Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 13 de 13
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Cell Mol Life Sci ; 81(1): 215, 2024 May 13.
Artículo en Inglés | MEDLINE | ID: mdl-38739166

RESUMEN

Down syndrome (DS) is a genetic disease characterized by a supernumerary chromosome 21. Intellectual deficiency (ID) is one of the most prominent features of DS. Central nervous system defects lead to learning disabilities, motor and language delays, and memory impairments. At present, a prenatal treatment for the ID in DS is lacking. Subcutaneous administration of synthetic preimplantation factor (sPIF, a peptide with a range of biological functions) in a model of severe brain damage has shown neuroprotective and anti-inflammatory properties by directly targeting neurons and microglia. Here, we evaluated the effect of PIF administration during gestation and until weaning on Dp(16)1Yey mice (a mouse model of DS). Possible effects at the juvenile stage were assessed using behavioral tests and molecular and histological analyses of the brain. To test the influence of perinatal sPIF treatment at the adult stage, hippocampus-dependent memory was evaluated on postnatal day 90. Dp(16)1Yey pups showed significant behavioral impairment, with impaired neurogenesis, microglial cell activation and a low microglial cell count, and the deregulated expression of genes linked to neuroinflammation and cell cycle regulation. Treatment with sPIF restored early postnatal hippocampal neurogenesis, with beneficial effects on astrocytes, microglia, inflammation, and cell cycle markers. Moreover, treatment with sPIF restored the level of DYRK1A, a protein that is involved in cognitive impairments in DS. In line with the beneficial effects on neurogenesis, perinatal treatment with sPIF was associated with an improvement in working memory in adult Dp(16)1Yey mice. Perinatal treatment with sPIF might be an option for mitigating cognitive impairments in people with DS.


Asunto(s)
Modelos Animales de Enfermedad , Síndrome de Down , Neurogénesis , Animales , Síndrome de Down/tratamiento farmacológico , Síndrome de Down/patología , Síndrome de Down/metabolismo , Síndrome de Down/complicaciones , Síndrome de Down/genética , Neurogénesis/efectos de los fármacos , Ratones , Femenino , Embarazo , Hipocampo/metabolismo , Hipocampo/patología , Hipocampo/efectos de los fármacos , Microglía/metabolismo , Microglía/efectos de los fármacos , Microglía/patología , Proteínas Serina-Treonina Quinasas/metabolismo , Proteínas Serina-Treonina Quinasas/genética , Proteínas Tirosina Quinasas/metabolismo , Proteínas Tirosina Quinasas/genética , Quinasas DyrK , Disfunción Cognitiva/tratamiento farmacológico , Disfunción Cognitiva/metabolismo , Disfunción Cognitiva/patología , Masculino , Trastornos del Conocimiento/tratamiento farmacológico , Trastornos del Conocimiento/patología
2.
Int J Mol Sci ; 23(23)2022 Dec 04.
Artículo en Inglés | MEDLINE | ID: mdl-36499613

RESUMEN

The global prevalence of diabetes mellitus and Alzheimer's disease is increasing alarmingly with the aging of the population. Numerous epidemiological data suggest that there is a strong association between type 2 diabetes and an increased risk of dementia. These diseases are both degenerative and progressive and share common risk factors. The amyloid cascade plays a key role in the pathophysiology of Alzheimer's disease. The accumulation of amyloid beta peptides gradually leads to the hyperphosphorylation of tau proteins, which then form neurofibrillary tangles, resulting in neurodegeneration and cerebral atrophy. In Alzheimer's disease, apart from these processes, the alteration of glucose metabolism and insulin signaling in the brain seems to induce early neuronal loss and the impairment of synaptic plasticity, years before the clinical manifestation of the disease. The large amount of evidence on the existence of insulin resistance in the brain during Alzheimer's disease has led to the description of this disease as "type 3 diabetes". Available animal models have been valuable in the understanding of the relationships between type 2 diabetes and Alzheimer's disease, but to date, the mechanistical links are poorly understood. In this non-exhaustive review, we describe the main molecular mechanisms that may link these two diseases, with an emphasis on impaired insulin and IGF-1 signaling. We also focus on GSK3ß and DYRK1A, markers of Alzheimer's disease, which are also closely associated with pancreatic ß-cell dysfunction and type 2 diabetes, and thus may represent common therapeutic targets for both diseases.


Asunto(s)
Enfermedad de Alzheimer , Diabetes Mellitus Tipo 2 , Animales , Enfermedad de Alzheimer/metabolismo , Péptidos beta-Amiloides/metabolismo , Diabetes Mellitus Tipo 2/metabolismo , Proteínas tau/metabolismo , Insulina/metabolismo , Encéfalo/metabolismo
3.
Biomedicines ; 10(6)2022 Jun 10.
Artículo en Inglés | MEDLINE | ID: mdl-35740400

RESUMEN

Down syndrome (DS) is a complex genetic condition due to an additional copy of human chromosome 21, which results in the deregulation of many genes. In addition to the intellectual disability associated with DS, adults with DS also have an ultrahigh risk of developing early onset Alzheimer's disease dementia. DYRK1A, a proline-directed serine/threonine kinase, whose gene is located on chromosome 21, has recently emerged as a promising plasma biomarker in patients with sporadic Alzheimer's disease (AD). The protein DYRK1A is truncated in symptomatic AD, the increased truncated form being associated with a decrease in the level of full-length form. Activity-dependent neuroprotective protein (ADNP), a key protein for the brain development, has been demonstrated to be a useful marker for symptomatic AD and disease progression. In this study, we evaluated DYRK1A and ADNP in CSF and plasma of adults with DS and explored the relationship between these proteins. We used mice models to evaluate the effect of DYRK1A overexpression on ADNP levels and then performed a dual-center cross-sectional human study in adults with DS in Barcelona (Spain) and Paris (France). Both cohorts included adults with DS at different stages of the continuum of AD: asymptomatic AD (aDS), prodromal AD (pDS), and AD dementia (dDS). Non-trisomic controls and patients with sporadic AD dementia were included for comparison. Full-form levels of DYRK1A were decreased in plasma and CSF in adults with DS and symptomatic AD (pDS and dDS) compared to aDS, and in patients with sporadic AD compared to controls. On the contrary, the truncated form of DYRK1A was found to increase both in CSF and plasma in adults with DS and symptomatic AD and in patients with sporadic AD with respect to aDS and controls. ADNP levels showed a more complex structure. ADNP levels increased in aDS groups vs. controls, in agreement with the increase in levels found in the brains of mice overexpressing DYRK1A. However, symptomatic individuals had lower levels than aDS individuals. Our results show that the comparison between full-length and truncated-form levels of DYRK1A coupled with ADNP levels could be used in trials targeting pathophysiological mechanisms of dementia in individuals with DS.

4.
Genes (Basel) ; 12(11)2021 11 16.
Artículo en Inglés | MEDLINE | ID: mdl-34828406

RESUMEN

Down syndrome (DS) is the most common chromosomal disorder. It is responsible for intellectual disability (ID) and several medical conditions. Although men with DS are thought to be infertile, some spontaneous paternities have been reported. The few studies of the mechanism of infertility in men with DS are now dated. Recent research in zebrafish has indicated that overexpression of DYRK1A (the protein primarily responsible for ID in DS) impairs gonadogenesis at the embryonic stage. To better ascertain DYRK1A's role in infertility in DS, we investigated the effect of DYRK1A overexpression in a transgenic mouse model. We found that overexpression of DYRK1A impairs fertility in transgenic male mice. Interestingly, the mechanism in mice differs slightly from that observed in zebrafish but, with disruption of the early stages of spermatogenesis, is similar to that seen in humans. Unexpectedly, we observed hypogonadotropic hypogonadism in the transgenic mice.


