Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 14 de 14
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
2.
Mol Cancer ; 22(1): 86, 2023 05 20.
Artículo en Inglés | MEDLINE | ID: mdl-37210549

RESUMEN

BACKGROUND: The discovery of functionally relevant KRAS effectors in lung and pancreatic ductal adenocarcinoma (LUAD and PDAC) may yield novel molecular targets or mechanisms amenable to inhibition strategies. Phospholipids availability has been appreciated as a mechanism to modulate KRAS oncogenic potential. Thus, phospholipid transporters may play a functional role in KRAS-driven oncogenesis. Here, we identified and systematically studied the phospholipid transporter PITPNC1 and its controlled network in LUAD and PDAC. METHODS: Genetic modulation of KRAS expression as well as pharmacological inhibition of canonical effectors was completed. PITPNC1 genetic depletion was performed in in vitro and in vivo LUAD and PDAC models. PITPNC1-deficient cells were RNA sequenced, and Gene Ontology and enrichment analyses were applied to the output data. Protein-based biochemical and subcellular localization assays were run to investigate PITPNC1-regulated pathways. A drug repurposing approach was used to predict surrogate PITPNC1 inhibitors that were tested in combination with KRASG12C inhibitors in 2D, 3D, and in vivo models. RESULTS: PITPNC1 was increased in human LUAD and PDAC, and associated with poor patients' survival. PITPNC1 was regulated by KRAS through MEK1/2 and JNK1/2. Functional experiments showed PITPNC1 requirement for cell proliferation, cell cycle progression and tumour growth. Furthermore, PITPNC1 overexpression enhanced lung colonization and liver metastasis. PITPNC1 regulated a transcriptional signature which highly overlapped with that of KRAS, and controlled mTOR localization via enhanced MYC protein stability to prevent autophagy. JAK2 inhibitors were predicted as putative PITPNC1 inhibitors with antiproliferative effect and their combination with KRASG12C inhibitors elicited a substantial anti-tumour effect in LUAD and PDAC. CONCLUSIONS: Our data highlight the functional and clinical relevance of PITPNC1 in LUAD and PDAC. Moreover, PITPNC1 constitutes a new mechanism linking KRAS to MYC, and controls a druggable transcriptional network for combinatorial treatments.


Asunto(s)
Carcinoma Ductal Pancreático , Proteínas de Transporte de Membrana , Neoplasias Pancreáticas , Humanos , Autofagia/genética , Carcinoma Ductal Pancreático/patología , Línea Celular Tumoral , Proliferación Celular/genética , Pulmón/metabolismo , Neoplasias Pancreáticas/patología , Proteínas Proto-Oncogénicas p21(ras)/genética , Proteínas Proto-Oncogénicas p21(ras)/metabolismo , Proteínas de Transporte de Membrana/genética , Proteínas de Transporte de Membrana/metabolismo , Neoplasias Pancreáticas
3.
Clin Cancer Res ; 29(6): 1137-1154, 2023 03 14.
Artículo en Inglés | MEDLINE | ID: mdl-36607777

RESUMEN

PURPOSE: The identification of pancreatic ductal adenocarcinoma (PDAC) dysregulated genes may unveil novel molecular targets entering inhibitory strategies. Laminins are emerging as potential targets in PDAC given their role as diagnostic and prognostic markers. Here, we investigated the cellular, functional, and clinical relevance of LAMC2 and its regulated network, with the ultimate goal of identifying potential therapies. EXPERIMENTAL DESIGN: LAMC2 expression was analyzed in PDAC tissues, a panel of human and mouse cell lines, and a genetically engineered mouse model. Genetic perturbation in 2D, 3D, and in vivo allograft and xenograft models was done. Expression profiling of a LAMC2 network was performed by RNA-sequencing, and publicly available gene expression datasets from experimental and clinical studies examined to query its human relevance. Dual inhibition of pharmacologically targetable LAMC2-regulated effectors was investigated. RESULTS: LAMC2 was consistently upregulated in human and mouse experimental models as well as in human PDAC specimens, and associated with tumor grade and survival. LAMC2 inhibition impaired cell cycle, induced apoptosis, and sensitized PDAC to MEK1/2 inhibitors (MEK1/2i). A LAMC2-regulated network was featured in PDAC, including both classical and quasi-mesenchymal subtypes, and contained downstream effectors transcriptionally shared by the KRAS signaling pathway. LAMC2 regulated a functional FOSL1-AXL axis via AKT phosphorylation. Furthermore, genetic LAMC2 or pharmacological AXL inhibition elicited a synergistic antiproliferative effect in combination with MEK1/2is that was consistent across 2D and 3D human and mouse PDAC models, including primary patient-derived organoids. CONCLUSIONS: LAMC2 is a molecular target in PDAC that regulates a transcriptional network that unveils a dual drug combination for cancer treatment.


Asunto(s)
Carcinoma Ductal Pancreático , Neoplasias Pancreáticas , Animales , Humanos , Ratones , Carcinoma Ductal Pancreático/tratamiento farmacológico , Carcinoma Ductal Pancreático/genética , Carcinoma Ductal Pancreático/metabolismo , Línea Celular Tumoral , Proliferación Celular/genética , Laminina/metabolismo , Neoplasias Pancreáticas/tratamiento farmacológico , Neoplasias Pancreáticas/genética , Neoplasias Pancreáticas/metabolismo , Fosforilación , Transducción de Señal , Neoplasias Pancreáticas
4.
J Invest Dermatol ; 143(2): 305-316.e5, 2023 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-36058299

RESUMEN

Circulating tumor cells are the key link between a primary tumor and distant metastases, but once in the bloodstream, loss of adhesion induces cell death. To identify the mechanisms relevant for melanoma circulating tumor cell survival, we performed RNA sequencing and discovered that detached melanoma cells and isolated melanoma circulating tumor cells rewire lipid metabolism by upregulating fatty acid (FA) transport and FA beta-oxidation‒related genes. In patients with melanoma, high expression of FA transporters and FA beta-oxidation enzymes significantly correlates with reduced progression-free and overall survival. Among the highest expressed regulators in melanoma circulating tumor cells were the carnitine transferases carnitine O-octanoyltransferase and carnitine acetyltransferase, which control the shuttle of peroxisome-derived medium-chain FAs toward mitochondria to fuel mitochondrial FA beta-oxidation. Knockdown of carnitine O-octanoyltransferase or carnitine acetyltransferase and short-term treatment with peroxisomal or mitochondrial FA beta-oxidation inhibitors thioridazine or ranolazine suppressed melanoma metastasis in mice. Carnitine O-octanoyltransferase and carnitine acetyltransferase depletion could be rescued by medium-chain FA supplementation, indicating that the peroxisomal supply of FAs is crucial for the survival of nonadherent melanoma cells. Our study identifies targeting the FA-based cross-talk between peroxisomes and mitochondria as a potential therapeutic opportunity to challenge melanoma progression. Moreover, the discovery of the antimetastatic activity of the Food and Drug Administration‒approved drug ranolazine carries translational potential.


Asunto(s)
Melanoma , Células Neoplásicas Circulantes , Ratones , Animales , Carnitina O-Acetiltransferasa/genética , Carnitina O-Acetiltransferasa/metabolismo , Carnitina Aciltransferasas/genética , Carnitina Aciltransferasas/metabolismo , Ranolazina , Oxidación-Reducción , Ácidos Grasos/metabolismo , Melanoma/tratamiento farmacológico , Carnitina/metabolismo
5.
Cancer Discov ; 12(5): 1356-1377, 2022 05 02.
Artículo en Inglés | MEDLINE | ID: mdl-35191482

