Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 17 de 17
Filtrar
Más filtros













Intervalo de año de publicación
1.
Data Brief ; 54: 110421, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38690316

RESUMEN

The sea cucumber (H. glaberrima) is a species found in the shallow waters near coral reefs and seagrass beds in Puerto Rico. To characterize the microbial taxonomic composition and functional profiles present in the sea cucumber, total DNA was obtained from their intestinal system, fosmid libraries constructed, and subsequent sequencing was performed. The diversity profile displayed that the most predominant domain was Bacteria (76.56 %), followed by Viruses (23.24 %) and Archaea (0.04 %). Within the 11 phyla identified, the most abundant was Proteobacteria (73.16 %), followed by Terrabacteria group (3.20 %) and Fibrobacterota, Chlorobiota, Bacteroidota (FCB) superphylum (1.02 %). The most abundant species were Porvidencia rettgeri (21.77 %), Pseudomonas stutzeri (14.78 %), and Alcaligenes faecalis (5.00 %). The functional profile revealed that the most abundant functions are related to transporters, MISC (miscellaneous information systems), organic nitrogen, energy, and carbon utilization. The data collected in this project on the diversity and functional profiles of the intestinal system of the H. glaberrima provided a detailed view of its microbial ecology. These findings may motivate comparative studies aimed at understanding the role of the microbiome in intestinal regeneration.

2.
Antibiotics (Basel) ; 13(1)2024 Jan 18.
Artículo en Inglés | MEDLINE | ID: mdl-38247651

RESUMEN

Primary care antimicrobial stewardship program (ASP) interventions can reduce the over-prescription of unnecessary antibiotics, but the impact on the reduction in bacterial resistance is less known, and there is a lack of available data. We implemented a prolonged educational counseling ASP in a large regional outpatient setting to assess its feasibility and effectiveness. Over a 5-year post-implementation period, which was compared to a pre-intervention period, a significant reduction in antibiotic prescriptions occurred, particularly those associated with greater harmful effects and resistance selection. There was also a decrease in methicillin-resistant Staphylococcus aureus (MRSA) strains and in their co-resistance to other antibiotics, particularly those with an ecological impact.

3.
Nat Metab ; 5(11): 1969-1985, 2023 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-37884694

RESUMEN

T cell activation is associated with a profound and rapid metabolic response to meet increased energy demands for cell division, differentiation and development of effector function. Glucose uptake and engagement of the glycolytic pathway are major checkpoints for this event. Here we show that the low-affinity, concentration-dependent glucose transporter 2 (Glut2) regulates the development of CD8+ T cell effector responses in mice by promoting glucose uptake, glycolysis and glucose storage. Expression of Glut2 is modulated by environmental factors including glucose and oxygen availability and extracellular acidification. Glut2 is highly expressed by circulating, recently primed T cells, allowing efficient glucose uptake and storage. In glucose-deprived inflammatory environments, Glut2 becomes downregulated, thus preventing passive loss of intracellular glucose. Mechanistically, Glut2 expression is regulated by a combination of molecular interactions involving hypoxia-inducible factor-1 alpha, galectin-9 and stomatin. Finally, we show that human T cells also rely on this glucose transporter, thus providing a potential target for therapeutic immunomodulation.


Asunto(s)
Proteínas Facilitadoras del Transporte de la Glucosa , Glucosa , Ratones , Humanos , Animales , Glucosa/metabolismo , Transporte Biológico/fisiología , Proteínas Facilitadoras del Transporte de la Glucosa/genética , Proteínas Facilitadoras del Transporte de la Glucosa/metabolismo , Diferenciación Celular , Linfocitos T CD8-positivos/metabolismo
4.
Nat Commun ; 14(1): 2740, 2023 05 22.
Artículo en Inglés | MEDLINE | ID: mdl-37217519