Asunto(s)
Hipogonadismo/genética , Infertilidad Masculina/genética , Proteínas Serina-Treonina Quinasas/genética , Proteínas Tirosina Quinasas/genética , Espermatogénesis , Animales , Hipogonadismo/patología , Infertilidad Masculina/patología , Masculino , Ratones , Ratones Endogámicos C57BL , Proteínas Serina-Treonina Quinasas/metabolismo , Proteínas Tirosina Quinasas/metabolismo , Testículo/embriología , Testículo/patología , Regulación hacia Arriba , Quinasas DyrK
5.
Biomedicines ; 9(2)2021 Feb 22.
Artículo en Inglés | MEDLINE | ID: mdl-33671490

RESUMEN

Down syndrome is a genetic disorder caused by the presence of a third copy of chromosome 21, associated with intellectual disabilities. Down syndrome is associated with anomalies of both the nervous and endocrine systems. Over the past decades, dramatic advances in Down syndrome research and treatment have helped to extend the life expectancy of these patients. Improved life expectancy is obviously a positive outcome, but it is accompanied with the need to address previously overlooked complications and comorbidities of Down syndrome, including obesity and diabetes, in order to improve the quality of life of Down syndrome patients. In this focused review, we describe the associations between Down syndrome and comorbidities, obesity and diabetes, and we discuss the understanding of proposed mechanisms for the association of Down syndrome with metabolic disorders. Drawing molecular mechanisms through which Type 1 diabetes and Type 2 diabetes could be linked to Down syndrome could allow identification of novel drug targets and provide therapeutic solutions to limit the development of metabolic and cognitive disorders.

6.
JBMR Plus ; 3(10): e10224, 2019 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-31687652

RESUMEN

Adequate protein intake during development is critical to ensure optimal bone gain and to attain a higher peak bone mass later. Using a mild protein restriction model in Balb/C mice consuming 6% of their total energy intake as soy protein (LP-SOY)-for which we observed a significantly lower femoral cortical thickness, bone volume, trabecular number, and thickness reduction-we evaluated the effects of monosodium glutamate (MSG) supplementation at different concentrations (0.5, 1, 5, 10, and 20 g/kg of diet) on bone characteristics in LP-SOY-fed mice. After 6 and 12 weeks, LP-SOY-fed mice had lower BMD and reduced body weight related to lower lean mass, which was associated with a reduced IGF-1 level. The negative effect of the LP-SOY diet on BMD correlated with impaired bone formation. MSG supplementation, at 5, 10, and 20 g/kg of diet, and PTH injection, used as a positive control, were able to improve BMD and to increase osteoblast activity markers (P1NP and osteocalcin), as well as glutamine plasma concentration. An analysis of bone microarchitecture found that cortical bone was less sensitive to protein restriction than trabecular bone, and that MSG ingestion was able to preserve bone quality through an increase of collagen synthesis, although it did not allow normal bone growth. Our study reinforces the view that glutamate can act as a functional amino acid for bone physiology and support clinical investigation of glutamate supplementation in adults characterized by poor bone status, notably as a result of insufficient protein intake. © 2019 The Authors. JBMR Plus published by Wiley Periodicals, Inc. on behalf of American Society for Bone and Mineral Research.

7.
Front Plant Sci ; 7: 1611, 2016.
Artículo en Inglés | MEDLINE | ID: mdl-27877176

RESUMEN

Protein translation is an energy consuming process that has to be fine-tuned at both the cell and organism levels to match the availability of resources. The target of rapamycin kinase (TOR) is a key regulator of a large range of biological processes in response to environmental cues. In this study, we have investigated the effects of TOR inactivation on the expression and regulation of Arabidopsis ribosomal proteins at different levels of analysis, namely from transcriptomic to phosphoproteomic. TOR inactivation resulted in a coordinated down-regulation of the transcription and translation of nuclear-encoded mRNAs coding for plastidic ribosomal proteins, which could explain the chlorotic phenotype of the TOR silenced plants. We have identified in the 5' untranslated regions (UTRs) of this set of genes a conserved sequence related to the 5' terminal oligopyrimidine motif, which is known to confer translational regulation by the TOR kinase in other eukaryotes. Furthermore, the phosphoproteomic analysis of the ribosomal fraction following TOR inactivation revealed a lower phosphorylation of the conserved Ser240 residue in the C-terminal region of the 40S ribosomal protein S6 (RPS6). These results were confirmed by Western blot analysis using an antibody that specifically recognizes phosphorylated Ser240 in RPS6. Finally, this antibody was used to follow TOR activity in plants. Our results thus uncover a multi-level regulation of plant ribosomal genes and proteins by the TOR kinase.

