Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Más filtros













Base de datos
Intervalo de año de publicación
1.
Int J Mol Sci ; 24(11)2023 May 26.
Artículo en Inglés | MEDLINE | ID: mdl-37298297

RESUMEN

Natural bioactive compounds represent a new frontier of antimicrobial molecules, and the marine ecosystem represents a new challenge in this regard. In the present work, we evaluated the possibility of changes in the antibacterial activity of protamine-like (PL) proteins, the major nuclear basic protein components of Mytilus galloprovincialis sperm chromatin, after the exposure of mussels to subtoxic doses of chromium (VI) (1, 10, and 100 nM) and mercury (1, 10, and 100 pM) HgCl2, since these metals affect some properties of PL. After exposure, we analyzed the electrophoretic pattern of PLs by both acetic acid-urea polyacrylamide gel electrophoresis (AU-PAGE) and SDS-PAGE and determined the MIC and MBC of these proteins on different gram+ and gram- bacteria. PLs, particularly after mussels were exposed to the highest doses of chromium and mercury, showed significantly reduced antibacterial activity. Just at the highest doses of exposure to the two metals, changes were found in the electrophoretic pattern of PLs, suggesting that there were conformational changes in these proteins, which were confirmed by the fluorescence measurements of PLs. These results provide the first evidence of a reduction in the antibacterial activity of these proteins following the exposure of mussels to these metals. Based on the results, hypothetical molecular mechanisms that could explain the decrease in the antibacterial activity of PLs are discussed.


Asunto(s)
Mercurio , Mytilus , Contaminantes Químicos del Agua , Animales , Masculino , Protaminas/farmacología , Protaminas/metabolismo , Mercurio/toxicidad , Cromo/toxicidad , Cromo/metabolismo , Ecosistema , Semen/metabolismo , Proteínas Nucleares/metabolismo , Metales/metabolismo , Antibacterianos/farmacología , Antibacterianos/metabolismo , Contaminantes Químicos del Agua/metabolismo
2.
Artículo en Inglés | MEDLINE | ID: mdl-35410035

RESUMEN

The research was focused on the surveillance of the exposure of buffalo milkers in contact with both animals and potentially contaminated equipment, pointing attention on the diffusion of antibiotic-resistant Staphylococcus spp. The monitoring was performed for 12 months, allowing the collection of 600 raw milk and buffalo udder surface samples, 192 milking lanes, 400 milking clusters, 160 personal protective equipment (PPEs) and electronic devices surface samples in contact with the workers of four milking parlors located in Southern Italy. The analysis of the milk samples evidenced the highest exposure to the bacteria considered (and mainly to S. aureus) from late winter-spring seasons onward. The possible risk arising from buffalo udder, milking clusters, and lines were instead considered rather stable along the entire period of sampling. The PPEs turned out to be a source of contamination for milkers mainly during the spring and summer periods. The analysis for oxacillin/methicillin resistance revealed in all the farms enrolled an overall amount of 37.5% of Staphylococci strains (belonging to S. aureus, S. haemolyticus, S. pseudintermedius, S. chromogenes species) resistant both to methicillin and oxacillin. The investigation demonstrated that the potential transfer of pathogenic bacteria to humans would have a better chance to occur at milk resumption time (since late winter-spring onward) when the number of animals to be milked is greater and the activity in the milking parlor is more challenging. At the same time, the findings seem to point out that the potential risk may be worsened by a significant presence of oxacillin/methicillin-resistant Staphylococci, potentially resulting from irrational use of antibiotics.


Asunto(s)
Staphylococcus aureus Resistente a Meticilina , Infecciones Estafilocócicas , Animales , Antibacterianos/farmacología , Búfalos , Resistencia a la Meticilina , Pruebas de Sensibilidad Microbiana , Leche/microbiología , Oxacilina , Infecciones Estafilocócicas/epidemiología , Infecciones Estafilocócicas/microbiología , Infecciones Estafilocócicas/veterinaria , Staphylococcus , Staphylococcus aureus
3.
Environ Pollut ; 304: 119224, 2022 Jul 01.
Artículo en Inglés | MEDLINE | ID: mdl-35351592

RESUMEN

Legionella species are the etiological agent of Legionnaires' disease, a pathology easily contracted from water circuits and by the inhalation of aerosol droplets. This bacterium mainly proliferates in water: Legionella pneumophila is the most commonly isolated specie in water environments and consequently in water system, although further Legionella species have frequently been isolated, including Legionella dumoffii. The simultaneous presence of the two species in the water system can therefore lead to the simultaneous infection of several people, giving rise to harmful outbreaks. Ultraviolet inactivation of waterborne microorganisms offers a rapid and effective treatment technique and recently is getting more attention mostly to eliminate unsafe level of contamination. To tackle the issue, the inactivation of the two species of Legionella spp., namely L. pneumophila and L. dumoffii, by means of UV-A light emitting diodes (UV-A LED) system is explored. We used a commercially available UV-A LED at 365 nm wavelength, and the UV-A dose is given incrementally to the Legionellae with a concentration of 106 CFU/mL in 0.9% NaCl (aq) solution. In this study, with a UV-A-dose of 1700 mJ/cm2, the log-reduction of 3-log (99.9% inactivation) for L. pneumophila and 2.1-log (99.1% inactivation) for L. dumoffii of the contaminated water are achieved. The Electrical Energy per Order (EEO) is evaluated and showed this system is more economic and efficient in comparison with UV-C and UV-B LEDs. Following the support of this preliminary study with additional tests, aiming to validate the technology, we expect this device may be installed in water plants such as cooling systems or any water purification station in either industrial or home scales to reduce the risk of this infectious disease, preventing consumers' health.


Asunto(s)
Legionella pneumophila , Enfermedad de los Legionarios , Desinfección/métodos , Humanos , Enfermedad de los Legionarios/epidemiología , Enfermedad de los Legionarios/microbiología , Agua , Microbiología del Agua
4.
Environ Pollut ; 265(Pt B): 115010, 2020 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-32570023

RESUMEN

The Coronavirus disease 2019 (COVID-19) is spreading around the world, representing a global pandemic, counting, as of June 5th, 2020, over 6,600,000 confirmed cases and more than 390,000 deaths, with exponentially increasing numbers. In the first half of 2020, because of the widespread of the COVID-19, researches were focused on the monitoring of SARS-CoV-2 in water, wastewater, sludge, air, and on surfaces, in order to assess the risk of contracting the viral infection from contaminated environments. So far, the survival of the novel Coronavirus out of the human body has been reported for short time periods (from hours to few days, in optimized in vitro conditions), mainly because of the need of an host organism which could consent the viral attack, and due to the weak external membrane of the virus. SARS-CoV-2 viral shedding strategies in the environment, either through animate and unanimate matrices, or exploiting the organic matter in water, wastewater, and waste in general, have been discussed in the present article. We concluded that, besides the high infectuousness of the novel Coronavirus, the transmission of the pathogen may be efficiently contained applying the adequate preventive measures (e.g., personal protection equipments, and disinfecting agents), indicated by national and international health authories.


Asunto(s)
Infecciones por Coronavirus , Coronavirus , Exposición a Riesgos Ambientales , Pandemias , Neumonía Viral/epidemiología , Betacoronavirus , COVID-19 , Ambiente , Humanos , SARS-CoV-2
5.
J Bacteriol ; 194(6): 1378-88, 2012 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-22267516

RESUMEN

Rap proteins in Bacillus subtilis regulate the phosphorylation level or the DNA-binding activity of response regulators such as Spo0F, involved in sporulation initiation, or ComA, regulating competence development. Rap proteins can be inhibited by specific peptides generated by the export-import processing pathway of the Phr proteins. Rap proteins have a modular organization comprising an amino-terminal alpha-helical domain connected to a domain formed by six tetratricopeptide repeats (TPR). In this study, the molecular basis for the specificity of the RapA phosphatase for its substrate, phosphorylated Spo0F (Spo0F∼P), and its inhibitor pentapeptide, PhrA, was analyzed in part by generating chimeric proteins with RapC, which targets the DNA-binding domain of ComA, rather than Spo0F∼P, and is inhibited by the PhrC pentapeptide. In vivo analysis of sporulation efficiency or competence-induced gene expression, as well as in vitro biochemical assays, allowed the identification of the amino-terminal 60 amino acids as sufficient to determine Rap specificity for its substrate and the central TPR3 to TPR5 (TPR3-5) repeats as providing binding specificity toward the Phr peptide inhibitor. The results allowed the prediction and testing of key residues in RapA that are essential for PhrA binding and specificity, thus demonstrating how the widespread structural fold of the TPR is highly versatile, using a common interaction mechanism for a variety of functions in eukaryotic and prokaryotic organisms.


Asunto(s)
Bacillus subtilis/metabolismo , Proteínas Bacterianas/metabolismo , Inhibidores Enzimáticos/metabolismo , Fosfoproteínas Fosfatasas/metabolismo , Mapeo de Interacción de Proteínas , Secuencia de Aminoácidos , Bacillus subtilis/crecimiento & desarrollo , Proteínas Bacterianas/genética , Genes Reporteros , Viabilidad Microbiana , Modelos Moleculares , Datos de Secuencia Molecular , Mutagénesis Sitio-Dirigida , Fosfoproteínas Fosfatasas/genética , Unión Proteica , Conformación Proteica , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Recombinación Genética , Esporas Bacterianas/crecimiento & desarrollo , Transcripción Genética , beta-Galactosidasa/genética , beta-Galactosidasa/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA