Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros













Base de datos
Intervalo de año de publicación
1.
Ecology ; 103(2): e03595, 2022 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-34807455

RESUMEN

Flowering plant species and their nectar-feeding vertebrates exemplify some of the most remarkable biotic interactions in the Neotropics. In the Brazilian Atlantic Forest, several species of birds (especially hummingbirds), bats, and non-flying mammals, as well as one lizard feed on nectar, often act as pollinators and contribute to seed output of flowering plants. We present a dataset containing information on flowering plants visited by nectar-feeding vertebrates and sampled at 166 localities in the Brazilian Atlantic Forest. This dataset provides information on 1902 unique interactions among 515 species of flowering plants and 129 species of potential vertebrate pollinators and the patterns of species diversity across latitudes. All plant-vertebrate interactions compiled were recorded through direct observations of visits, and no inferences of pollinators based on floral syndromes were included. We also provide information on the most common plant traits used to understand the interactions between flowers and nectar-feeding vertebrates: plant growth form, corolla length, rate of nectar production per hour in bagged flowers, nectar concentration, flower color and shape, time of anthesis, presence or absence of perceptible fragrance by human, and flowering phenology as well as the plant's threat status by International Union for Conservation of Nature (IUCN) classification. For the vertebrates, status of threat by IUCN classification, body mass, bill or rostrum size are provided. Information on the frequency of visits and pollen deposition on the vertebrate's body is provided from the original source when available. The highest number of unique interactions is recorded for birds (1771) followed by bats (110). For plants, Bromeliaceae contains the highest number of unique interactions (606), followed by Fabaceae (242) and Gesneriaceae (104). It is evident that there was geographical bias of the studies throughout the southeast of the Brazilian Atlantic Forest and that most effort was directed to flower-hummingbird interactions. However, it reflects a worldwide tendency of more plants interacting with birds compared with other vertebrate species. The lack of similar protocols among studies to collect basic data limits the comparisons among areas and generalizations. Nevertheless, this dataset represents a notable effort to organize and highlight the importance of vertebrate pollinators in this hotspot of biodiversity on Earth and represents the data currently available. No copyright or proprietary restrictions are associated with the use of this data set. Please cite this data paper when the data are used in publications or scientific events.


Asunto(s)
Néctar de las Plantas , Polinización , Animales , Aves , Flores , Bosques , Humanos , Mamíferos
2.
PeerJ ; 8: e8836, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-32257647

RESUMEN

A generalist pollination system may be characterized through the interaction of a plant species with two or more functional groups of pollinators. The spatiotemporal variation of the most effective pollinator is the factor most frequently advocated to explain the emergence and maintenance of generalist pollination systems. There are few studies merging variation in floral visitor assemblages and the efficacy of pollination by different functional groups. Thus, there are gaps in our knowledge about the variation in time of pollinator efficacy and frequency of generalist species. In this study, we evaluated the pollination efficacy of the floral visitors of Edmundoa lindenii (Bromeliaceae) and their frequency of visits across four reproductive events. We analyzed the frequency of the three groups of floral visitors (large bees, small bees, and hummingbirds) through focal observations in the reproductive events of 2015, 2016, 2017, and 2018. We evaluated the pollination efficacy (fecundity after one visit) through selective exposure treatments and the breeding system by manual pollinations. We tested if the reproductive success after natural pollination varied between the reproductive events and also calculated the pollen limitation index. E. lindenii is a self-incompatible and parthenocarpic species, requiring the action of pollinators for sexual reproduction. Hummingbirds had higher efficacy than large bees and small bees acted only as pollen larcenists. The relative frequency of the groups of floral visitors varied between the reproductive events. Pollen limitation has occurred only in the reproductive event of 2017, when visits by hummingbirds were scarce and reproductive success after natural pollination was the lowest. We conclude that hummingbirds and large bees were the main and the secondary pollinators of E. lindenii, respectively, and that temporal variations in the pollinator assemblages had effects on its reproductive success. Despite their lower pollination efficacy, large bees ensured seed set when hummingbirds failed. Thus, we provide evidence that variable pollination environments may favor generalization, even under differential effectiveness of pollinator groups if secondary pollinators provide reproductive assurance.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA