Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 36
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
BMC Biotechnol ; 24(1): 81, 2024 Oct 15.
Artículo en Inglés | MEDLINE | ID: mdl-39407195

RESUMEN

Cloning is a key molecular biology procedure for obtaining a genetically homogenous population of organisms or cell lines. It requires the expansion of new cell populations starting from single genetically modified cells. Despite the technical progress, cloning of many cell lines remains difficult. Cloning often fails either due to the strenuous conditions associated with manipulating cells or because many cells don't tolerate a single-cell state. Here we describe a new cloning method utilizing low adhesion microcavity plates. This new technique, named microcavity-assisted cloning (MAC) was developed to clone difficult-to-clone HepG2 cells. The clones were produced following CRISPR/Cas9 knockout of the GSTA1 gene by a random distribution of 200, 400, and 800 cells into 550 microcavities of a 24-well low adhesion plate originally designed for the culture of spheroids. The knockout of GSTA1 was verified at the protein level using Western blotting. The advantages of the MAC method are its low cost, ease of the procedure, and the possibility of scaling up the throughput and automatization.


Asunto(s)
Sistemas CRISPR-Cas , Humanos , Células Hep G2 , Sistemas CRISPR-Cas/genética , Clonación Molecular/métodos , Técnicas de Inactivación de Genes/métodos , Glutatión Transferasa/genética , Glutatión Transferasa/metabolismo , Técnicas de Cultivo de Célula/métodos , Células Clonales
2.
Front Microbiol ; 15: 1439814, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-39355425

RESUMEN

Introduction: Mycobacterium tuberculosis (Mtb), the causative agent of tuberculosis, remains a serious threat to human health worldwide and the quest for new anti-tubercular drugs is an enduring and demanding journey. Natural products (NPs) have played a significant role in advancing drug therapy of infectious diseases. Methods: This study evaluated the suitability of a high-throughput infection system composed of the host amoeba Dictyostelium discoideum (Dd) and Mycobacterium marinum (Mm), a close relative of Mtb, to identify anti-infective compounds. Growth of Dd and intracellular Mm were quantified by using luminescence and fluorescence readouts in phenotypic assays. The system was first benchmarked with a set of therapeutic anti-Mtb antibiotics and then used to screen a library of biotransformed stilbenes. Results: The study confirmed both efficacy of established antibiotics such as rifampicin and bedaquiline, with activities below defined anti-mycobacterium susceptibility breakpoints, and the lack of activity of pyrazinamide against Mm. The screening revealed the promising anti-infective activities of trans-δ-viniferins and in particular of two compounds 17 and 19 with an IC50 of 18.1 µM, 9 µM, respectively. Both compounds had no activity on Mm in broth. Subsequent exploration via halogenation and structure-activity relationship studies led to the identification of derivatives with improved selectivity and potency. The modes of action of the anti-infective compounds may involve inhibition of mycobacterial virulence factors or boosting of host defense. Discussion: The study highlights the potential of biotransformation and NP-inspired derivatization approaches for drug discovery and underscores the utility of the Dd-Mm infection system in identifying novel anti-infective compounds.

3.
ACS Cent Sci ; 10(5): 1033-1043, 2024 May 22.
Artículo en Inglés | MEDLINE | ID: mdl-38799667

RESUMEN

Thiol-mediated uptake (TMU) is an intriguing enigma in current chemistry and biology. While the appearance of cell-penetrating activity upon attachment of cascade exchangers (CAXs) has been observed by many and is increasingly being used in practice, the molecular basis of TMU is essentially unknown. The objective of this study was to develop a general protocol to decode the dynamic covalent networks that presumably account for TMU. Uptake inhibition patterns obtained from the removal of exchange partners by either protein knockdown or alternative inhibitors are aligned with original patterns generated by CAX transporters and inhibitors and patterns from alternative functions (here cell motility). These inclusive TMU patterns reveal that the four most significant CAXs known today enter cells along three almost orthogonal pathways. Epidithiodiketopiperazines (ETP) exchange preferably with integrins and protein disulfide isomerases (PDIs), benzopolysulfanes (BPS) with different PDIs, presumably PDIA3, and asparagusic acid (AspA), and antisense oligonucleotide phosphorothioates (OPS) exchange with the transferrin receptor and can be activated by the removal of PDIs with their respective inhibitors. These findings provide a solid basis to understand and use TMU to enable and prevent entry into cells.

4.
J Transl Med ; 21(1): 694, 2023 10 05.
Artículo en Inglés | MEDLINE | ID: mdl-37798764

RESUMEN

BACKGROUND: Non-alcoholic fatty liver disease (NAFLD) is a common liver disease increasing cardiovascular disease (CVD) morbidity and mortality. Autoantibodies against apolipoprotein A-1 (AAA-1) are a possible novel CVD risk factor promoting inflammation and disrupting cellular lipid homeostasis, two prominent pathogenic features of NAFLD. We explored the role of AAA-1 in NAFLD and their association with CVD risk. METHODS: HepaRG cells and liver sections from ApoE-/- mice exposed to AAA-1 were used for lipid quantification and conditional protein expression. Randomly selected sera from 312 subjects of the Prevention of Renal and Vascular End-stage Disease (PREVEND) general population cohort were used to measure AAA-1. A Fatty Liver Index (FLI) ≥ 60 and a 10-year Framingham Risk Score (FRS) ≥ 20% were used as proxy of NAFLD and high CVD risk, respectively. RESULTS: In-vitro and mouse models showed that AAA-1 increased triglyceride synthesis leading to steatosis, and promoted inflammation and hepatocyte injury. In the 112 PREVEND participants with FLI ≥ 60, AAA-1 were associated with higher FRS, alkaline phosphatase levels, lower HDL cholesterol and tended to display higher FLI values. Univariate linear and logistic regression analyses (LRA) confirmed significant associations between AAA-1, FLI and FRS ≥ 20%, while in adjusted LRA, FLI was the sole independent predictor of FRS ≥ 20% (OR: 1.05, 95%CI 1.01-1.09, P = 0.003). AAA-1 was not an independent FLI predictor. CONCLUSIONS: AAA-1 induce a NAFLD-compatible phenotype in vitro and in mice. Intricate associations exist between AAA-1, CVD risk and FLI in the general population. Further work is required to refine the role of AAA-1 in NAFLD and to determine if the AAA-1 association with CVD is affected by hepatic steatosis.


Asunto(s)
Enfermedades Cardiovasculares , Enfermedad del Hígado Graso no Alcohólico , Humanos , Ratones , Animales , Factores de Riesgo , Enfermedades Cardiovasculares/complicaciones , Apolipoproteína A-I , Ratones Noqueados para ApoE , Inflamación/complicaciones , Factores de Riesgo de Enfermedad Cardiaca
5.
JACS Au ; 3(4): 1010-1016, 2023 Apr 24.
Artículo en Inglés | MEDLINE | ID: mdl-37124287

RESUMEN

Integrins are cell surface proteins responsible for cell motility. Inspired by the rich disulfide exchange chemistry of integrins, we show here the inhibition of cell migration by cascade exchangers (CAXs), which also enable and inhibit cell penetration by thiol-mediated uptake. Fast-moving CAXs such as reversible Michael acceptor dimers, dithiabismepanes, and bioinspired epidithiodiketopiperazines are best, much better than Ellman's reagent. The implication that integrins participate in thiol-mediated uptake is confirmed by reduced uptake in integrin-knockdown cells. Although thiol-mediated uptake is increasingly emerging as a unifying pathway to bring matter into cells, its molecular basis is essentially unknown. These results identify the integrin superfamily as experimentally validated general cellular partners in the dynamic covalent exchange cascades that are likely to account for thiol-mediated uptake. The patterns identified testify to the complexity of the dynamic covalent networks involved. This work also provides chemistry tools to explore cell motility and expands the drug discovery potential of CAXs from antiviral toward antithrombotic and antitumor perspectives.

6.
Angew Chem Int Ed Engl ; 61(51): e202213433, 2022 12 19.
Artículo en Inglés | MEDLINE | ID: mdl-36272154

RESUMEN

Chalcogen-centered cascade exchange chemistry is increasingly understood to account for thiol-mediated uptake, that is, the ability of reversibly thiol-reactive agents to penetrate cells. Here, reversible Michael acceptors are shown to enable and inhibit thiol-mediated uptake, including the cytosolic delivery of proteins. Dynamic cyano-cinnamate dimers rival the best chalcogen-centered inhibitors. Patterns generated in inhibition heatmaps reveal contributions from halogen-bonding switches that occur independent from the thyroid transporter MCT8. The uniqueness of these patterns supports that the entry of tetrel-centered exchangers into cells differs from chalcogen-centered systems. These results expand the chemical space of thiol-mediated uptake and support the existence of a universal exchange network to bring matter into cells, abiding to be decoded for drug delivery and drug discovery in the broadest sense.


Asunto(s)
Halógenos , Compuestos de Sulfhidrilo , Polímeros
7.
Angew Chem Int Ed Engl ; 61(41): e202210798, 2022 10 10.
Artículo en Inglés | MEDLINE | ID: mdl-35943860

RESUMEN

Chiral quinacridines react up to four times, step-by-step, with α-diazomalonates under RuII and RhII catalysis. By selecting the catalyst, [CpRu(CH3 CN)3 ][PF6 ] (Cp=cyclopentadienyl) or Rh2 (oct)4 , chemo and regioselective insertions of derived metal carbenes are achieved in favor of mono- or bis-functionalized malonate derivatives, respectively, (r.r.>49 : 1, up to 77 % yield, 12 examples). This multi-introduction of malonate groups is particularly useful to tune optical and chemical properties such as absorption, emission or Brønsted acidity but also cellular bioimaging. Density-functional theory further elucidates the origin of the carbene insertion selectivity and also showcases the importance of conformations in the optical response.


Asunto(s)
Metano , Rodio , Malonatos , Metano/análogos & derivados , Metano/química , Estructura Molecular , Rodio/química
8.
JACS Au ; 2(4): 839-852, 2022 Apr 25.
Artículo en Inglés | MEDLINE | ID: mdl-35557769

RESUMEN

Thiol-mediated uptake is emerging as a powerful method to penetrate cells. Cyclic oligochalcogenides (COCs) have been identified as privileged scaffolds to enable and inhibit thiol-mediated uptake because they can act as dynamic covalent cascade exchangers, i.e., every exchange produces a new, covalently tethered exchanger. In this study, our focus is on the essentially unexplored COCs of higher oxidation levels. Quantitative characterization of the underlying dynamic covalent exchange cascades reveals that the initial ring opening of cyclic thiosulfonates (CTOs) proceeds at a high speed even at a low pH. The released sulfinates exchange with disulfides in aprotic but much less in protic environments. Hydrophobic domains were thus introduced to direct CTOs into hydrophobic pockets to enhance their reactivity. Equipped with such directing groups, fluorescently labeled CTOs entered the cytosol of living cells more efficiently than the popular asparagusic acid. Added as competitive agents, CTOs inhibit the uptake of various COC transporters and SARS-CoV-2 lentivectors. Orthogonal trends found with different transporters support the existence of multiple cellular partners to account for the diverse expressions of thiol-mediated uptake. Dominant self-inhibition and high activity of dimers imply selective and synergistic exchange in hydrophobic pockets as distinguishing characteristics of thiol-mediated uptake with CTOs. The best CTO dimers with hydrophobic directing groups inhibit the cellular entry of SARS-CoV-2 lentivectors with an IC50 significantly lower than the previous best CTO, below the 10 µM threshold and better than ebselen. Taken together, these results identify CTOs as an intriguing motif for use in cytosolic delivery, as inhibitors of lentivector entry, and for the evolution of dynamic covalent networks in the broadest sense, with reactivity-based selectivity of cascade exchange emerging as a distinguishing characteristic that deserves further attention.

9.
Angew Chem Int Ed Engl ; 61(28): e202203390, 2022 07 11.
Artículo en Inglés | MEDLINE | ID: mdl-35510306

RESUMEN

A Ru(bpy)3 Cl2 photocatalyst is applied to the rapid trans to cis isomerization of a range of alkene-containing pharmacological agents, including combretastatin A-4 (CA-4), a clinical candidate in oncology, and resveratrol derivatives, switching their configuration from inactive substances to potent cytotoxic agents. Selective in cellulo activation of the CA-4 analog Res-3M is demonstrated, along with its potent cytotoxicity and inhibition of microtubule dynamics.


Asunto(s)
Antineoplásicos , Estilbenos , Antineoplásicos/química , Citotoxinas , Isomerismo , Estilbenos/química
10.
Chem Sci ; 12(41): 13922-13929, 2021 Oct 27.
Artículo en Inglés | MEDLINE | ID: mdl-34760179

RESUMEN

The cytosolic delivery of various substrates in 3D multicellular spheroids by thiol-mediated uptake is reported. This is important because most orthodox systems, including polycationic cell-penetrating peptides, fail to deliver efficiently into deep tissue. The grand principles of supramolecular chemistry, that is the pH dependence of dynamic covalent disulfide exchange with known thiols on the transferrin receptor, are proposed to account for transcytosis into deep tissue, while the known but elusive exchange cascades along the same or other partners assure cytosolic delivery in kinetic competition. For quantitative detection in the cytosol, the 2D chloroalkane penetration assay (CAPA) is translated to 3D deep tissue. The targeted delivery of quantum dots, otherwise already troublesome in 2D culture, and the controlled release of mechanophores are realized to exemplify the power of thiol-mediated uptake into spheroids. As transporters, dithiolane quartets on streptavidin templates are introduced as modular motifs. Built from two amino acids only, the varied stereochemistry and peptide sequence are shown to cover maximal functional space with minimal structural change, i.e., constitutional isomers. Reviving a classic in peptide chemistry, this templated assembly of ß quartets promises to expand streptavidin biotechnology in new directions, while the discovery of general cytosolic delivery in deep tissue as an intrinsic advantage further enhances the significance and usefulness of thiol-mediated uptake.

11.
Angew Chem Int Ed Engl ; 60(35): 19102-19106, 2021 08 23.
Artículo en Inglés | MEDLINE | ID: mdl-34173696

RESUMEN

Oligonucleotide phosphorothioates (OPS) are DNA or RNA mimics where one phosphate oxygen is replaced by a sulfur atom. They have been shown to enter mammalian cells much more efficiently than non-modified DNA. Thus, solving one of the key challenges with oligonucleotide technology, OPS became very useful in practice, with several FDA-approved drugs on the market or in late clinical trials. However, the mechanism accounting for this facile cellular uptake is unknown. Here, we show that OPS enter cells by thiol-mediated uptake. The transient adaptive network produced by dynamic covalent pseudo-disulfide exchange is characterized in action. Inhibitors with nanomolar efficiency are provided, together with activators that reduce endosomal capture for efficient delivery of OPS into the cytosol, the site of action.


Asunto(s)
Transporte Biológico/fisiología , Oligonucleótidos Fosforotioatos/metabolismo , Compuestos de Sulfhidrilo/metabolismo , Endocitosis/fisiología , Células HeLa , Humanos , Oxidación-Reducción , Oligonucleótidos Fosforotioatos/química , Compuestos de Sulfhidrilo/química
12.
Beilstein J Org Chem ; 16: 2007-2016, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-32831957

RESUMEN

Recent progress with chemistry tools to deliver into living cells has seen a shift of attention from counterion-mediated uptake of cell-penetrating peptides (CPPs) and their mimics, particularly the Schmuck cation, toward thiol-mediated uptake with cell-penetrating poly(disulfide)s (CPDs) and cyclic oligochalcogenides (COCs), here exemplified by asparagusic acid. A persistent challenge in this evolution is the simultaneous and quantitative detection of cytosolic delivery and cytotoxicity in a high-throughput format. Here, we show that the combination of the HaloTag-based chloroalkane penetration assay (CAPA) with automated high-content (HC) microscopy can satisfy this need. The automated imaging of thousands of cells per condition in multiwell plates allows us to obtain quantitative data on not only the fluorescence intensity but also on the localization in a very short time. Quantitative and statistically relevant results can be obtained from dose-response curves of the targeted delivery to selected cells and the cytotoxicity in the same experiment, even with poorly optimized cellular systems.

13.
J Am Chem Soc ; 142(10): 4784-4792, 2020 03 11.
Artículo en Inglés | MEDLINE | ID: mdl-32109058

RESUMEN

In this report, cell-penetrating streptavidin (CPS) is introduced to exploit the full power of streptavidin-biotin biotechnology in cellular uptake. For this purpose, transporters, here cyclic oligochalcogenides (COCs), are covalently attached to lysines of wild-type streptavidin. This leaves all four biotin binding sites free for at least bifunctional delivery. To maximize the standards of the quantitative evaluation of cytosolic delivery, the recent chloroalkane penetration assay (CAPA) is coupled with automated high content (HC) imaging, a technique that combines the advantages of fluorescence microscopy and flow cytometry. According to the resulting HC-CAPA, cytosolic delivery of CPS equipped with four benzopolysulfanes was the best among all tested CPSs, also better than the much smaller TAT peptide, the original cell-penetrating peptide from HIV. HaloTag-GFP fusion proteins expressed on mitochondria were successfully targeted using CPS carrying two different biotinylated ligands, HaloTag substrates or anti-GFP nanobodies, interfaced with peptide nucleic acids, flipper force probes, or fluorescent substrates. The delivered substrates could be released from CPS into the cytosol through desthiobiotin-biotin exchange. These results validate CPS as a general tool which enables unrestricted use of streptavidin-biotin biotechnology in cellular uptake.


Asunto(s)
Biotina/metabolismo , Péptidos de Penetración Celular/metabolismo , Sistemas de Liberación de Medicamentos , Estreptavidina/metabolismo , Sulfuros/metabolismo , Biotina/química , Péptidos de Penetración Celular/síntesis química , Colorantes Fluorescentes/química , Células HeLa , Humanos , Microscopía Fluorescente , Ácidos Nucleicos de Péptidos/química , Anticuerpos de Dominio Único/química , Estreptavidina/química , Sulfuros/síntesis química
14.
Chem Sci ; 12(2): 626-631, 2020 Nov 18.
Artículo en Inglés | MEDLINE | ID: mdl-34163793

RESUMEN

Ellman's reagent has caused substantial confusion and concern as a probe for thiol-mediated uptake because it is the only established inhibitor available but works neither efficiently nor reliably. Here we use fluorescent cyclic oligochalcogenides that enter cells by thiol-mediated uptake to systematically screen for more potent inhibitors, including epidithiodiketopiperazines, benzopolysulfanes, disulfide-bridged γ-turned peptides, heteroaromatic sulfones and cyclic thiosulfonates, thiosulfinates and disulfides. With nanomolar activity, the best inhibitors identified are more than 5000 times better than Ellman's reagent. Different activities found with different reporters reveal thiol-mediated uptake as a complex multitarget process. Preliminary results on the inhibition of the cellular uptake of pseudo-lentivectors expressing SARS-CoV-2 spike protein do not exclude potential of efficient inhibitors of thiol-mediated uptake for the development of new antivirals.

15.
EMBO Rep ; 20(7): e47055, 2019 07.
Artículo en Inglés | MEDLINE | ID: mdl-31267706

RESUMEN

Most cells acquire cholesterol by endocytosis of circulating low-density lipoproteins (LDLs). After cholesteryl ester de-esterification in endosomes, free cholesterol is redistributed to intracellular membranes via unclear mechanisms. Our previous work suggested that the unconventional phospholipid lysobisphosphatidic acid (LBPA) may play a role in modulating the cholesterol flux through endosomes. In this study, we used the Prestwick library of FDA-approved compounds in a high-content, image-based screen of the endosomal lipids, lysobisphosphatidic acid and LDL-derived cholesterol. We report that thioperamide maleate, an inverse agonist of the histamine H3 receptor HRH3, increases highly selectively the levels of lysobisphosphatidic acid, without affecting any endosomal protein or function that we tested. Our data also show that thioperamide significantly reduces the endosome cholesterol overload in fibroblasts from patients with the cholesterol storage disorder Niemann-Pick type C (NPC), as well as in liver of Npc1-/- mice. We conclude that LBPA controls endosomal cholesterol mobilization and export to cellular destinations, perhaps by fluidifying or buffering cholesterol in endosomal membranes, and that thioperamide has repurposing potential for the treatment of NPC.


Asunto(s)
Colesterol/metabolismo , Endosomas/efectos de los fármacos , Lisofosfolípidos/metabolismo , Monoglicéridos/metabolismo , Enfermedad de Niemann-Pick Tipo C/metabolismo , Piperidinas/farmacología , Animales , Células Cultivadas , Endosomas/metabolismo , Femenino , Fibroblastos/efectos de los fármacos , Fibroblastos/metabolismo , Células HeLa , Humanos , Masculino , Ratones , Ratones Endogámicos BALB C
16.
J Lipid Res ; 60(4): 832-843, 2019 04.
Artículo en Inglés | MEDLINE | ID: mdl-30709900

RESUMEN

In specialized cell types, lysosome-related organelles support regulated secretory pathways, whereas in nonspecialized cells, lysosomes can undergo fusion with the plasma membrane in response to a transient rise in cytosolic calcium. Recent evidence also indicates that lysosome secretion can be controlled transcriptionally and promote clearance in lysosome storage diseases. In addition, evidence is also accumulating that low concentrations of cyclodextrins reduce the cholesterol-storage phenotype in cells and animals with the cholesterol storage disease Niemann-Pick type C, via an unknown mechanism. Here, we report that cyclodextrin triggers the secretion of the endo/lysosomal content in nonspecialized cells and that this mechanism is responsible for the decreased cholesterol overload in Niemann-Pick type C cells. We also find that the secretion of the endo/lysosome content occurs via a mechanism dependent on the endosomal calcium channel mucolipin-1, as well as FYCO1, the AP1 adaptor, and its partner Gadkin. We conclude that endo-lysosomes in nonspecialized cells can acquire secretory functions elicited by cyclodextrin and that this pathway is responsible for the decrease in cholesterol storage in Niemann-Pick C cells.


Asunto(s)
Ciclodextrinas/farmacología , Endosomas/efectos de los fármacos , Enfermedad de Niemann-Pick Tipo C/tratamiento farmacológico , Canales de Potencial de Receptor Transitorio/antagonistas & inhibidores , Colesterol/análisis , Endosomas/metabolismo , Células HeLa , Humanos , Microscopía Fluorescente , Enfermedad de Niemann-Pick Tipo C/metabolismo , Enfermedad de Niemann-Pick Tipo C/patología , Canales de Potencial de Receptor Transitorio/metabolismo , Células Tumorales Cultivadas
17.
J Cell Sci ; 131(22)2018 11 21.
Artículo en Inglés | MEDLINE | ID: mdl-30333141

RESUMEN

Cytokine receptors, such as tumor necrosis factor receptor I (TNFRI, also known as TNFRSF1A) and lymphotoxin ß receptor (LTßR), activate inflammatory nuclear factor (NF)-κB signaling upon stimulation. We have previously demonstrated that depletion of ESCRT components leads to endosomal accumulation of TNFRI and LTßR, and their ligand-independent signaling to NF-κB. Here, we studied whether other perturbations of the endolysosomal system could trigger intracellular accumulation and signaling of ligand-free LTßR. While depletion of the CORVET components had no effect, knockdown of Rab7a or HOPS components, or pharmacological inhibition of lysosomal degradation, caused endosomal accumulation of LTßR and increased its interaction with the TRAF2 and TRAF3 signaling adaptors. However, the NF-κB pathway was not activated under these conditions. We found that knockdown of Rab7a or HOPS components led to sequestration of LTßR in intraluminal vesicles of endosomes, thus precluding NF-κB signaling. This was in contrast to the LTßR localization on the outer endosomal membrane that was seen after ESCRT depletion and was permissive for signaling. We propose that the inflammatory response induced by intracellular accumulation of endocytosed cytokine receptors critically depends on the precise receptor topology within endosomal compartments.


Asunto(s)
Receptor beta de Linfotoxina/metabolismo , FN-kappa B/metabolismo , Endosomas/metabolismo , Técnicas de Silenciamiento del Gen , Células HEK293 , Células HeLa , Humanos , Lisosomas/metabolismo , Transporte de Proteínas , Transducción de Señal , Péptidos y Proteínas Asociados a Receptores de Factores de Necrosis Tumoral/metabolismo , Proteínas de Transporte Vesicular/deficiencia , Proteínas de Transporte Vesicular/metabolismo , Proteínas de Unión al GTP rab/deficiencia , Proteínas de Unión al GTP rab/genética , Proteínas de Unión al GTP rab/metabolismo , Proteínas de Unión a GTP rab7
18.
Nat Commun ; 9(1): 993, 2018 03 08.
Artículo en Inglés | MEDLINE | ID: mdl-29520003

RESUMEN

Sorting nexins anchor trafficking machines to membranes by binding phospholipids. The paradigm of the superfamily is sorting nexin 3 (SNX3), which localizes to early endosomes by recognizing phosphatidylinositol 3-phosphate (PI3P) to initiate retromer-mediated segregation of cargoes to the trans-Golgi network (TGN). Here we report the solution structure of full length human SNX3, and show that PI3P recognition is accompanied by bilayer insertion of a proximal loop in its extended Phox homology (PX) domain. Phosphoinositide (PIP) binding is completely blocked by cancer-linked phosphorylation of a conserved serine beside the stereospecific PI3P pocket. This "PIP-stop" releases endosomal SNX3 to the cytosol, and reveals how protein kinases control membrane assemblies. It constitutes a widespread regulatory element found across the PX superfamily and throughout evolution including of fungi and plants. This illuminates the mechanism of a biological switch whereby structured PIP sites are phosphorylated to liberate protein machines from organelle surfaces.


Asunto(s)
Membrana Celular/metabolismo , Fosfatidilinositoles/metabolismo , Nexinas de Clasificación/metabolismo , Secuencia de Aminoácidos , Humanos , Datos de Secuencia Molecular , Fosfatos de Fosfatidilinositol/metabolismo , Fosfolípidos/metabolismo , Fosforilación , Unión Proteica , Transporte de Proteínas , Nexinas de Clasificación/química , Red trans-Golgi/metabolismo
19.
Front Biosci (Elite Ed) ; 10(2): 242-253, 2018 01 01.
Artículo en Inglés | MEDLINE | ID: mdl-28930616

RESUMEN

We previously reported that the innate sensing of the endosymbiont Leishmania RNA virus 1 (LRV1) within Leishmania (Viannia) guyanensis through Toll-like receptor 3, worsens the pathogenesis of parasite infection in mice. The presence of LRV1 has been associated with the failure of first-line treatment in patients infected with LRV1 containing -L. guyanensis and -L. braziliensis parasites. Here, we established a semi-automated image-based high-throughput drug screening (HTDS) protocol to measure parasiticidal activity of the Prestwick chemical library in primary murine macrophages infected with LRV1-containing L. guyanensis. The two-independent screens generated 14 hit compounds with over sixty-nine percent reduction in parasite growth compared to control, at a single dose in both screens. Our screening strategy offers great potential in the search for new drugs and accelerates the discovery rate in the field of drug repurposing against Leishmania. Moreover, this technique allows the concomitant assessment of the effect of drug toxicity on host cell number.


Asunto(s)
Automatización , Evaluación Preclínica de Medicamentos/métodos , Ensayos Analíticos de Alto Rendimiento , Animales , Antiprotozoarios/farmacología , Leishmania/efectos de los fármacos , Macrófagos/parasitología , Ratones , Ratones Endogámicos C57BL
20.
Angew Chem Int Ed Engl ; 56(11): 2947-2950, 2017 03 06.
Artículo en Inglés | MEDLINE | ID: mdl-28261969

RESUMEN

Simple cyclic disulfides under high tension mediate the uptake of giant substrates, that is, liposomes and polymersomes with diameters of up to 400 nm, into HeLa Kyoto cells. To place them at the surface of the vesicles, the strained disulfides were attached to the head-group of cationic amphiphiles. Bell-shaped dose response curves revealed self-activation of the strained amphiphiles by self-assembly into microdomains at low concentrations and self-inhibition by micelle formation at high concentrations. Poor colocalization of internalized vesicles with endosomes, lysosomes, and mitochondria indicate substantial release into the cytosol. The increasing activity with disulfide ring tension, inhibition with Ellman's reagent, and inactivity of maleimide and guanidinium controls outline a distinct mode of action that deserves further investigation and is promising for practical applications.


Asunto(s)
Polímeros/metabolismo , Compuestos de Sulfhidrilo/metabolismo , Células HeLa , Humanos , Liposomas/química , Liposomas/metabolismo , Estructura Molecular , Tamaño de la Partícula , Polímeros/química , Compuestos de Sulfhidrilo/química , Propiedades de Superficie
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...