RESUMEN

ABSTRACT: Locoregional failure (LRF) in patients with breast cancer post-surgery and post-irradiation is linked to a dismal prognosis. In a refined new model, we identified ectonucleotide pyrophosphatase/phosphodiesterase 1/CD203a (ENPP1) to be closely associated with LRF. ENPP1hi circulating tumor cells (CTC) contribute to relapse by a self-seeding mechanism. This process requires the infiltration of polymorphonuclear myeloid-derived suppressor cells and neutrophil extracellular trap (NET) formation. Genetic and pharmacologic ENPP1 inhibition or NET blockade extends relapse-free survival. Furthermore, in combination with fractionated irradiation, ENPP1 abrogation obliterates LRF. Mechanistically, ENPP1-generated adenosinergic metabolites enhance haptoglobin (HP) expression. This inflammatory mediator elicits myeloid invasiveness and promotes NET formation. Accordingly, a significant increase in ENPP1 and NET formation is detected in relapsed human breast cancer tumors. Moreover, high ENPP1 or HP levels are associated with poor prognosis. These findings unveil the ENPP1/HP axis as an unanticipated mechanism exploited by tumor cells linking inflammation to immune remodeling favoring local relapse. SIGNIFICANCE: CTC exploit the ENPP1/HP axis to promote local recurrence post-surgery and post-irradiation by subduing myeloid suppressor cells in breast tumors. Blocking this axis impairs tumor engraftment, impedes immunosuppression, and obliterates NET formation, unveiling new opportunities for therapeutic intervention to eradicate local relapse and ameliorate patient survival. This article is highlighted in the In This Issue feature, p. 1171.


Asunto(s)
Neoplasias de la Mama , Células Supresoras de Origen Mieloide , Neoplasias de la Mama/genética , Neoplasias de la Mama/metabolismo , Neoplasias de la Mama/radioterapia , Femenino , Haptoglobinas , Humanos , Células Supresoras de Origen Mieloide/metabolismo , Recurrencia Local de Neoplasia/genética , Hidrolasas Diéster Fosfóricas/genética , Hidrolasas Diéster Fosfóricas/metabolismo , Pirofosfatasas/genética , Pirofosfatasas/metabolismo
6.
Cancer Lett ; 529: 70-84, 2022 03 31.
Artículo en Inglés | MEDLINE | ID: mdl-34971753

RESUMEN

Myeloid-derived suppressor cells (MDSCs) play a major role in cancer progression. In this study, we investigated the mechanisms by which complement C5a increases the capacity of polymorphonuclear MDSCs (PMN-MDSCs) to promote tumor growth and metastatic spread. Stimulation of PMN-MDSCs with C5a favored the invasion of cancer cells via a process dependent on the formation of neutrophil extracellular traps (NETs). NETosis was dependent on the production of high mobility group box 1 (HMGB1) by cancer cells. Moreover, C5a induced the surface expression of the HMGB1 receptors TLR4 and RAGE in PMN-MDSCs. In a mouse lung metastasis model, inhibition of C5a, C5a receptor-1 (C5aR1) or NETosis reduced the number of circulating-tumor cells (CTCs) and the metastatic burden. In support of the translational relevance of these findings, C5a was able to stimulate migration and NETosis in PMN-MDSCs obtained from lung cancer patients. Furthermore, myeloperoxidase (MPO)-DNA complexes, as markers of NETosis, were elevated in lung cancer patients and significantly correlated with C5a levels. In conclusion, C5a induces the formation of NETs from PMN-MDSCs in the presence of cancer cells, which may facilitate cancer cell dissemination and metastasis.


Asunto(s)
Complemento C5a/inmunología , Trampas Extracelulares/inmunología , Células Supresoras de Origen Mieloide/inmunología , Células Supresoras de Origen Mieloide/metabolismo , Neutrófilos/inmunología , Neutrófilos/metabolismo , Animales , Línea Celular Tumoral , Modelos Animales de Enfermedad , Xenoinjertos , Humanos , Inmunofenotipificación , Ratones , Modelos Biológicos , Metástasis de la Neoplasia , Neoplasias/etiología , Neoplasias/metabolismo , Neoplasias/patología , Receptor de Anafilatoxina C5a/metabolismo
7.
Cancers (Basel) ; 12(11)2020 Oct 28.
Artículo en Inglés | MEDLINE | ID: mdl-33126649

RESUMEN

The use of PD-1/PD-L1 checkpoint inhibitors in advanced NSCLC is associated with longer survival. However, many patients do not benefit from PD-1/PD-L1 blockade, largely because of immunosuppression. New immunotherapy-based combinations are under investigation in an attempt to improve outcomes. Id1 (inhibitor of differentiation 1) is involved in immunosuppression. In this study, we explored the potential synergistic effect of the combination of Id1 inhibition and pharmacological PD-L1 blockade in three different syngeneic murine KRAS-mutant lung adenocarcinoma models. TCGA analysis demonstrated a negative and statistically significant correlation between PD-L1 and Id1 expression levels. This observation was confirmed in vitro in human and murine KRAS-driven lung cancer cell lines. In vivo experiments in KRAS-mutant syngeneic and metastatic murine lung adenocarcinoma models showed that the combined blockade targeting Id1 and PD-1 was more effective than each treatment alone in terms of tumor growth impairment and overall survival improvement. Mechanistically, multiplex quantification of CD3+/CD4+/CD8+ T cells and flow cytometry analysis showed that combined therapy favors tumor infiltration by CD8+ T cells, whilst in vivo CD8+ T cell depletion led to tumor growth restoration. Co-culture assays using CD8+ cells and tumor cells showed that T cells present a higher antitumor effect when tumor cells lack Id1 expression. These findings highlight that Id1 blockade may contribute to a significant immune enhancement of antitumor efficacy of PD-1 inhibitors by increasing PD-L1 expression and harnessing tumor infiltration of CD8+ T lymphocytes.

8.
Cancers (Basel) ; 12(7)2020 Jul 14.
Artículo en Inglés | MEDLINE | ID: mdl-32674353

RESUMEN

Due to chemoresistance and a high propensity to form lung metastasis, survival rates in pediatric osteosarcoma (OS) are poor. With the aim to improve anticancer activity in pediatric OS, a multidrug nanomedicine was designed using the alkyl-lysophospholipid edelfosine (EF) co-assembled with squalenoyl-gemcitabine (SQ-Gem) to form nanoassemblies (NAs) of 50 nm. SQ-Gem/EF NAs modified the total Gem pool exposure in the blood stream in comparison with SQ-Gem NAs, which correlated with a better tolerability and a lower toxicity profile after multiple intravenous administrations in mice. For in vivo preclinical assessment in an orthotopic OS tumor model, P1.15 OS cells were intratibially injected in athymic nude mice. SQ-Gem/EF NAs considerably decreased the primary tumor growth kinetics and reduced the number of lung metastases. Our findings support the candidature of this anticancer nanomedicine as a potential pediatric OS therapy.

9.
Am J Respir Crit Care Med ; 200(7): 888-899, 2019 10 01.
Artículo en Inglés | MEDLINE | ID: mdl-31166114

RESUMEN

Rationale: The characterization of new genetic alterations is essential to assign effective personalized therapies in non-small cell lung cancer (NSCLC). Furthermore, finding stratification biomarkers is essential for successful personalized therapies. Molecular alterations of YES1, a member of the SRC (proto-oncogene tyrosine-protein kinase Src) family kinases (SFKs), can be found in a significant subset of patients with lung cancer.Objectives: To evaluate YES1 (v-YES-1 Yamaguchi sarcoma viral oncogene homolog 1) genetic alteration as a therapeutic target and predictive biomarker of response to dasatinib in NSCLC.Methods: Functional significance was evaluated by in vivo models of NSCLC and metastasis and patient-derived xenografts. The efficacy of pharmacological and genetic (CRISPR [clustered regularly interspaced short palindromic repeats]/Cas9 [CRISPR-associated protein 9]) YES1 abrogation was also evaluated. In vitro functional assays for signaling, survival, and invasion were also performed. The association between YES1 alterations and prognosis was evaluated in clinical samples.Measurements and Main Results: We demonstrated that YES1 is essential for NSCLC carcinogenesis. Furthermore, YES1 overexpression induced metastatic spread in preclinical in vivo models. YES1 genetic depletion by CRISPR/Cas9 technology significantly reduced tumor growth and metastasis. YES1 effects were mainly driven by mTOR (mammalian target of rapamycin) signaling. Interestingly, cell lines and patient-derived xenograft models with YES1 gene amplifications presented a high sensitivity to dasatinib, an SFK inhibitor, pointing out YES1 status as a stratification biomarker for dasatinib response. Moreover, high YES1 protein expression was an independent predictor for poor prognosis in patients with lung cancer.Conclusions: YES1 is a promising therapeutic target in lung cancer. Our results provide support for the clinical evaluation of dasatinib treatment in a selected subset of patients using YES1 status as predictive biomarker for therapy.


Asunto(s)
Antineoplásicos/farmacología , Carcinoma de Pulmón de Células no Pequeñas/genética , Proliferación Celular/genética , Dasatinib/farmacología , Neoplasias Pulmonares/genética , Proteínas Proto-Oncogénicas c-yes/genética , Células A549 , Animales , Antineoplásicos/uso terapéutico , Sistemas CRISPR-Cas , Carcinoma de Pulmón de Células no Pequeñas/tratamiento farmacológico , Línea Celular Tumoral , Proliferación Celular/efectos de los fármacos , Dasatinib/uso terapéutico , Amplificación de Genes , Técnicas de Silenciamiento del Gen , Técnicas de Inactivación de Genes , Humanos , Neoplasias Pulmonares/tratamiento farmacológico , Ratones , Pronóstico , Proto-Oncogenes Mas , Proteínas Proto-Oncogénicas c-yes/antagonistas & inhibidores , Transducción de Señal , Serina-Treonina Quinasas TOR/metabolismo , Ensayos Antitumor por Modelo de Xenoinjerto
10.
Am J Respir Crit Care Med ; 197(9): 1164-1176, 2018 05 01.
Artículo en Inglés | MEDLINE | ID: mdl-29327939

RESUMEN

RATIONALE: C5aR1 (CD88), a receptor for complement anaphylatoxin C5a, is a potent immune mediator. Its impact on malignant growth and dissemination of non-small cell lung cancer cells is poorly understood. OBJECTIVES: To investigate the contribution of the C5a/C5aR1 axis to the malignant phenotype of non-small cell lung cancer cells, particularly in skeletal colonization, a preferential lung metastasis site. METHODS: Association between C5aR1 expression and clinical outcome was assessed in silico and validated by immunohistochemistry. Functional significance was evaluated by lentiviral gene silencing and ligand l-aptamer inhibition in in vivo models of lung cancer bone metastasis. In vitro functional assays for signaling, migration, invasion, metalloprotease activity, and osteoclastogenesis were also performed. MEASUREMENTS AND MAIN RESULTS: High levels of C5aR1 in human lung tumors were significantly associated with shorter recurrence-free survival, overall survival, and bone metastasis. Silencing of C5aR1 in lung cancer cells led to a substantial reduction in skeletal metastatic burden and osteolysis in in vivo models. Furthermore, metalloproteolytic, migratory, and invasive tumor cell activities were modulated in vitro by C5aR1 stimulation or gene silencing. l-Aptamer blockade or C5aR1 silencing significantly reduced the osseous metastatic activity of lung cancer cells in vivo. This effect was associated with decreased osteoclastogenic activity in vitro and was rescued by the exogenous addition of the chemokine CXCL16. CONCLUSIONS: Disruption of C5aR1 signaling in lung cancer cells abrogates their tumor-associated osteoclastogenic activity, impairing osseous colonization. This study unveils the role played by the C5a/C5aR1 axis in lung cancer dissemination and supports its potential use as a novel therapeutic target.


Asunto(s)
Carcinoma de Pulmón de Células no Pequeñas/inmunología , Quimiocina CXCL16/inmunología , Neoplasias Pulmonares/complicaciones , Neoplasias Pulmonares/inmunología , Metástasis de la Neoplasia/inmunología , Receptor de Anafilatoxina C5a/inmunología , Transducción de Señal/inmunología , Adulto , Anciano , Anciano de 80 o más Años , Neoplasias Óseas/inmunología , Femenino , Humanos , Masculino , Persona de Mediana Edad
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...