8.
Front Plant Sci ; 4: 93, 2013.
Artículo en Inglés | MEDLINE | ID: mdl-23641244

RESUMEN

In eukaryotes, the ubiquitous TOR (target of rapamycin) kinase complexes have emerged as central regulators of cell growth and metabolism. The plant TOR complex 1 (TORC1), that contains evolutionary conserved protein partners, has been shown to be implicated in various aspects of C metabolism. Indeed Arabidopsis lines affected in the expression of TORC1 components show profound perturbations in the metabolism of several sugars, including sucrose, starch, and raffinose. Metabolite profiling experiments coupled to transcriptomic analyses of lines affected in TORC1 expression also reveal a wider deregulation of primary metabolism. Moreover recent data suggest that the kinase activity of TORC1, which controls biological outputs like mRNA translation or autophagy, is directly regulated by soluble sugars.

9.
Mol Plant Pathol ; 14(5): 506-17, 2013 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-23634775

RESUMEN

The type III effector DspA/E is an essential pathogenicity factor of the phytopathogenic bacterium Erwinia amylovora. We showed that DspA/E was required for transient bacterial growth in nonhost Arabidopsis thaliana leaves, as an E. amylovora dspA/E mutant was unable to grow. We expressed DspA/E in A. thaliana transgenic plants under the control of an oestradiol-inducible promoter, and found that DspA/E expressed in planta restored the growth of a dspA/E mutant. DspA/E expression in these transgenic plants led to the modulation by at least two-fold of the expression of 384 genes, mostly induced (324 genes). Both induced and repressed genes contained high proportions of defence genes. DspA/E expression ultimately resulted in plant cell death without requiring a functional salicylic acid signalling pathway. Analysis of A. thaliana transgenic seedlings expressing a green fluorescent protein (GFP):DspA/E fusion indicated that the fusion protein could only be detected in a few cells per seedling, suggesting the degradation or absence of accumulation of DspA/E in plant cells. Consistently, we found that DspA/E repressed plant protein synthesis when injected by E. amylovora or when expressed in transgenic plants. Thus, we conclude that DspA/E is toxic to A. thaliana: it promotes modifications, among which the repression of protein synthesis could be determinant in the facilitation of necrosis and bacterial growth.


Asunto(s)
Arabidopsis/microbiología , Proteínas Bacterianas/metabolismo , Erwinia amylovora/crecimiento & desarrollo , Erwinia amylovora/metabolismo , Viabilidad Microbiana , Arabidopsis/citología , Arabidopsis/genética , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Muerte Celular , Nucléolo Celular/metabolismo , Electrólitos/metabolismo , Perfilación de la Expresión Génica , Regulación de la Expresión Génica de las Plantas , Genes de Plantas/genética , Glucanos/metabolismo , Mutación/genética , Análisis de Secuencia por Matrices de Oligonucleótidos , Fenotipo , Enfermedades de las Plantas/genética , Enfermedades de las Plantas/microbiología , Hojas de la Planta/crecimiento & desarrollo , Hojas de la Planta/microbiología , Raíces de Plantas/crecimiento & desarrollo , Raíces de Plantas/microbiología , Plantas Modificadas Genéticamente , Biosíntesis de Proteínas , Pseudomonas syringae/fisiología , Ácido Salicílico/metabolismo
10.
Plant Cell ; 24(2): 463-81, 2012 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-22307851

RESUMEN

The conserved Target of Rapamycin (TOR) kinase forms high molecular mass complexes and is a major regulator of cellular adaptations to environmental cues. The Lethal with Sec Thirteen 8/G protein ß subunit-like (LST8/GßL) protein is a member of the TOR complexes, and two putative LST8 genes are present in Arabidopsis thaliana, of which only one (LST8-1) is significantly expressed. The Arabidopsis LST8-1 protein is able to complement yeast lst8 mutations and interacts with the TOR kinase. Mutations in the LST8-1 gene resulted in reduced vegetative growth and apical dominance with abnormal development of flowers. Mutant plants were also highly sensitive to long days and accumulated, like TOR RNA interference lines, higher amounts of starch and amino acids, including proline and glutamine, while showing reduced concentrations of inositol and raffinose. Accordingly, transcriptomic and enzymatic analyses revealed a higher expression of genes involved in nitrate assimilation when lst8-1 mutants were shifted to long days. The transcriptome of lst8-1 mutants in long days was found to share similarities with that of a myo-inositol 1 phosphate synthase mutant that is also sensitive to the extension of the light period. It thus appears that the LST8-1 protein has an important role in regulating amino acid accumulation and the synthesis of myo-inositol and raffinose during plant adaptation to long days.


Asunto(s)
Aclimatación/genética , Proteínas de Arabidopsis/metabolismo , Arabidopsis/genética , Flores/crecimiento & desarrollo , Fotoperiodo , Aminoácidos/metabolismo , Arabidopsis/crecimiento & desarrollo , Arabidopsis/metabolismo , Proteínas de Arabidopsis/genética , Regulación de la Expresión Génica de las Plantas , Metaboloma , Mutación , Fosfatidilinositol 3-Quinasas/metabolismo , Plantas Modificadas Genéticamente/genética , Plantas Modificadas Genéticamente/crecimiento & desarrollo , Plantas Modificadas Genéticamente/metabolismo , Interferencia de ARN , Transcriptoma
11.
Mol Plant Microbe Interact ; 25(3): 421-30, 2012 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-22316300

RESUMEN

Erwinia amylovora causes fire blight in rosaceous plants. In nonhost Arabidopsis thaliana, E. amylovora triggers necrotic symptoms associated with transient bacterial multiplication, suggesting either that A. thaliana lacks a susceptibility factor or that it actively restricts E. amylovora growth. Inhibiting plant protein synthesis at the time of infection led to an increase in necrosis and bacterial multiplication and reduced callose deposition, indicating that A. thaliana requires active protein synthesis to restrict E. amylovora growth. Analysis of the callose synthase-deficient pmr4-1 mutant indicated that lack of callose deposition alone did not lead to increased sensitivity to E. amylovora. Transcriptome analysis revealed that approximately 20% of the genes induced following E. amylovora infection are related to defense and signaling. Analysis of mutants affected in NDR1 and EDS1, two main components of the defense-gene activation observed, revealed that E. amylovora multiplied ten times more in the eds1-2 mutant than in the wild type but not in the ndr1-1 mutant. Analysis of mutants affected in three WRKY transcription factors showing EDS1-dependent activation identified WRKY46 and WRKY54 as positive regulators and WRKY70 as a negative regulator of defense against E. amylovora. Altogether, we show that EDS1 is a positive regulator of nonhost resistance against E. amylovora in A. thaliana and hypothesize that it controls the production of several effective defenses against E. amylovora through the action of WRKY46 and WRKY54, while WRKY70 acts as a negative regulator.


