Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 75
Filtrar
1.
bioRxiv ; 2024 Apr 30.
Artículo en Inglés | MEDLINE | ID: mdl-38746413

RESUMEN

The phosphoinositide-3 kinase (PI3K), a heterodimeric enzyme, plays a pivotal role in cellular metabolism and survival. Its deregulation is associated with major human diseases, particularly cancer. The p85 regulatory subunit of PI3K binds to the catalytic p110 subunit via its C-terminal domains, stabilising it in an inhibited state. Certain Src homology 3 (SH3) domains can activate p110 by binding to the proline-rich (PR) 1 motif located at the N-terminus of p85. However, the mechanism by which this N-terminal interaction activates the C-terminally bound p110 remains elusive. Moreover, the intrinsically poor ligand selectivity of SH3 domains raises the question of how they can control PI3K. Combining structural, biophysical, and functional methods, we demonstrate that the answers to both these unknown issues are linked: PI3K-activating SH3 domains engage in additional "tertiary" interactions with the C-terminal domains of p85, thereby relieving their inhibition of p110. SH3 domains lacking these tertiary interactions may still bind to p85 but cannot activate PI3K. Thus, p85 uses a functional selection mechanism that precludes nonspecific activation rather than nonspecific binding. This separation of binding and activation may provide a general mechanism for how biological activities can be controlled by promiscuous protein-protein interaction domains.

2.
Nucleic Acids Res ; 52(W1): W461-W468, 2024 Jul 05.
Artículo en Inglés | MEDLINE | ID: mdl-38686808

RESUMEN

In drug discovery, the successful optimization of an initial hit compound into a lead molecule requires multiple cycles of chemical modification. Consequently, there is a need to efficiently generate synthesizable chemical libraries to navigate the chemical space surrounding the primary hit. To address this need, we introduce ChemoDOTS, an easy-to-use web server for hit-to-lead chemical optimization freely available at https://chemodots.marseille.inserm.fr/. With this tool, users enter an activated form of the initial hit molecule then choose from automatically detected reactive functions. The server proposes compatible chemical transformations via an ensemble of encoded chemical reactions widely used in the pharmaceutical industry during hit-to-lead optimization. After selection of the desired reactions, all compatible chemical building blocks are automatically coupled to the initial hit to generate a raw chemical library. Post-processing filters can be applied to extract a subset of compounds with specific physicochemical properties. Finally, explicit stereoisomers and tautomers are computed, and a 3D conformer is generated for each molecule. The resulting virtual library is compatible with most docking software for virtual screening campaigns. ChemoDOTS rapidly generates synthetically feasible, hit-focused, large, diverse chemical libraries with finely-tuned physicochemical properties via a user-friendly interface providing a powerful resource for researchers engaged in hit-to-lead optimization.


Asunto(s)
Descubrimiento de Drogas , Internet , Bibliotecas de Moléculas Pequeñas , Programas Informáticos , Bibliotecas de Moléculas Pequeñas/química , Descubrimiento de Drogas/métodos , Diseño de Fármacos
3.
Biochim Biophys Acta Proteins Proteom ; 1872(3): 140989, 2024 05 01.
Artículo en Inglés | MEDLINE | ID: mdl-38142947

RESUMEN

VANGL2 is a core component of the non-canonical Wnt/Planar Cell Polarity signaling pathway that uses its highly conserved carboxy-terminal type 1 PDZ-binding motif (PBM) to bind a variety of PDZ proteins. In this study, we characterize and quantitatively assess the largest VANGL2 PDZome-binding profile documented so far, using orthogonal methods. The results of our holdup approach support VANGL2 interactions with a large panel of both long-recognized and unprecedented PDZ domains. Truncation and point mutation analyses of the VANGL2 PBM establish that, beyond the strict requirement of the P-0 / V521 and P-2 / T519 amino acids, upstream residues, including E518, Q516 and R514 at, respectively, P-3, P-5 and P-7 further contribute to the robustness of VANGL2 interactions with two distinct PDZ domains, SNX27 and SCRIBBLE-PDZ3. In agreement with these data, incremental amino-terminal deletions of the VANGL2 PBM causes its overall affinity to progressively decline. Moreover, the holdup data establish that the PDZome binding repertoire of VANGL2 starts to diverge significantly with the truncation of E518. A structural analysis of the SYNJ2BP-PDZ/VANGL2 interaction with truncated PBMs identifies a major conformational change in the binding direction of the PBM peptide after the P-2 position. Finally, we report that the PDZome binding profile of VANGL2 is dramatically rearranged upon phosphorylation of S517, T519 and S520. Our crystallographic approach illustrates how SYNJ2BP accommodates a S520-phosphorylated PBM peptide through the ideal positioning of two basic residues, K48 and R86. Altogether our data provides a comprehensive view of the VANGL2 PDZ network and how this network specifically responds to the post-translation modification of distinct PBM residues. These findings should prove useful in guiding future functional and molecular studies of the key PCP component VANGL2.


Asunto(s)
Aminoácidos , Polaridad Celular , Fosforilación , Procesamiento Proteico-Postraduccional , Péptidos
4.
Mol Cancer Ther ; 2023 Dec 08.
Artículo en Inglés | MEDLINE | ID: mdl-38064712

RESUMEN

Anticancer nucleosides are effective against solid tumors and hematological malignancies, but typically are prone to nucleoside metabolism resistance mechanisms. Using a nucleoside-specific multiplexed high-throughput screening approach, we discovered 4'-ethynyl-2'-deoxycytidine (EdC) as a third-generation anticancer nucleoside prodrug with preferential activity against diffuse large B-cell lymphoma (DLBCL) and acute lymphoblastic leukemia (ALL). EdC requires deoxycytidine kinase (DCK) phosphorylation for its activity and induced replication fork arrest and accumulation of cells in S-phase, indicating it acts as a chain terminator. A 2.1Å co-crystal structure of DCK bound to EdC and UDP reveals how the rigid 4'-alkyne of EdC fits within the active site of DCK. Remarkably, EdC was resistant to cytidine deamination and SAMHD1 metabolism mechanisms and exhibited higher potency against ALL compared to FDA approved nelarabine. Finally, EdC was highly effective against DLBCL tumors and B-ALL in vivo. These data characterize EdC as a pre-clinical nucleoside prodrug candidate for DLBCL and ALL.

5.
Biophys J ; 122(21): 4135-4143, 2023 11 07.
Artículo en Inglés | MEDLINE | ID: mdl-37731243

RESUMEN

Lysophospholipids (lysoPLs) are crucial metabolites involved in various physiological and pathological cellular processes. Understanding their binding interactions, particularly with human serum albumin (HSA), is essential due to their role in regulating lysoPLs-induced cytotoxicity. However, the precise mechanism of lysoPLs binding to HSA remains elusive. In this study, we employed fluorescence quenching and optical interferometry assays to demonstrate direct binding between lysophosphatidylcholine (LPC) and HSA (KD = 25 µM). Furthermore, we determined crystal structures of HSA in complex with LPC, both in the absence and the presence of the endogenous fatty acid myristate (14:0). The crystal structure of binary HSA:LPC revealed that six LPC molecules are bound to HSA at the primary fatty acid binding sites. Interestingly, the ternary HSA:Myr:LPC structure demonstrated the continued binding of three LPC molecules to HSA at binding sites 1, 3, and 5 in the presence of myristate. These findings support HSA's role as a carrier protein for lysoPLs in blood plasma and provide valuable insights into the structural basis of their binding mechanisms.


Asunto(s)
Lisofosfatidilcolinas , Albúmina Sérica Humana , Humanos , Albúmina Sérica Humana/química , Albúmina Sérica Humana/metabolismo , Albúmina Sérica/química , Unión Proteica , Miristatos , Modelos Moleculares , Ácidos Grasos/metabolismo
6.
EBioMedicine ; 95: 104752, 2023 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-37572644

RESUMEN

BACKGROUND: Pharmacological synergisms are an attractive anticancer strategy. However, with more than 5000 approved-drugs and compounds in clinical development, identifying synergistic treatments represents a major challenge. METHODS: High-throughput screening was combined with target deconvolution and functional genomics to reveal targetable vulnerabilities in glioblastoma. The role of the top gene hit was investigated by RNA interference, transcriptomics and immunohistochemistry in glioblastoma patient samples. Drug combination screen using a custom-made library of 88 compounds in association with six inhibitors of the identified glioblastoma vulnerabilities was performed to unveil pharmacological synergisms. Glioblastoma 3D spheroid, organotypic ex vivo and syngeneic orthotopic mouse models were used to validate synergistic treatments. FINDINGS: Nine targetable vulnerabilities were identified in glioblastoma and the top gene hit RRM1 was validated as an independent prognostic factor. The associations of CHK1/MEK and AURKA/BET inhibitors were identified as the most potent amongst 528 tested pairwise drug combinations and their efficacy was validated in 3D spheroid models. The high synergism of AURKA/BET dual inhibition was confirmed in ex vivo and in vivo glioblastoma models, without detectable toxicity. INTERPRETATION: Our work provides strong pre-clinical evidence of the efficacy of AURKA/BET inhibitor combination in glioblastoma and opens new therapeutic avenues for this unmet medical need. Besides, we established the proof-of-concept of a stepwise approach aiming at exploiting drug poly-pharmacology to unveil druggable cancer vulnerabilities and to fast-track the identification of synergistic combinations against refractory cancers. FUNDING: This study was funded by institutional grants and charities.


Asunto(s)
Antineoplásicos , Glioblastoma , Animales , Ratones , Glioblastoma/tratamiento farmacológico , Glioblastoma/genética , Aurora Quinasa A , Sinergismo Farmacológico , Línea Celular Tumoral , Antineoplásicos/farmacología , Combinación de Medicamentos
7.
Nat Commun ; 14(1): 3079, 2023 05 29.
Artículo en Inglés | MEDLINE | ID: mdl-37248212

RESUMEN

Cancer cells utilize the main de novo pathway and the alternative salvage pathway for deoxyribonucleotide biosynthesis to achieve adequate nucleotide pools. Deoxycytidine kinase is the rate-limiting enzyme of the salvage pathway and it has recently emerged as a target for anti-proliferative therapies for cancers where it is essential. Here, we present the development of a potent inhibitor applying an iterative multidisciplinary approach, which relies on computational design coupled with experimental evaluations. This strategy allows an acceleration of the hit-to-lead process by gradually implementing key chemical modifications to increase affinity and activity. Our lead compound, OR0642, is more than 1000 times more potent than its initial parent compound, masitinib, previously identified from a drug repositioning approach. OR0642 in combination with a physiological inhibitor of the de novo pathway doubled the survival rate in a human T-cell acute lymphoblastic leukemia patient-derived xenograft mouse model, demonstrating the proof-of-concept of this drug design strategy.


Asunto(s)
Reposicionamiento de Medicamentos , Leucemia-Linfoma Linfoblástico de Células Precursoras , Ratones , Humanos , Animales , Leucemia-Linfoma Linfoblástico de Células Precursoras/tratamiento farmacológico , Nucleótidos , Diseño de Fármacos , Modelos Animales de Enfermedad
8.
J Med Chem ; 66(7): 4633-4658, 2023 04 13.
Artículo en Inglés | MEDLINE | ID: mdl-36939673

RESUMEN

The rapid identification of early hits by fragment-based approaches and subsequent hit-to-lead optimization represents a challenge for drug discovery. To address this challenge, we created a strategy called "DOTS" that combines molecular dynamic simulations, computer-based library design (chemoDOTS) with encoded medicinal chemistry reactions, constrained docking, and automated compound evaluation. To validate its utility, we applied our DOTS strategy to the challenging target syntenin, a PDZ domain containing protein and oncology target. Herein, we describe the creation of a "best-in-class" sub-micromolar small molecule inhibitor for the second PDZ domain of syntenin validated in cancer cell assays. Key to the success of our DOTS approach was the integration of protein conformational sampling during hit identification stage and the synthetic feasibility ranking of the designed compounds throughout the optimization process. This approach can be broadly applied to other protein targets with known 3D structures to rapidly identify and optimize compounds as chemical probes and therapeutic candidates.


Asunto(s)
Dominios PDZ , Sinteninas , Descubrimiento de Drogas , Sindecanos/metabolismo
9.
Front Immunol ; 13: 899068, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35795660

RESUMEN

Immunotherapies targeting the "don't eat me" myeloid checkpoint constituted by CD47 SIRPα interaction have promising clinical potential but are limited by toxicities associated with the destruction of non-tumor cells. These dose-limiting toxicities demonstrate the need to highlight the mechanisms of anti-CD47-SIRPα therapy effects on non-tumor CD47-bearing cells. Given the increased incidence of lymphopenia in patients receiving anti-CD47 antibodies and the strong ADCC (antibody-dependent cellular cytotoxicity) effector function of polymorphonuclear cells (PMNs), we investigated the behavior of primary PMNs cocultured with primary T cells in the presence of anti-CD47 mAbs. PMNs killed T cells in a CD47-mAb-dependent manner and at a remarkably potent PMN to T cell ratio of 1:1. The observed cytotoxicity was produced by a novel combination of both trogocytosis and a strong respiratory burst induced by classical ADCC and CD47-SIRPα checkpoint blockade. The complex effect of the CD47 blocking mAb could be recapitulated by combining its individual mechanistic elements: ADCC, SIRPα blockade, and ROS induction. Although previous studies had concluded that disruption of SIRPα signaling in PMNs was limited to trogocytosis-specific cytotoxicity, our results suggest that SIRPα also tightly controls activation of NADPH oxidase, a function demonstrated during differentiation of immature PMNs but not so far in mature PMNs. Together, our results highlight the need to integrate PMNs in the development of molecules targeting the CD47-SIRPα immune checkpoint and to design agents able to enhance myeloid cell function while limiting adverse effects on healthy cells able to participate in the anti-tumor immune response.


Asunto(s)
Antígenos de Diferenciación , Antígeno CD47 , NADPH Oxidasas , Neoplasias , Receptores Inmunológicos , Linfocitos T , Trogocitosis , Anticuerpos Monoclonales/farmacología , Citotoxicidad Celular Dependiente de Anticuerpos , Antígenos de Diferenciación/inmunología , Antígeno CD47/inmunología , Activación Enzimática , Humanos , Recuento de Linfocitos , NADPH Oxidasas/inmunología , NADPH Oxidasas/metabolismo , Neoplasias/inmunología , Neoplasias/terapia , Receptores Inmunológicos/inmunología , Linfocitos T/inmunología , Trogocitosis/inmunología
10.
ACS Chem Biol ; 17(5): 1061-1072, 2022 05 20.
Artículo en Inglés | MEDLINE | ID: mdl-35483008

RESUMEN

Colorectal cancer (CRC), the second cause of death due to cancer worldwide, is a major public health issue. The discovery of new therapeutic targets is thus essential. Pseudokinase PTK7 intervenes in the regulation of the Wnt/ß-catenin pathway signaling, in part, through a kinase domain-dependent interaction with the ß-catenin protein. PTK7 is overexpressed in CRC, an event associated with metastatic development and reduced survival of nonmetastatic patients. In addition, numerous alterations have been identified in CRC inducing constitutive activation of the Wnt/ß-catenin pathway signaling through ß-catenin accumulation. Thus, targeting the PTK7/ß-catenin interaction could be of interest for future drug development. We have developed a NanoBRET screening assay recapitulating the interaction between PTK7 and ß-catenin to identify compounds able to disrupt this protein-protein interaction. A high-throughput screening allowed us to identify small-molecule inhibitors targeting the Wnt pathway signaling and inducing antiproliferative and antitumor effects in vitro in CRC cells harboring ß-catenin or adenomatous polyposis coli (APC) mutations. Thus, inhibition of the PTK7/ß-catenin interaction could represent a new therapeutic strategy to inhibit cell growth dependent on the Wnt signaling pathway. Moreover, despite a lack of enzymatic activity of its tyrosine kinase domain, targeting the PTK7 kinase domain-dependent functions appears to be of interest for further therapeutic development.


Asunto(s)
Neoplasias Colorrectales , Vía de Señalización Wnt , Moléculas de Adhesión Celular , Proliferación Celular , Neoplasias Colorrectales/genética , Humanos , Mutación , Proteínas Tirosina Quinasas Receptoras/genética , Proteínas Tirosina Quinasas Receptoras/metabolismo , Proteínas Tirosina Quinasas Receptoras/farmacología , Vía de Señalización Wnt/genética , beta Catenina/metabolismo
11.
J Med Chem ; 65(7): 5660-5674, 2022 04 14.
Artículo en Inglés | MEDLINE | ID: mdl-35348328

RESUMEN

Differentially screening the Fr-PPIChem chemical library on the bromodomain and extra-terminal (BET) BRD4-BDII versus -BDI bromodomains led to the discovery of a BDII-selective tetrahydropyridothienopyrimidinone (THPTP)-based compound. Structure-activity relationship (SAR) and hit-to-lead approaches allowed us to develop CRCM5484, a potent inhibitor of BET proteins with a preferential and 475-fold selectivity for the second bromodomain of the BRD3 protein (BRD3-BDII) over its first bromodomain (BRD3-BDI). Its very low activity was demonstrated in various cell-based assays, corresponding with recent data describing other selective BDII compounds. However, screening on a drug sensitivity and resistance-profiling platform revealed its ability to modulate the anti-leukemic activity in combination with various FDA-approved and/or in-development drugs in a cell- and context-dependent differential manner. Altogether, the results confirm the originality of the THPTP molecular mode of action in the bromodomain (BD) cavity and its potential as a starting scaffold for the development of potent and selective bromodomain inhibitors.


Asunto(s)
Proteínas Nucleares , Factores de Transcripción , Proteínas de Ciclo Celular , Dominios Proteicos , Bibliotecas de Moléculas Pequeñas/química , Relación Estructura-Actividad
12.
J Environ Manage ; 302(Pt A): 114048, 2022 Jan 15.
Artículo en Inglés | MEDLINE | ID: mdl-34872181

RESUMEN

Low emission zones (LEZs) aiming at improving the air quality in urban areas have been implemented in many European cities. However, studies are limited in evaluating the effects of LEZ, and most of which used simple methods. In this study, a general additive mixed model was utilized to account for confounders in the atmosphere and validate the effects of LEZ on PM10 and NO2 concentrations in two German cities. In addition, the effects of LEZ on elemental carbon (EC) and total carbon (TC) in Berlin were also evaluated. The LEZ effects were estimated after taking into account air pollutant concentrations at a reference site located in the regional background, and adjusting for hour of the week, public holidays, season, and wind direction. The LEZ in Berlin, and the LEZ in combination with the heavy-duty vehicle (HDV) transit ban in Munich significantly reduced the PM10 concentrations, at both traffic sites (TS) and urban background sites (UB). The effects were greater in LEZ stage 3 than in LEZ stages 2 and 1. Moreover, compared with PM10, LEZ was more efficient in reducing EC, a component that is considered more toxic than PM10 mass. In contrast, the LEZ had no consistent effect on NO2 levels: no effects were observed in Berlin; in Munich, the combination of the LEZ and the HDV transit ban reduced NO2 at UB site in LEZ stage 1, but without further reductions in subsequent stages of the LEZ. Overall, our study indicated that LEZs, which target the major primary air pollution source in the highly populated city center could be an effective way to improve urban air quality such as PM mass concentration and EC level.


Asunto(s)
Contaminación del Aire , Emisiones de Vehículos , Contaminación del Aire/prevención & control , Berlin , Monitoreo del Ambiente , Alemania , Emisiones de Vehículos/análisis
14.
Eur J Med Chem ; 223: 113601, 2021 Nov 05.
Artículo en Inglés | MEDLINE | ID: mdl-34153575

RESUMEN

Syntenin stimulates exosome production and its expression is upregulated in many cancers and implicated in the spread of metastatic tumor. These effects are supported by syntenin PDZ domains interacting with syndecans. We therefore aimed to develop, through a fragment-based drug design approach, novel inhibitors targeting syntenin-syndecan interactions. We describe here the optimization of a fragment, 'hit' C58, identified by in vitro screening of a PDZ-focused fragment library, which binds specifically to the syntenin-PDZ2 domain at the same binding site as the syndecan-2 peptide. X-ray crystallographic structures and computational docking were used to guide our optimization process and lead to compounds 45 and 57 (IC50 = 33 µM and 47 µM; respectively), two representatives of syntenin-syndecan interactions inhibitors, that selectively affect the syntenin-exosome release. These findings demonstrate that it is possible to identify small molecules inhibiting syntenin-syndecan interaction and exosome release that may be useful for cancer therapy.


Asunto(s)
Aminoácidos/farmacología , Antineoplásicos/farmacología , Derivados del Benceno/farmacología , Exosomas/metabolismo , Sinteninas/metabolismo , Aminoácidos/síntesis química , Aminoácidos/metabolismo , Antineoplásicos/síntesis química , Antineoplásicos/metabolismo , Derivados del Benceno/síntesis química , Derivados del Benceno/metabolismo , Diseño de Fármacos , Humanos , Células MCF-7 , Simulación del Acoplamiento Molecular , Estructura Molecular , Dominios PDZ , Unión Proteica/efectos de los fármacos , Bibliotecas de Moléculas Pequeñas/síntesis química , Bibliotecas de Moléculas Pequeñas/metabolismo , Bibliotecas de Moléculas Pequeñas/farmacología , Relación Estructura-Actividad , Sindecanos/metabolismo , Sinteninas/química
15.
Methods Mol Biol ; 2256: 277-289, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34014528

RESUMEN

PDZ domains, which belong to protein-protein interaction networks, are critical for regulating important biological processes such as scaffolding, trafficking, and signaling cascades. Interfering with PDZ-mediated interactions could affect these numerous biological processes. Thus, PDZ domains have emerged as promising targets to decipher biological phenomena and potentially treat cancer and neurological diseases. In this minireview, we focus on the discovery and design of small molecule inhibitors to modulate PDZ domains. These compounds interfere with endogenous protein partners from the PDZ domain by binding at the protein-protein interface. While peptides or peptidomimetic ligands were described to modulate PDZ domains, the focus of this review is on small organic compounds.


Asunto(s)
Diseño de Fármacos , Descubrimiento de Drogas , Dominios PDZ , Peptidomiméticos/farmacología , Dominios y Motivos de Interacción de Proteínas , Proteínas/antagonistas & inhibidores , Bibliotecas de Moléculas Pequeñas/farmacología , Animales , Humanos , Proteínas/metabolismo
16.
Biochem J ; 478(8): 1525-1545, 2021 04 30.
Artículo en Inglés | MEDLINE | ID: mdl-33787846

RESUMEN

The Nef protein of human and simian immunodeficiency viruses boosts viral pathogenicity through its interactions with host cell proteins. By combining the polyvalency of its large unstructured regions with the binding selectivity and strength of its folded core domain, Nef can associate with many different host cell proteins, thereby disrupting their functions. For example, the combination of a linear proline-rich motif and hydrophobic core domain surface allows Nef to bind tightly and specifically to SH3 domains of Src family kinases. We investigated whether the interplay between Nef's flexible regions and its core domain could allosterically influence ligand selection. We found that the flexible regions can associate with the core domain in different ways, producing distinct conformational states that alter the way in which Nef selects for SH3 domains and exposes some of its binding motifs. The ensuing crosstalk between ligands might promote functionally coherent Nef-bound protein ensembles by synergizing certain subsets of ligands while excluding others. We also combined proteomic and bioinformatics analyses to identify human proteins that select SH3 domains in the same way as Nef. We found that only 3% of clones from a whole-human fetal library displayed Nef-like SH3 selectivity. However, in most cases, this selectivity appears to be achieved by a canonical linear interaction rather than by a Nef-like 'tertiary' interaction. Our analysis supports the contention that Nef's mode of hijacking SH3 domains is a virus-specific adaptation with no or very few cellular counterparts. Thus, the Nef tertiary binding surface is a promising virus-specific drug target.


Asunto(s)
VIH-1/metabolismo , Ribonucleoproteína Heterogénea-Nuclear Grupo K/química , Proteínas Nucleares/química , Proteínas Proto-Oncogénicas c-fyn/química , Productos del Gen nef del Virus de la Inmunodeficiencia Humana/química , Sitio Alostérico , Secuencia de Aminoácidos , Clonación Molecular , Biología Computacional/métodos , Cristalografía por Rayos X , Escherichia coli/genética , Escherichia coli/metabolismo , Feto , Expresión Génica , Vectores Genéticos/química , Vectores Genéticos/metabolismo , VIH-1/genética , Ribonucleoproteína Heterogénea-Nuclear Grupo K/genética , Ribonucleoproteína Heterogénea-Nuclear Grupo K/metabolismo , Interacciones Huésped-Patógeno/genética , Humanos , Ligandos , Simulación de Dinámica Molecular , Proteínas Nucleares/genética , Proteínas Nucleares/metabolismo , Unión Proteica , Conformación Proteica en Hélice alfa , Conformación Proteica en Lámina beta , Dominios y Motivos de Interacción de Proteínas , Estructura Terciaria de Proteína , Proteínas Proto-Oncogénicas c-fyn/genética , Proteínas Proto-Oncogénicas c-fyn/metabolismo , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Alineación de Secuencia , Homología de Secuencia de Aminoácido , Termodinámica , Productos del Gen nef del Virus de la Inmunodeficiencia Humana/genética , Productos del Gen nef del Virus de la Inmunodeficiencia Humana/metabolismo
17.
Biol Cell ; 113(6): 272-280, 2021 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-33554340

RESUMEN

Cancer is a multi-step disease where an initial tumour progresses through critical steps shaping, in most cases, life-threatening secondary foci called metastases. The oncogenic cascade involves genetic, epigenetic, signalling pathways, intracellular trafficking and/or metabolic alterations within cancer cells. In addition, pre-malignant and malignant cells orchestrate complex and dynamic interactions with non-malignant cells and acellular matricial components or secreted factors within the tumour microenvironment that is instrumental in the progression of the disease. As our aptitude to effectively treat cancer mostly depends on our ability to decipher, properly diagnose and impede cancer progression and metastasis formation, full characterisation of molecular complexes and cellular processes at play along the metastasis cascade is crucial. For many years, the scientific community lacked adapted imaging and molecular technologies to accurately dissect, at the highest resolution possible, tumour and stromal cells behaviour within their natural microenvironment. In that context, the NANOTUMOR consortium is a French national multi-disciplinary workforce which aims at a providing a multi-scale characterisation of the oncogenic cascade, from the atomic level to the dynamic organisation of the cell in response to genetic mutations, environmental changes or epigenetic modifications. Ultimately, this program aims at identifying new therapeutic targets using innovative drug design.


Asunto(s)
Bases de Datos como Asunto , Neoplasias/patología , Humanos
18.
Mol Oncol ; 14(12): 3083-3099, 2020 12.
Artículo en Inglés | MEDLINE | ID: mdl-33021050

RESUMEN

The concept of polypharmacology involves the interaction of drug molecules with multiple molecular targets. It provides a unique opportunity for the repurposing of already-approved drugs to target key factors involved in human diseases. Herein, we used an in silico target prediction algorithm to investigate the mechanism of action of mebendazole, an antihelminthic drug, currently repurposed in the treatment of brain tumors. First, we confirmed that mebendazole decreased the viability of glioblastoma cells in vitro (IC50 values ranging from 288 nm to 2.1 µm). Our in silico approach unveiled 21 putative molecular targets for mebendazole, including 12 proteins significantly upregulated at the gene level in glioblastoma as compared to normal brain tissue (fold change > 1.5; P < 0.0001). Validation experiments were performed on three major kinases involved in cancer biology: ABL1, MAPK1/ERK2, and MAPK14/p38α. Mebendazole could inhibit the activity of these kinases in vitro in a dose-dependent manner, with a high potency against MAPK14 (IC50  = 104 ± 46 nm). Its direct binding to MAPK14 was further validated in vitro, and inhibition of MAPK14 kinase activity was confirmed in live glioblastoma cells. Consistent with biophysical data, molecular modeling suggested that mebendazole was able to bind to the catalytic site of MAPK14. Finally, gene silencing demonstrated that MAPK14 is involved in glioblastoma tumor spheroid growth and response to mebendazole treatment. This study thus highlighted the role of MAPK14 in the anticancer mechanism of action of mebendazole and provides further rationale for the pharmacological targeting of MAPK14 in brain tumors. It also opens new avenues for the development of novel MAPK14/p38α inhibitors to treat human diseases.


Asunto(s)
Simulación por Computador , Mebendazol/uso terapéutico , Proteína Quinasa 14 Activada por Mitógenos/antagonistas & inhibidores , Terapia Molecular Dirigida , Inhibidores de Proteínas Quinasas/uso terapéutico , Neoplasias Encefálicas/tratamiento farmacológico , Neoplasias Encefálicas/patología , Línea Celular Tumoral , Proliferación Celular/efectos de los fármacos , Supervivencia Celular/efectos de los fármacos , Glioblastoma/tratamiento farmacológico , Glioblastoma/patología , Humanos , Concentración 50 Inhibidora , Mebendazol/química , Mebendazol/farmacología , Proteína Quinasa 14 Activada por Mitógenos/metabolismo , Modelos Moleculares , Inhibidores de Proteínas Quinasas/farmacología
20.
JMIR Res Protoc ; 9(9): e15167, 2020 Sep 15.
Artículo en Inglés | MEDLINE | ID: mdl-32930673

RESUMEN

BACKGROUND: Breast cancer is the most frequent cancer in women in industrialized countries. Lifestyle and environmental factors, particularly endocrine-disrupting pollutants, have been suggested to play a role in breast cancer risk. Current epidemiological studies, although not fully consistent, suggest a positive association of breast cancer risk with exposure to several International Agency for Research on Cancer Group 1 air-pollutant carcinogens, such as particulate matter, polychlorinated biphenyls (PCB), dioxins, Benzo[a]pyrene (BaP), and cadmium. However, epidemiological studies remain scarce and inconsistent. It has been proposed that the menopausal status could modify the relationship between pollutants and breast cancer and that the association varies with hormone receptor status. OBJECTIVE: The XENAIR project will investigate the association of breast cancer risk (overall and by hormone receptor status) with chronic exposure to selected air pollutants, including particulate matter, nitrogen dioxide (NO2), ozone (O3), BaP, dioxins, PCB-153, and cadmium. METHODS: Our research is based on a case-control study nested within the French national E3N cohort of 5222 invasive breast cancer cases identified during follow-up from 1990 to 2011, and 5222 matched controls. A questionnaire was sent to all participants to collect their lifetime residential addresses and information on indoor pollution. We will assess these exposures using complementary models of land-use regression, atmospheric dispersion, and regional chemistry-transport (CHIMERE) models, via a Geographic Information System. Associations with breast cancer risk will be modeled using conditional logistic regression models. We will also study the impact of exposure on DNA methylation and interactions with genetic polymorphisms. Appropriate statistical methods, including Bayesian modeling, principal component analysis, and cluster analysis, will be used to assess the impact of multipollutant exposure. The fraction of breast cancer cases attributable to air pollution will be estimated. RESULTS: The XENAIR project will contribute to current knowledge on the health effects of air pollution and identify and understand environmental modifiable risk factors related to breast cancer risk. CONCLUSIONS: The results will provide relevant evidence to governments and policy-makers to improve effective public health prevention strategies on air pollution. The XENAIR dataset can be used in future efforts to study the effects of exposure to air pollution associated with other chronic conditions. INTERNATIONAL REGISTERED REPORT IDENTIFIER (IRRID): DERR1-10.2196/15167.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...