RESUMEN

Cell migration is crucial for cancer dissemination. We find that AMP-activated protein kinase (AMPK) controls cell migration by acting as an adhesion sensing molecular hub. In 3-dimensional matrices, fast-migrating amoeboid cancer cells exert low adhesion/low traction linked to low ATP/AMP, leading to AMPK activation. In turn, AMPK plays a dual role controlling mitochondrial dynamics and cytoskeletal remodelling. High AMPK activity in low adhering migratory cells, induces mitochondrial fission, resulting in lower oxidative phosphorylation and lower mitochondrial ATP. Concurrently, AMPK inactivates Myosin Phosphatase, increasing Myosin II-dependent amoeboid migration. Reducing adhesion or mitochondrial fusion or activating AMPK induces efficient rounded-amoeboid migration. AMPK inhibition suppresses metastatic potential of amoeboid cancer cells in vivo, while a mitochondrial/AMPK-driven switch is observed in regions of human tumours where amoeboid cells are disseminating. We unveil how mitochondrial dynamics control cell migration and suggest that AMPK is a mechano-metabolic sensor linking energetics and the cytoskeleton.


Asunto(s)
Proteínas Quinasas Activadas por AMP , Dinámicas Mitocondriales , Neoplasias , Humanos , Adenosina Trifosfato/metabolismo , Proteínas Quinasas Activadas por AMP/metabolismo , Adhesión Celular , Movimiento Celular/fisiología , Miosina Tipo II/metabolismo , Fosforilación Oxidativa , Fosforilación
5.
J Trauma Acute Care Surg ; 95(4): 481-489, 2023 10 01.
Artículo en Inglés | MEDLINE | ID: mdl-37249511

RESUMEN

BACKGROUND: Cardiac dysfunction (CD) has emerged as a key contributor to delayed organ failure and late mortality in patients surviving the initial traumatic hemorrhagic response. Inflammatory processes are implicated in the initial stages of this CD; however, downstream pathways leading to a characteristic rapid fall in stroke volume and cardiac output are not yet fully defined. Currently, no cardioprotective treatments are available. We investigated the role of myocardial oxidative stress in the pathogenesis of CD associated to traumatic hemorrhagic injury, and its related metabolomic profile. METHODS: Ex vivo tissue from a 3-hour murine model of pressure-controlled trauma hemorrhagic shock (THS) was analyzed. Animals were randomized to echocardiography-guided crystalloid fluid resuscitation or a control group (sham: cannulation and anesthesia only, or naïve: no intervention). Trauma hemorrhagic shock and naïve samples were assessed by immunohistochemistry for nuclear 8-hydroxy-2'-deoxyguanosine expression as a marker of oxidative stress. Metabolomic analysis of THS and sham group tissue was performed by LC-MS. RESULTS: 8-Hydroxy-2'-deoxyguanosine expression across the myocardium was significantly higher following THS injury compared to naïve group (33.01 ± 14.40% vs. 15.08 ± 3.96%, p < 0.05). Trauma hemorrhagic shock injury significantly increased lysine ( p = 0.022), and decreased aconitate ( p = 0.016) and glutamate ( p = 0.047) in the myocardium, indicating activation of a catabolic metabolism and oxidative stress response. CONCLUSION: We confirm the acute development of oxidative stress lesions and altered cardiac energy metabolism following traumatic hemorrhage injury, providing insight into the relationship between inflammatory damage and impaired cardiac contractility. These findings may provide targets for development of novel cardioprotective therapeutics aiming to decrease late mortality from trauma.


Asunto(s)
Lesiones por Aplastamiento , Choque Hemorrágico , Animales , Humanos , Ratones , 8-Hidroxi-2'-Desoxicoguanosina , Corazón , Hemorragia/etiología , Hemorragia/terapia , Miocardio , Choque Hemorrágico/terapia
6.
Sci Transl Med ; 15(685): eabn5135, 2023 03.
Artículo en Inglés | MEDLINE | ID: mdl-36857430

RESUMEN

Patients with myelodysplastic syndrome and ring sideroblasts (MDS-RS) present with symptomatic anemia due to ineffective erythropoiesis that impedes their quality of life and increases morbidity. More than 80% of patients with MDS-RS harbor splicing factor 3B subunit 1 (SF3B1) mutations, the founder aberration driving MDS-RS disease. Here, we report how mis-splicing of coenzyme A synthase (COASY), induced by mutations in SF3B1, affects heme biosynthesis and erythropoiesis. Our data revealed that COASY was up-regulated during normal erythroid differentiation, and its silencing prevented the formation of erythroid colonies, impeded erythroid differentiation, and precluded heme accumulation. In patients with MDS-RS, loss of protein due to COASY mis-splicing led to depletion of both CoA and succinyl-CoA. Supplementation with COASY substrate (vitamin B5) rescued CoA and succinyl-CoA concentrations in SF3B1mut cells and mended erythropoiesis differentiation defects in MDS-RS primary patient cells. Our findings reveal a key role of the COASY pathway in erythroid maturation and identify upstream and downstream metabolites of COASY as a potential treatment for anemia in patients with MDS-RS.


Asunto(s)
Anemia , Síndromes Mielodisplásicos , Humanos , Eritropoyesis , Ácido Pantoténico , Calidad de Vida , Factores de Transcripción , Hemo , Factores de Empalme de ARN , Fosfoproteínas
7.
JCI Insight ; 7(10)2022 05 23.
Artículo en Inglés | MEDLINE | ID: mdl-35472029

RESUMEN

Voltage-gated hydrogen channel 1 (Hvcn1) is a voltage-gated proton channel, which reduces cytosol acidification and facilitates the production of ROS. The increased expression of this channel in some cancers has led to proposing Hvcn1 antagonists as potential therapeutics. While its role in most leukocytes has been studied in depth, the function of Hvcn1 in T cells remains poorly defined. We show that Hvcn1 plays a nonredundant role in protecting naive T cells from intracellular acidification during priming. Despite sharing overall functional impairment in vivo and in vitro, Hvcn1-deficient CD4+ and CD8+ T cells display profound differences during the transition from naive to primed T cells, including in the preservation of T cell receptor (TCR) signaling, cellular division, and death. These selective features result, at least in part, from a substantially different metabolic response to intracellular acidification associated with priming. While Hvcn1-deficient naive CD4+ T cells reprogram to rescue the glycolytic pathway, naive CD8+ T cells, which express high levels of this channel in the mitochondria, respond by metabolically compensating mitochondrial dysfunction, at least in part via AMPK activation. These observations imply heterogeneity between adaptation of naive CD4+ and CD8+ T cells to intracellular acidification during activation.


Asunto(s)
Hidrógeno , Protones , Concentración de Iones de Hidrógeno , Recuento de Linfocitos , Transducción de Señal
8.
Nat Metab ; 2(11): 1223-1231, 2020 11.
Artículo en Inglés | MEDLINE | ID: mdl-33106688

RESUMEN

Cardiomyocytes rely on metabolic substrates, not only to fuel cardiac output, but also for growth and remodelling during stress. Here we show that mitochondrial pyruvate carrier (MPC) abundance mediates pathological cardiac hypertrophy. MPC abundance was reduced in failing hypertrophic human hearts, as well as in the myocardium of mice induced to fail by angiotensin II or through transverse aortic constriction. Constitutive knockout of cardiomyocyte MPC1/2 in mice resulted in cardiac hypertrophy and reduced survival, while tamoxifen-induced cardiomyocyte-specific reduction of MPC1/2 to the attenuated levels observed during pressure overload was sufficient to induce hypertrophy with impaired cardiac function. Failing hearts from cardiomyocyte-restricted knockout mice displayed increased abundance of anabolic metabolites, including amino acids and pentose phosphate pathway intermediates and reducing cofactors. These hearts showed a concomitant decrease in carbon flux into mitochondrial tricarboxylic acid cycle intermediates, as corroborated by complementary 1,2-[13C2]glucose tracer studies. In contrast, inducible cardiomyocyte overexpression of MPC1/2 resulted in increased tricarboxylic acid cycle intermediates, and sustained carrier expression during transverse aortic constriction protected against cardiac hypertrophy and failure. Collectively, our findings demonstrate that loss of the MPC1/2 causally mediates adverse cardiac remodelling.