Asunto(s)
Proteínas de Arabidopsis/inmunología , Arabidopsis/inmunología , Proteínas de Unión al ADN/inmunología , Erwinia amylovora/patogenicidad , Enfermedades de las Plantas/inmunología , Inmunidad de la Planta , Arabidopsis/efectos de los fármacos , Arabidopsis/genética , Arabidopsis/microbiología , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Cicloheximida/farmacología , Proteínas de Unión al ADN/genética , Proteínas de Unión al ADN/metabolismo , Erwinia amylovora/efectos de los fármacos , Erwinia amylovora/crecimiento & desarrollo , Erwinia amylovora/fisiología , Perfilación de la Expresión Génica , Regulación de la Expresión Génica de las Plantas/efectos de los fármacos , Regulación de la Expresión Génica de las Plantas/genética , Glucanos/metabolismo , Mutación , Análisis de Secuencia por Matrices de Oligonucleótidos , Enfermedades de las Plantas/microbiología , Hojas de la Planta/microbiología , ARN de Planta/genética , Transcriptoma
12.
Biochem Soc Trans ; 39(2): 477-81, 2011 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-21428923

RESUMEN

The TOR (target of rapamycin) kinase is present in nearly all eukaryotic organisms and regulates a wealth of biological processes collectively contributing to cell growth. The genome of the model plant Arabidopsis contains a single TOR gene and two RAPTOR (regulatory associated protein of TOR)/KOG1 (Kontroller of growth 1) and GßL/LST8 (G-protein ß-subunit-like/lethal with Sec thirteen 8) genes but, in contrast with other organisms, plants appear to be resistant to rapamycin. Disruption of the RAPTOR1 and TOR genes in Arabidopsis results in an early arrest of embryo development. Plants that overexpress the TOR mRNA accumulate more leaf and root biomass, produce more seeds and are more resistant to stress. Conversely, the down-regulation of TOR by constitutive or inducible RNAi (RNA interference) leads to a reduced organ growth, to an early senescence and to severe transcriptomic and metabolic perturbations, including accumulation of sugars and amino acids. It thus seems that plant growth is correlated to the level of TOR expression. We have also investigated the effect of reduced TOR expression on tissue organization and cell division. We suggest that, like in other eukaryotes, the plant TOR kinase could be one of the main contributors to the link between environmental cues and growth processes.


Asunto(s)
Desarrollo de la Planta , Plantas/metabolismo , Serina-Treonina Quinasas TOR/fisiología , Animales , Arabidopsis/genética , Arabidopsis/crecimiento & desarrollo , Arabidopsis/metabolismo , Regulación de la Expresión Génica de las Plantas , Humanos , Modelos Biológicos , Filogenia , Plantas/genética , Transducción de Señal/genética , Transducción de Señal/fisiología , Serina-Treonina Quinasas TOR/metabolismo
13.
EMBO Rep ; 8(9): 864-70, 2007 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-17721444

RESUMEN

Plants, unlike animals, have plastic organ growth that is largely dependent on environmental information. However, so far, little is known about how this information is perceived and transduced into coherent growth and developmental decisions. Here, we report that the growth of Arabidopsis is positively correlated with the level of expression of the TARGET OF RAPAMYCIN (TOR) kinase. Diminished or augmented expression of the AtTOR gene results in a dose-dependent decrease or increase, respectively, in organ and cell size, seed production and resistance to osmotic stress. Strong downregulation of AtTOR expression by inducible RNA interference also leads to a post-germinative halt in growth and development, which phenocopies the action of the plant hormone abscisic acid, to an early senescence and to a reduction in the amount of translated messenger RNA. Thus, we propose that the AtTOR kinase is one of the contributors to the link between environmental cues and growth processes in plants.


Asunto(s)
Proteínas de Arabidopsis/metabolismo , Arabidopsis/enzimología , Arabidopsis/crecimiento & desarrollo , Biosíntesis de Proteínas/genética , Proteínas Serina-Treonina Quinasas/metabolismo , Semillas/enzimología , Animales , Proteínas de Arabidopsis/biosíntesis , Silenciador del Gen , Tamaño de los Órganos , Presión Osmótica , Fosfatidilinositol 3-Quinasas , Epidermis de la Planta/enzimología , Hojas de la Planta/anatomía & histología , Hojas de la Planta/enzimología , Polirribosomas/metabolismo , Proteínas Serina-Treonina Quinasas/biosíntesis
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...