Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
PLoS One ; 14(7): e0219293, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-31287830

RESUMEN

Austrian beekeepers frequently suffered severe colony losses during the last decade similar to trends all over Europe. This first surveillance study aimed to describe the health status of Austrian bee colonies and to analyze the reasons for losses for both the summer and winter season in Austria. In this study 189 apiaries all over Austria were selected using a stratified random sampling approach and inspected three times between July 2015 and spring 2016 by trained bee inspectors. The inspectors made interviews with the beekeepers about their beekeeping practice and the history of the involved colonies. They inspected a total of 1596 colonies for symptoms of nine bee pests and diseases (four of them notifiable diseases) and took bee samples for varroa mite infestation analysis. The most frequently detected diseases were three brood diseases: Varroosis, Chalkbrood and Sacbrood. The notifiable bee pests Aethina tumida and Tropilaelaps spp. were not detected. During the study period 10.8% of the 1596 observed colonies died. Winter proved to be the most critical season, in which 75% of the reported colony losses happened. Risks for suffering summer losses increased significantly, when colonies were weak in July, had queen problems or a high varroa mite infestation level on bees in July. Risks for suffering winter losses increased significantly, when the colonies had a high varroa mite infestation level on bees in September, were weak in September, had a queen older than one year or the beekeeper had few years of beekeeping experience. However, the effect of a high varroa mite infestation level in September had by far the greatest potential to raise the winter losses compared to the other significant factors.


Asunto(s)
Crianza de Animales Domésticos/métodos , Apicultura/tendencias , Infestaciones por Ácaros/economía , Crianza de Animales Domésticos/tendencias , Animales , Austria , Apicultura/métodos , Abejas , Conservación de los Recursos Naturales , Estado de Salud , Miel , Factores de Riesgo , Varroidae/patogenicidad
2.
F1000Res ; 3: 174, 2014.
Artículo en Inglés | MEDLINE | ID: mdl-25254109

RESUMEN

When honeybees are presented with a colour discrimination task, they tend to choose swiftly and accurately when objects are presented in the ventral part of their frontal visual field. In contrast, poor performance is observed when objects appear in the dorsal part. Here we investigate if this asymmetry is caused by fixed search patterns or if bees can use alternative search mechanisms such as spatial attention, which allows flexible focusing on different areas of the visual field. We asked individual honeybees to choose an orange rewarded target among blue distractors. Target and distractors were presented in the ventral visual field, the dorsal field or both. Bees presented with targets in the ventral visual field consistently had the highest search efficiency, with rapid decisions, high accuracy and direct flight paths. In contrast, search performance for dorsally located targets was inaccurate and slow at the beginning of the test phase, but bees increased their search performance significantly after a few learning trials: they found the target faster, made fewer errors and flew in a straight line towards the target. However, bees needed thrice as long to improve the search for a dorsally located target when the target's position changed randomly between the ventral and the dorsal visual field. We propose that honeybees form expectations of the location of the target's appearance and adapt their search strategy accordingly. Different possible mechanisms of this behavioural adaptation are discussed.

3.
Naturwissenschaften ; 100(11): 1083-93, 2013 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-24258261

RESUMEN

A well-developed suction pump in the head represents an important adaptation for nectar-feeding insects, such as Hymenoptera, Lepidoptera and Diptera. This pumping organ creates a pressure gradient along the proboscis, which is responsible for nectar uptake. The extremely elongated proboscis of the genus Prosoeca (Nemestrinidae) evolved as an adaptation to feeding from long, tubular flowers. According to the functional constraint hypothesis, nectar uptake through a disproportionately elongated, straw-like proboscis increases flower handling time and consequently lowers the energy intake rate. Due to the conspicuous length variation of the proboscis of Prosoeca, individuals with longer proboscides are hypothesised to have longer handling times. To test this hypothesis, we used field video analyses of flower-visiting behaviour, detailed examinations of the suction pump morphology and correlations of proboscis length with body length and suction pump dimensions. Using a biomechanical framework described for nectar-feeding Lepidoptera in relation to proboscis length and suction pump musculature, we describe and contrast the system in long-proboscid flies. Flies with longer proboscides spent significantly more time drinking from flowers. In addition, proboscis length and body length showed a positive allometric relationship. Furthermore, adaptations of the suction pump included an allometric relationship between proboscis length and suction pump muscle volume and a combination of two pumping organs. Overall, the study gives detailed insight into the adaptations required for long-proboscid nectar feeding, and comparisons with other nectar-sucking insects allow further considerations of the evolution of the suction pump in insects with sucking mouthparts.


Asunto(s)
Dípteros/anatomía & histología , Dípteros/fisiología , Conducta Alimentaria , Flores , Néctar de las Plantas/metabolismo , Adaptación Fisiológica , Animales , Tamaño Corporal , Succión , Tiempo
4.
Artículo en Inglés | MEDLINE | ID: mdl-23918312

RESUMEN

Spatial vision is an important cue for how honeybees (Apis mellifera) find flowers, and previous work has suggested that spatial learning in free-flying bees is exclusively mediated by achromatic input to the green photoreceptor channel. However, some data suggested that bees may be able to use alternative channels for shape processing, and recent work shows conditioning type and training length can significantly influence bee learning and cue use. We thus tested the honeybees' ability to discriminate between two closed shapes considering either absolute or differential conditioning, and using eight stimuli differing in their spectral characteristics. Consistent with previous work, green contrast enabled reliable shape learning for both types of conditioning, but surprisingly, we found that bees trained with appetitive-aversive differential conditioning could additionally use colour and/or UV contrast to enable shape discrimination. Interestingly, we found that a high blue contrast initially interferes with bee shape learning, probably due to the bees innate preference for blue colours, but with increasing experience bees can learn a variety of spectral and/or colour cues to facilitate spatial learning. Thus, the relationship between bee pollinators and the spatial and spectral cues that they use to find rewarding flowers appears to be a more rich visual environment than previously thought.


Asunto(s)
Atención , Abejas/fisiología , Conducta Animal , Percepción de Color , Visión de Colores , Aprendizaje , Percepción Espacial , Animales , Condicionamiento Psicológico , Señales (Psicología) , Discriminación en Psicología , Estimulación Luminosa
5.
J Exp Biol ; 215(Pt 14): 2515-23, 2012 Jul 15.
Artículo en Inglés | MEDLINE | ID: mdl-22723491

RESUMEN

Mechanisms of spatial attention are used when the amount of gathered information exceeds processing capacity. Such mechanisms have been proposed in bees, but have not yet been experimentally demonstrated. We provide evidence that selective attention influences the foraging performance of two social bee species, the honeybee Apis mellifera and the bumblebee Bombus terrestris. Visual search tasks, originally developed for application in human psychology, were adapted for behavioural experiments on bees. We examined the impact of distracting visual information on search performance, which we measured as error rate and decision time. We found that bumblebees were significantly less affected by distracting objects than honeybees. Based on the results, we conclude that the search mechanism in honeybees is serial like, whereas in bumblebees it shows the characteristics of a restricted parallel-like search. Furthermore, the bees differed in their strategy to solve the speed-accuracy trade-off. Whereas bumblebees displayed slow but correct decision-making, honeybees exhibited fast and inaccurate decision-making. We propose two neuronal mechanisms of visual information processing that account for the different responses between honeybees and bumblebees, and we correlate species-specific features of the search behaviour to differences in habitat and life history.


Asunto(s)
Conducta Apetitiva/fisiología , Atención/fisiología , Abejas/fisiología , Percepción Visual/fisiología , Análisis de Varianza , Animales , Percepción de Color/fisiología , Sensibilidad de Contraste/fisiología , Toma de Decisiones , Vuelo Animal/fisiología , Humanos , Factores de Tiempo , Campos Visuales/fisiología
6.
Artículo en Inglés | MEDLINE | ID: mdl-21445619

RESUMEN

In contrast to marking of the location of resources or sexual partners using single-spot pheromone sources, pheromone paths attached to the substrate and assisting orientation are rarely found among flying organisms. However, they do exist in meliponine bees (Apidae, Apinae, Meliponini), commonly known as stingless bees, which represent a group of important pollinators in tropical forests. Worker bees of several Neotropical meliponine species, especially in the genus Scaptotrigona Moure 1942, deposit pheromone paths on substrates between highly profitable resources and their nest. In contrast to past results and claims, we find that these pheromone paths are not an indispensable condition for successful recruitment but rather a means to increase the success of recruiters in persuading their nestmates to forage food at a particular location. Our results are relevant to a speciation theory in scent path-laying meliponine bees, such as Scaptotrigona. In addition, the finding that pheromone path-laying bees are able to recruit to food locations even across barriers such as large bodies of water affects tropical pollination ecology and theories on the evolution of resource communication in insect societies with a flying worker caste.


Asunto(s)
Abejas/fisiología , Conducta Animal/fisiología , Feromonas/fisiología , Comunicación Animal , Animales , Conducta Alimentaria/fisiología , Vuelo Animal/fisiología , Clima Tropical
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...