Asunto(s)
Proteínas de Transporte de Anión/metabolismo , Cardiomegalia/metabolismo , Proteínas de Transporte de Membrana Mitocondrial/metabolismo , Transportadores de Ácidos Monocarboxílicos/metabolismo , Angiotensina II , Animales , Proteínas de Transporte de Anión/biosíntesis , Proteínas de Transporte de Anión/genética , Cardiomegalia/patología , Proliferación Celular , Ciclo del Ácido Cítrico , Constricción Patológica , Femenino , Insuficiencia Cardíaca/inducido químicamente , Insuficiencia Cardíaca/metabolismo , Insuficiencia Cardíaca/patología , Humanos , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Ratones Transgénicos , Mitocondrias Cardíacas/metabolismo , Proteínas de Transporte de Membrana Mitocondrial/biosíntesis , Proteínas de Transporte de Membrana Mitocondrial/genética , Transportadores de Ácidos Monocarboxílicos/biosíntesis , Transportadores de Ácidos Monocarboxílicos/genética , Miocardio/metabolismo , Miocitos Cardíacos/metabolismo , Miocitos Cardíacos/patología , Ácido Pirúvico/metabolismo
9.
ISRN Biotechnol ; 2013: 859830, 2013.
Artículo en Inglés | MEDLINE | ID: mdl-25937982

RESUMEN

This study aimed to verify the use of aqueous ozone as alternative technology for fungal control. Brazil nuts sterilized were inoculated with either 1 × 10(6) or 1 × 10(7) conidia mL(-1) of Aspergillus flavus (MUM 9201) to determine optimal treatment parameters and different aqueous ozone contact times. These assays showed that the effect of ozone is almost immediate against A. flavus, and the optimum ozone concentration depended on the number of initial viable spores on the shell. The remaining viable spores in the ozone solution were recorded, and the rate of inactivation for each treatment was determined by assessing the ratio between the cfu of each treatment and the control. The ozonized nuts were also cultured to recover the fungal population. Aqueous ozone was effective in reducing the conidia of A. flavus and the natural fungal population associated with Brazil nuts. Aqueous ozone presented a great potential to reduce microorganisms counts in Brazil nuts with a great potential use in packing houses for decontamination step.

10.
Food Microbiol ; 28(5): 1048-53, 2011 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-21569951

RESUMEN

Earthy "off" aromas from wine and grape juice are highly detrimental to the production of quality grape products. These volatile compounds are produced on grapes by Botrytis cinerea, Penicillium expansum and/or a combination of P. expansum and B. cinerea strains. B. cinerea strains were isolated from different (a) vineyards in Spain and Portugal, (b) grape varieties (c) bunches (i.e., sound and botrytized) and (d) positions in the botrytized bunch (i.e., interior or exterior). A novel Headspace-Phase Microextraction (SPME) followed by Gas Chromatrography/Mass Spectrometry (GC-MS) dedicated to analyze geosmin, methylisoborneol (MIB), 1-octen-3-ol, fenchone and fenchol in grape broth medium was used. Approximately 50% of the B. cinerea strains induced detectable geosmin. One strain accumulated significant amounts of anisoles, demonstrating that this contamination might already occur in the vineyard. Strains from the interior of Cainho grape bunches induced more geosmin and hence it may be possible to reduce this volatile in wine by avoiding using these grapes in case of B. cinerea attack.


Asunto(s)
Botrytis/metabolismo , Penicillium/metabolismo , Vitis/microbiología , Compuestos Orgánicos Volátiles/metabolismo , Vino/microbiología , Medios de Cultivo/análisis , Medios de Cultivo/metabolismo , Fermentación , Portugal , España , Vitis/química , Compuestos Orgánicos Volátiles/análisis , Vino/análisis
11.
Appl Microbiol Biotechnol ; 89(5): 1583-98, 2011 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-21267558

RESUMEN

This work describes the generation of novel PHAs (named PHACOS) with a new monomer composition containing thioester groups in the side chain, which confers new properties and made them suitable for chemical modifications after their biosynthesis. We have analyzed the PHACOS production abilities of the wild-type strain Pseudomonas putida KT2442 vs. its derived strain P. putida KT42FadB, mutated in the fadB gene from the central metabolic ß-oxidation pathway involved in the synthesis of medium-chain-length PHA (mcl-PHA). Different fermentation strategies based on one- or two-stage cultures have been tested resulting in PHACOS with different monomer composition. Using decanoic acid as inducer of the growth and polymer synthesis and 6-acetylthiohexanoic acid as PHA precursor in a two-stage strategy, the maximum yield was obtained by culturing the strain KT42FadB. Nuclear magnetic resonance and gas chromatography coupled to mass spectrometry showed that polymers obtained from the wild-type and KT42FadB strains, included 6-acetylthio-3-hydroxyhexanoic acid (OH-6ATH) and the shorter derivative 4-acetylthio-3-hydroxybutanoic acid (OH-4ATB) in their composition, although in different ratios. While the polymer obtained from KT42FadB strain contained mainly OH-6ATH monomer units, mcl-PHA produced by the wild-type strain contained OH-6ATH and OH-4ATB. Furthermore, polyesters showed differences in the OH-alkyl derivates moiety. The strain KT42FadB overproduced PHACOS when compared to the production rate of the control strain in one- and two-stage cultures. Thermal properties obtained by differential scanning calorimetry indicated that both polymers have different glass transition temperatures related to their composition.


Asunto(s)
Vías Biosintéticas/genética , Complejos Multienzimáticos/genética , Polihidroxialcanoatos/biosíntesis , Pseudomonas putida/genética , Pseudomonas putida/metabolismo , Ácidos Decanoicos/metabolismo , Cromatografía de Gases y Espectrometría de Masas , Espectroscopía de Resonancia Magnética , Proteína Trifuncional Mitocondrial , Polihidroxialcanoatos/química
12.
Environ Microbiol Rep ; 3(5): 627-31, 2011 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-23761344

RESUMEN

The tetralin biodegradation genes of Sphingomonas macrogolitabida strain TFA are repressed by catabolite. Insertion mutants in which thn genes are transcribed in the presence of a preferential carbon source and tetralin, bear the insertion in phaC, encoding a poly(3-hydroxybutyrate) (PHB) synthase, a key enzyme in PHB synthesis. Mutant complementation with phaC genes from either Ralstonia euthropha or TFA restored PHB accumulation and the wild-type regulatory pattern of thn genes, thus indicating that this accumulation is a signal for carbon sufficient conditions that prevents expression of thn catabolic genes in this α-proteobacteria.

13.
J Microbiol Methods ; 83(1): 48-52, 2010 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-20655340

RESUMEN

Geosmin is a volatile fungal metabolite with an earthy aroma produced in grape products from rotten grapes. The accumulation of geosmin in grapes is caused by the interaction of Botrytis cinerea and Penicillium expansum. Solid Phase Microextraction (SPME) has great utility for collecting volatile compounds in wine. However, contamination with earthy odours may have occurred previously in the must and novel methods are required for this commodity. In the present report, several parameters of the SPME were evaluated to optimize geosmin extraction. The method permitted quantification of geosmin and other fungal volatiles by Gas Chromatography-Mass Spectrometer (GC-MS) at very low concentrations. Limits of detection and quantification (L(D) and L(Q)) for geosmin were 4.7 ng L(-1) and 15.6 ng L(-1) respectively. The RSD was 4.1% and the recovery rates ranged from 115% to 134%. Uniquely, haloanisoles were analyzed by using only one internal standard (2,3,6-trichloroanisole) thus avoiding the synthesis of deuterated anisole analogues that are used as internal standard in other methods. The method was used for the analysis of grape juice samples inoculated with B. cinerea and P. expansum. Geosmin and methylisoborneol were the compounds that appeared to contribute most to earthy odours, although other fungal compounds which are claimed to cause earthy or mouldy off-odours were detected (e.g. 1-octen-3-ol and fenchol).


Asunto(s)
Bebidas/análisis , Cromatografía de Gases y Espectrometría de Masas/métodos , Naftoles/análisis , Microextracción en Fase Sólida/métodos , Vitis/química , Compuestos Orgánicos Volátiles/análisis , Bebidas/microbiología , Botrytis/química , Botrytis/metabolismo , Naftoles/metabolismo , Odorantes/análisis , Penicillium/química , Penicillium/metabolismo , Vitis/microbiología , Compuestos Orgánicos Volátiles/metabolismo
14.
Environ Microbiol ; 12(1): 207-21, 2010 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-19788655

RESUMEN

Polyhydroxyalkanoates (PHAs) are biodegradable polymers produced by a wide range of bacteria, including Pseudomonads. These polymers are accumulated in the cytoplasm as carbon and energy storage materials when culture conditions are unbalanced and hence, they have been classically considered to act as sinks for carbon and reducing equivalents when nutrients are limited. Bacteria facing carbon excess and nutrient limitation store the extra carbon as PHAs through the PHA polymerase (PhaC). Thereafter, under starvation conditions, PHA depolymerase (PhaZ) degrades PHA and releases R-hydroxyalkanoic acids, which can be used as carbon and energy sources. To study the influence of a deficient PHA metabolism in the growth of Pseudomonas putida KT2442 we have constructed two mutant strains defective in PHA polymerase (phaC1)- and PHA depolymerase (phaZ)-coding genes respectively. By using these mutants we have demonstrated that PHAs play a fundamental role in balancing the stored carbon/biomass/number of cells as function of carbon availability, suggesting that PHA metabolism allows P. putida to adapt the carbon flux of hydroxyacyl-CoAs to cellular demand. Furthermore, we have established that the coordination of PHA synthesis and mobilization pathways configures a functional PHA turnover cycle in P. putida KT2442. Finally, a new strain able to secrete enantiomerically pure R-hydroxyalkanoic acids to the culture medium during cell growth has been engineering by redirecting the PHA cycle to biopolymer hydrolysis.


Asunto(s)
Proteínas Bacterianas/metabolismo , Hidrolasas de Éster Carboxílico/metabolismo , Polihidroxialcanoatos/metabolismo , Pseudomonas putida/metabolismo , Aciltransferasas/genética , Aciltransferasas/metabolismo , Proteínas Bacterianas/genética , Carbono/metabolismo , Hidrolasas de Éster Carboxílico/genética , Eliminación de Gen , Regulación Bacteriana de la Expresión Génica , Viabilidad Microbiana , Nitrógeno/metabolismo , Pseudomonas putida/genética , Pseudomonas putida/crecimiento & desarrollo , Especificidad por Sustrato
15.
Managua; s.n; 2010. 67 p. tab, graf.
Tesis en Español | LILACS | ID: lil-592861

RESUMEN

La nauseas y los vómitos representan un reto terapeútico importante en los cuidados postoperatorios en la labor del anestesiólogo, en el cual debe de conocer los diferentes esquemas de tratamiento disponibles para tener éxito en el control de las nauseas y vómitos postoperatorio. Se realizó un estudio comparativo para evaluar la eficacia de la presentaciòn oral de Ondasentron 16 mgrs, frente a la asociación de metoclopramida 10 mgrs-dexametasona, en cada grupo se evaluo las características generales, factores de riesgo predisponentes así como el tiempo quirurgico y anestésico. A los pacientes se loes administrò una hora nates de recibir anestesia general el fármaco eleido, en sala de recuparaciòn se vigiló la presencia o ausencia de las nauseas y vómitos en las primeras horas postquirurgicas dándole seguimiento en la siguientes 24 horas. En el grupo que recibiò Ondansetron oral demostró un mejor control en las nauseas y vómitos postooperatorio de anestesia general, que la asociaciòn de metoclopramida-dexametasona, en ambos grupos no se observaron reacciones afversas al fármaco...


Asunto(s)
Anestesia General/instrumentación , Anestesia General , Dexametasona/administración & dosificación , Dexametasona/uso terapéutico , Metoclopramida/administración & dosificación , Metoclopramida/uso terapéutico , Náusea y Vómito Posoperatorios/prevención & control , Ondansetrón/administración & dosificación , Ondansetrón/uso terapéutico , Factores de Riesgo
16.
J Agric Food Chem ; 53(8): 2914-21, 2005 Apr 20.
Artículo en Inglés | MEDLINE | ID: mdl-15826039

RESUMEN

The effect of honey oligosaccharides on the growth of fecal bacteria was studied using an in vitro fermentation system. Prior to treatment, glucose and fructose (31.73 and 21.41 g/100 g of product, respectively) present in honey, which would be digested in the upper gut, were removed to avoid any influence on bacterial populations in the fermentations. Nanofiltration, yeast (Saccharomyces cerevisiae) treatment, and adsorption onto activated charcoal were used to remove monosaccharides. Prebiotic (microbial fermentation) activities of the three honey oligosaccharide fractions and the honey sample were studied and compared with fructooligosaccharide (FOS), using 1% (w/v) fecal bacteria in an in vitro fermentation system (10 mg of carbohydrate, 1.0 mL of basal medium). A prebiotic index (PI) was calculated for each carbohydrate source. Honey oligosaccharides seem to present potential prebiotic activity (PI values between 3.38 and 4.24), increasing the populations of bifidobacteria and lactobacilli, although not to the levels of FOS (PI of 6.89).


Asunto(s)
Miel/análisis , Oligosacáridos/farmacología , Probióticos/farmacología , Bacterias/efectos de los fármacos , Bacterias/crecimiento & desarrollo , Bifidobacterium/efectos de los fármacos , Bifidobacterium/crecimiento & desarrollo , Cromatografía de Gases , Heces/microbiología , Fermentación , Lactobacillus/efectos de los fármacos , Lactobacillus/crecimiento & desarrollo , Oligosacáridos/aislamiento & purificación
17.
J Agric Food Chem ; 52(22): 6732-6, 2004 Nov 03.
Artículo en Inglés | MEDLINE | ID: mdl-15506809

RESUMEN

Nonenzymic browning reactions in commercial infant formulas were evaluated through their furosine content as well as the isomeric disaccharides formed during processing. Lactulose was observed only in samples containing appreciable amounts of lactose, whereas maltulose was present in all samples due to the isomerization of maltose. Because formation of maltulose depends on the initial amount of maltose present, the ratio maltose/maltulose was used for comparative purposes. The ratio maltose/maltulose varied within a wide range, 27-167; therefore, low values in maltose/maltulose ratio may indicate severe processing conditions during manufacture, whereas high values may indicate mild processing conditions. Variable amounts of furosine content in samples with similar maltose/maltulose ratios may be attributed to different conditions used during storage. Levels of furosine higher than those reported for milk powder were detected in most studied samples. Determination of both furosine and maltose/maltulose ratio would yield information retrospectively about the heat treatment applied during processing and the storage conditions of commercial infant formula.


Asunto(s)
Fórmulas Infantiles/química , Lisina/análogos & derivados , Lisina/análisis , Maltosa/análisis , Maltosa/química , Cromatografía de Gases , Control de Calidad
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA