurium structures and to determine the presence of confirmed tellurite resistance genetic determinants in resistant strains. We identified over 50 tellurite-resistant strains, among 144 isolates, eight strains reduced tellurite to tellurium at different rates, with the concomitant production of tellurium deposits. Most tellurite resistance genes were found in strains from Bacillales, with the prevalence of genes of the ter operon. This work demonstrated that bacterial isolates, from environments with a persistent selective pressure, are potential candidates for uncovering strategies for tellurite resistance and/or production of valuable Te-containing materials.

9.
Artículo en Inglés | MEDLINE | ID: mdl-35682153

RESUMEN

The need to secure public health and mitigate the environmental impact associated with the massified use of respiratory protective devices (RPD) has been raising awareness for the safe reuse of decontaminated masks by individuals and organizations. Among the decontamination treatments proposed, in this work, three methods with the potential to be adopted by households and organizations of different sizes were analysed: contact with nebulized hydrogen peroxide (H2O2); immersion in commercial bleach (NaClO) (sodium hypochlorite, 0.1% p/v); and contact with steam in microwave steam-sanitizing bags (steam bag). Their decontamination effectiveness was assessed using reference microorganisms following international standards (issued by ISO and FDA). Furthermore, the impact on filtration efficiency, air permeability and several physicochemical and structural characteristics of the masks, were evaluated for untreated masks and after 1, 5 and 10 cycles of treatment. Three types of RPD were analysed: surgical, KN95, and cloth masks. Results demonstrated that the H2O2 protocol sterilized KN95 and surgical masks (reduction of >6 log10 CFUs) and disinfected cloth masks (reduction of >3 log10 CFUs). The NaClO protocol sterilized surgical masks, and disinfected KN95 and cloth masks. Steam bags sterilized KN95 and disinfected surgical and cloth masks. No relevant impact was observed on filtration efficiency.


Asunto(s)
Descontaminación , Dispositivos de Protección Respiratoria , Descontaminación/métodos , Filtración , Humanos , Peróxido de Hidrógeno , Permeabilidad , Vapor
10.
Pathogens ; 11(2)2022 Feb 01.
Artículo en Inglés | MEDLINE | ID: mdl-35215141

RESUMEN

Bursaphelenchus xylophilus, also known as pinewood nematode (PWN), is the pathogenic agent of pine wilt disease (PWD), which affects pine trees around the world. Infection spread globally through international wood commerce and locally by vector beetles, threatening the wood world economy. As climate changes, more countries are becoming susceptible to PWD and, to prevent disease spread and limit economic and ecological losses, better knowledge about this pathogenic agent is needed. Serratia strains, present in the endophytic community of pine trees and carried by PWN, may play an important role in PWD. This work aimed to better understand the interaction between Serratia strains and B. xylophilus and to assess the nematicidal potential of serratomolide-like molecules produced by Serratia strains. Serrawettin gene presence was evaluated in selected Serratia strains. Mortality tests were performed with bacteria supernatants, and extracted amino lipids, against Caenorhabditis elegans (model organism) and B. xylophilus to determine their nematicidal potential. Attraction tests were performed with C. elegans. Concentrated supernatants of Serratia strains with serratamolide-like lipopeptides were able to kill more than 77% of B. xylophilus after 72 h. Eight specific amino lipids showed a high nematicidal activity against B. xylophilus. We conclude that, for some Serratia strains, their supernatants and specific amino lipids showed nematicidal activity against B. xylophilus.

11.
Int J Syst Evol Microbiol ; 72(12)2022 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-36748409

RESUMEN

Bacterial strain A52C2T was isolated from the endophytic microbial community of a Pinus pinaster tree trunk and characterized. Strain A52C2T stained Gram-negative and formed rod-shaped cells that grew optimally at 30 °C and at pH 6.0-7.0. The G+C content of the DNA was 65.1 mol %. The respiratory quinone was ubiquinone 10, and the major fatty acids were cyclo-C19:0 ω8c and C18:0, representing 70.1 % of the total fatty acids. Phylogenetic analyses based on the 16S rRNA gene sequences placed strain A52C2T in a distinct lineage within the order Hyphomicrobiales, family Pleomorphomonadaceae. The 16S rRNA gene sequence similarities of A52C2T to that of Mongoliimonas terrestris and Oharaeibacter diazotrophicus were 93.15 and 93.2 %, respectively. The draft genome sequence of strain A52C2T comprises 4 196 045 bases with a 195-fold mapped coverage of the genome. The assembled genome consists of 43 contigs of more than 1 000 bp (N50 contig size was 209 720 bp). The genome encodes 4033 putative coding sequences. The phylogenetic, phenotypic and chemotaxonomic data showed that strain A52C2T (=UCCCB 130T=CECT 8949T=LMG 29042T) represents the type of a novel species and genus, for which we propose the name Faunimonas pinastri gen. nov., sp. nov.


Asunto(s)
Alphaproteobacteria , Pinus , Ácidos Grasos/química , Fosfolípidos/química , Endófitos , Pinus/microbiología , Filogenia , ARN Ribosómico 16S/genética , ADN Bacteriano/genética , Composición de Base , Análisis de Secuencia de ADN , Técnicas de Tipificación Bacteriana
12.
Front Microbiol ; 12: 772127, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34925279

RESUMEN

Indium (In) is a critical metal widely used in electronic equipment, and the supply of this precious metal is a major challenge for sustainable development. The use of microorganisms for the recovery of this critical high-tech element has been considered an excellent eco-friendly strategy. The Rhodanobacter sp. B2A1Ga4 strain, highly resistant to In, was studied in order to disclose the bacterial mechanisms closely linked to the ability to cope with this metal. The mutation of the gene encoding for a DedA protein homolog, YqaA, affected drastically the In resistance and the cellular metabolic activity of strain Rhodanobacter sp. B2A1Ga4 in presence of this metal. This indicates that this protein plays an important role in its In resistance phenotype. The negative impact of In might be related to the high accumulation of the metal into the mutant cells showing In concentration up to approximately 4-fold higher than the native strain. In addition, the expression of the yqaA gene in this mutant reverted the bacterial phenotype with a significant decrease of In accumulation levels into the cells and an increase of In resistance. Membrane potential measurements showed similar values for native and mutant cells, suggesting that there was no loss of proton-motive force in the mutant cells. The results from this study suggest a potential role of this DedA family protein as a membrane transporter involved in the In efflux process. The mutant strain also has the potential to be used as a biotool in bioaccumulation strategies, for the recovery of In in biomining activities.

13.
Polymers (Basel) ; 13(24)2021 Dec 14.
Artículo en Inglés | MEDLINE | ID: mdl-34960929

RESUMEN

The present study deals with the development of multifunctional biphasic calcium phosphate (BCP) scaffolds coated with biopolymers-poly(ε-caprolactone) (PCL) or poly(ester urea) (PEU)-loaded with an antibiotic drug, Rifampicin (RFP). The amounts of RFP incorporated into the PCL and PEU-coated scaffolds were 0.55 ± 0.04 and 0.45 ± 0.02 wt%, respectively. The in vitro drug release profiles in phosphate buffered saline over 6 days were characterized by a burst release within the first 8h, followed by a sustained release. The Korsmeyer-Peppas model showed that RFP release was controlled by polymer-specific non-Fickian diffusion. A faster burst release (67.33 ± 1.48%) was observed for the PCL-coated samples, in comparison to that measured (47.23 ± 0.31%) for the PEU-coated samples. The growth inhibitory activity against Escherichia coli and Staphylococcus aureus was evaluated. Although the RFP-loaded scaffolds were effective in reducing bacterial growth for both strains, their effectiveness depends on the particular bacterial strain, as well as on the type of polymer coating, since it rules the drug release behavior. The low antibacterial activity demonstrated by the BCP-PEU-RFP scaffold against E. coli could be a consequence of the lower amount of RFP that is released from this scaffold, when compared with BCP-PCL-RFP. In vitro studies showed excellent cytocompatibility, adherence, and proliferation of human mesenchymal stem cells on the BCP-PEU-RFP scaffold surface. The fabricated highly porous scaffolds that could act as an antibiotic delivery system have great potential for applications in bone regeneration and tissue engineering, while preventing bacterial infections.

14.
Front Microbiol ; 12: 718963, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34557171

RESUMEN

Tellurium (Te) is a metalloid with scarce and scattered abundance but with an increased interest in human activity for its uses in emerging technologies. As is seen for other metals and metalloids, the result of mining activity and improper disposal of high-tech devices will lead to niches with increased abundance of Te. This metalloid will be more available to bacteria and represent an increasing selective pressure. This environmental problem may constitute an opportunity to search for microorganisms with genetic and molecular mechanisms of microbial resistance to Te toxic anions. Organisms from Te-contaminated niches could provide tools for Te remediation and fabrication of Te-containing structures with added value. The objective of this study was to determine the ability of a high metal-resistant Paenibacillus pabuli strain ALJ109b, isolated from high metal content mining residues, to reduce tellurite ion, and to evaluate the formation of metallic tellurium by cellular reduction, isolate the protein responsible, and determine the metabolic response to tellurite during growth. P. pabuli ALJ109b demonstrated to be resistant to Te (IV) at concentrations higher than reported for its genus. It can efficiently remove soluble Te (IV) from solution, over 20% in 8 h of growth, and reduce it to elemental Te, forming monodisperse nanostructures, verified by scattering electron microscopy. Cultivation of P. pabuli ALJ109b in the presence of Te (IV) affected the general protein expression pattern, and hence the metabolism, as demonstrated by high-throughput proteomic analysis. The Te (IV)-induced metabolic shift is characterized by an activation of ROS response. Flagellin from P. pabuli ALJ109b demonstrates high Te (0) forming activity in neutral to basic conditions in a range of temperatures from 20°C to 37°C. In conclusion, the first metabolic characterization of a strain of P. pabuli response to Te (IV) reveals a highly resistant strain with a unique Te (IV) proteomic response. This strain, and its flagellin, display, all the features of potential tools for Te nanoparticle production.

15.
Artículo en Inglés | MEDLINE | ID: mdl-33807539

RESUMEN

Microorganisms that live in association with amphibian skin can play important roles in protecting their host. Within the scenarios of global change, it is important to understand how environmental disturbances, namely, metal pollution, can affect this microbiota. The aim of this study is to recognize core bacteria in the skin cultivable microbiota of the Perez frog (Pelophylax perezi) that are preserved regardless of the environmental conditions in which the frogs live. The characterization of these isolates revealed characteristics that can support their contributions to the ability of frogs to use metal impacted environments. Frog's skin swabs were collected from P. perezi populations that inhabit a metal-polluted site and three reference (non-metal polluted) sites. Bacterial strains were isolated, identified, and subjected to an acid mine drainage tolerance (AMD) test, collected upstream from a site heavily contaminated with metals, and tested to produce extracellular polymeric substances (exopolysaccharide, EPS). All frog populations had Acinetobacter in their cutaneous cultivable microbiota. Significant growth inhibition was observed in all bacterial isolates exposed to 75% of AMD. EPS production was considered a characteristic of several isolates. The data obtained is a preliminary step but crucial to sustain that the cultivable microbiota is a mechanism for protecting frogs against environmental contamination.


Asunto(s)
Microbiota , Contaminantes Químicos del Agua , Animales , Anuros , Metales , Ranidae , Piel/química , Contaminantes Químicos del Agua/análisis
16.
Appl Microbiol Biotechnol ; 105(8): 3301-3314, 2021 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-33791837

RESUMEN

Aluminium (Al), gallium (Ga), and indium (In) are metals widely used in diverse applications in industry, which consequently result in a source of environmental contamination. In this study, strain Rhodanobacter sp. B2A1Ga4, highly resistant to Al, Ga, and In, was studied to reveal the main effects of these metals on the strain and the bacterial mechanisms linked to the ability to cope with them. An indium-sensitive mutant obtained by random transposon mutagenesis has the feoA gene interrupted. This gene together with the feoB gene is part of the feo operon which encodes a ferrous uptake system (FeoAB). The mutant strain exhibited higher oxidative stress supported by a high concentration of reactive oxygen species (ROS) and low levels of reduced glutathione (GSH) in the presence of metals. The iron supplementation of the growth medium reverted the growth inhibition of the mutant strain caused by Ga and In, significantly reduced the ROS amounts in mutant cells grown in all conditions, and increased its GSH/total glutathione ratio to values similar to those of the native strain. Moreover, the mutant strain when submitted to In increased the production of siderophores. The genome sequence analysis of strain B2A1Ga4 showed a large number of genes encoding putative proteins involved in iron uptake from the cell surface to the cytoplasm. Understanding the bacteria-metal interactions linked to resistance to high-tech metals is relevant to future application of microorganisms in bioremediation and/or biorecovery processes of these metals. KEY POINTS: • The disruption of FeoAB system compromises the bacterial resistance to Al, Ga, and In. • The iron acquisition in Rhodanobacter sp. B2A1Ga4 controls the oxidative stress. • Genome mining of strain B2A1Ga4 reveals several iron transport related genes.


Asunto(s)
Galio , Metales Pesados , Aluminio , Proteínas Bacterianas/genética , Indio , Metales Pesados/toxicidad
17.
Heliyon ; 7(3): e06513, 2021 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-33817376

RESUMEN

This cohort study aimed to characterize the oral microbiome of children with CLP, from two different age groups, and evaluate the effect of supervised or unsupervised toothbrushing on the microbiome of the cleft over time. Swab samples were collected from the cleft area at three different time points (A; no brushing, B; after 15 days and C; after 30 days) and were analyzed using next-generation sequencing to determine the microbial composition and diversity in these time points. Overall, brushing significantly decreased the abundance of the genera Alloprevotella and Leptotrichia in the two age groups examined, and for Alloprevotella this decrease was more evident for children (2-6 years old). In the preteen group (7-12 years old), a significant relative increase of the genus Rothia was observed after brushing. In this study, the systematic brushing over a period of thirty days also resulted in differences at the intra-individual bacterial richness.

18.
ACS Appl Mater Interfaces ; 13(6): 7567-7579, 2021 Feb 17.
Artículo en Inglés | MEDLINE | ID: mdl-33538168

RESUMEN

Evidence has shown that hospital surfaces are one of the major vehicles of nosocomial infections caused by drug-resistant pathogens. Smart surface coatings presenting multiple antimicrobial activity mechanisms have emerged as an advanced approach to safely prevent this type of infection. In this work, industrial waterborne polyurethane varnish formulations containing for the first time cationic polymeric biocides (SPBs) combined with photosensitizer curcumin were developed to afford contact-active and light-responsive antimicrobial surfaces. SPBs were prepared by atom transfer radical polymerization, which allows control over the polymer features that influence antimicrobial efficiency (e.g., molecular weight), while natural curcumin was employed to impart photodynamic activity to the surface. Antibacterial testing against Gram-negative Escherichia coli revealed that glass surfaces coated with the new formulations displayed photokilling effect under white-light (42 mW/cm2) irradiation within only 15 min of exposure. In addition, it was observed a combined antimicrobial effect between the two biocides (cationic SPB and curcumin), with a higher reduction in the number of viable bacteria observed for the surfaces containing cationic SPB/curcumin mixtures in comparison with the one obtained for surfaces only with polymer or without biocides. The waterborne industrial varnish formulations allowed the formation of homogeneous films without the need for addition of a coalescing agent, which can be potentially applied in diverse surface substrates to reduce bacterial transmission infections in healthcare environments.


Asunto(s)
Antibacterianos/farmacología , Infección Hospitalaria/tratamiento farmacológico , Escherichia coli/efectos de los fármacos , Luz , Poliuretanos/farmacología , Antibacterianos/síntesis química , Antibacterianos/química , Composición de Medicamentos , Humanos , Pruebas de Sensibilidad Microbiana , Tamaño de la Partícula , Poliuretanos/síntesis química , Poliuretanos/química , Propiedades de Superficie
19.
Sci Rep ; 10(1): 20348, 2020 11 23.
Artículo en Inglés | MEDLINE | ID: mdl-33230153

RESUMEN

The use of microorganisms that allows the recovery of critical high-tech elements such as gallium (Ga) and indium (In) has been considered an excellent eco-strategy. In this perspective, it is relevant to understand the strategies of Ga and In resistant strains to cope with these critical metals. This study aimed to explore the effect of these metals on two Ga/In resistant strains and to scrutinize the biological processes behind the oxidative stress in response to exposure to these critical metals. Two strains of Serratia fonticola, A3242 and B2A1Ga1, with high resistance to Ga and In, were submitted to metal stress and their protein profiles showed an overexpressed Superoxide Dismutase (SOD) in presence of In. Results of inhibitor-protein native gel incubations identified the overexpressed enzyme as a Fe-SOD. Both strains exhibited a huge increase of oxidative stress when exposed to indium, visible by an extreme high amount of reactive oxygen species (ROS) production. The toxicity induced by indium triggered biological mechanisms of stress control namely, the decrease in reduced glutathione/total glutathione levels and an increase in the SOD activity. The effect of gallium in cells was not so boisterous, visible only by the decrease of reduced glutathione levels. Analysis of the cellular metabolic viability revealed that each strain was affected differently by the critical metals, which could be related to the distinct metal uptakes. Strain A3242 accumulated more Ga and In in comparison to strain B2A1Ga1, and showed lower metabolic activity. Understanding the biological response of the two metal resistant strains of S. fonticola to stress induced by Ga and In will tackle the current gap of information related with bacteria-critical metals interactions.


Asunto(s)
Contaminantes Ambientales/farmacología , Galio/farmacología , Indio/farmacología , Serratia/efectos de los fármacos , Superóxido Dismutasa/metabolismo , Proteínas Bacterianas/química , Proteínas Bacterianas/metabolismo , Electrónica/instrumentación , Contaminantes Ambientales/aislamiento & purificación , Contaminantes Ambientales/metabolismo , Galio/aislamiento & purificación , Galio/metabolismo , Humanos , Indio/aislamiento & purificación , Indio/metabolismo , Pruebas de Sensibilidad Microbiana , Estrés Oxidativo/efectos de los fármacos , Especies Reactivas de Oxígeno/agonistas , Especies Reactivas de Oxígeno/metabolismo , Serratia/crecimiento & desarrollo , Serratia/metabolismo , Superóxido Dismutasa/química
20.
Appl Environ Microbiol ; 87(1)2020 12 17.
Artículo en Inglés | MEDLINE | ID: mdl-33067196

RESUMEN

Artificial laboratory evolution was used to produce mutant strains of Escherichia coli and methicillin-resistant Staphylococcus aureus (MRSA) able to survive on antimicrobial metallic copper surfaces. These mutants were 12- and 60-fold less susceptible to the copper-mediated contact killing process than their respective parent strains. Growth levels of the mutant and its parent in complex growth medium were similar. Tolerance to copper ions of the mutants was unchanged. The mutant phenotype remained stable over about 250 generations under nonstress conditions. The mutants and their respective parental strains accumulated copper released from the metallic surfaces to similar extents. Nevertheless, only the parental strains succumbed to copper stress when challenged on metallic copper surfaces, suffering complete destruction of the cell structure. Whole-genome sequencing and global transcriptome analysis were used to decipher the genetic alterations in the mutant strains; however, these results did not explain the copper-tolerance phenotypes on the systemic level. Instead, the mutants shared features with those of stressed bacterial subpopulations entering the early or "shallow" persister state. In contrast to the canonical persister state, however, the ability to survive on solid copper surfaces was adopted by the majority of the mutant strain population. This indicated that application of solid copper surfaces in hospitals and elsewhere has to be accompanied by strict cleaning regimens to keep the copper surfaces active and prevent evolution of tolerant mutant strains.IMPORTANCE Microbes are rapidly killed on solid copper surfaces by contact killing. Copper surfaces thus have an important role to play in preventing the spread of nosocomial infections. Bacteria adapt to challenging natural and clinical environments through evolutionary processes, for instance, by acquisition of beneficial spontaneous mutations. We wish to address the question of whether mutants can be selected that have evolved to survive contact killing on solid copper surfaces. We isolated such mutants from Escherichia coli and methicillin-resistant Staphylococcus aureus (MRSA) by artificial laboratory evolution. The ability to survive on solid copper surfaces was a stable phenotype of the mutant population and not restricted to a small subpopulation. As a consequence, standard operation procedures with strict hygienic measures are extremely important to prevent the emergence and spread of copper-surface-tolerant persister-like bacterial strains if copper surfaces are to be sustainably used to limit the spread of pathogenic bacteria, e.g., to curb nosocomial infections.


Asunto(s)
Evolución Biológica , Cobre/farmacología , Escherichia coli/genética , Staphylococcus aureus Resistente a Meticilina/genética , Selección Genética , Escherichia coli/efectos de los fármacos , Staphylococcus aureus Resistente a Meticilina/efectos de los fármacos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA