Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 38
Filtrar
Más filtros













Base de datos
Intervalo de año de publicación
1.
Obesity (Silver Spring) ; 32(6): 1187-1197, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38664233

RESUMEN

OBJECTIVE: Weight loss following vertical sleeve gastrectomy (VSG) in youth can range from 10% to 50%. We examined whether there are differences in demographic or metabolic parameters before VSG in youth who achieve above-average weight loss (AAWL) versus below-average weight loss (BAWL) at 1 year post VSG and if youth with BAWL still achieve metabolic health improvements at 1 year post VSG. METHODS: Demographic, anthropometric, and clinical lab data were collected before VSG and at 1, 3, 6, and 12 months after VSG. RESULTS: Forty-three youth with a mean age of 16.9 (SD 1.7) years before VSG were studied; 70% were female, 19% non-Hispanic Black, 58% non-Hispanic White, and 23% mixed/other race. Mean baseline BMI was 51.1 (SD 10.5) kg/m2. Average weight loss was 25.8%. The AAWL group lost 18.6 kg/m2 (35.3%) versus the BAWL group, who lost 8.8 kg/m2 (17.5%). BMI, age, race, sex, and socioeconomic status at baseline were similar between AAWL and BAWL groups; however, the BAWL group had a higher frequency of pre-VSG dysglycemia, steatotic liver disease, and dyslipidemia. At 1 year post VSG, fewer youth in the BAWL group achieved ideal health parameters, and they had less resolution of comorbidities. CONCLUSIONS: The presence of comorbidities before VSG is associated with less weight loss and reduced resolution of metabolic conditions at 1 year post VSG.


Asunto(s)
Índice de Masa Corporal , Gastrectomía , Pérdida de Peso , Humanos , Femenino , Masculino , Adolescente , Gastrectomía/métodos , Gastrectomía/efectos adversos , Resultado del Tratamiento , Obesidad Mórbida/cirugía , Obesidad Infantil/cirugía , Dislipidemias/epidemiología , Cirugía Bariátrica/métodos , Periodo Preoperatorio
2.
Nutrients ; 15(23)2023 Nov 29.
Artículo en Inglés | MEDLINE | ID: mdl-38068816

RESUMEN

Vertical transmission of obesity is a critical contributor to the unabated obesity pandemic and the associated surge in metabolic diseases. Existing experimental models insufficiently recapitulate "human-like" obesity phenotypes, limiting the discovery of how severe obesity in pregnancy instructs vertical transmission of obesity. Here, via utility of thermoneutral housing and obesogenic diet feeding coupled to syngeneic mating of WT obese female and lean male mice on a C57BL/6 background, we present a tractable, more "human-like" approach to specifically investigate how maternal obesity contributes to offspring health. Using this model, we found that maternal obesity decreased neonatal survival, increased offspring adiposity, and accelerated offspring predisposition to obesity and metabolic disease. We also show that severe maternal obesity was sufficient to skew offspring microbiome and create a proinflammatory gestational environment that correlated with inflammatory changes in the offspring in utero and adulthood. Analysis of a human birth cohort study of mothers with and without obesity and their infants was consistent with mouse study findings of maternal inflammation and offspring weight gain propensity. Together, our results show that dietary induction of obesity in female mice coupled to thermoneutral housing can be used for future mechanistic interrogations of obesity and metabolic disease in pregnancy and vertical transmission of pathogenic traits.


Asunto(s)
Enfermedades Metabólicas , Obesidad Materna , Efectos Tardíos de la Exposición Prenatal , Humanos , Femenino , Masculino , Ratones , Embarazo , Animales , Estudios de Cohortes , Vivienda , Dieta Alta en Grasa/efectos adversos , Ratones Endogámicos C57BL , Obesidad/etiología , Obesidad/metabolismo , Enfermedades Metabólicas/etiología
3.
Cell Metab ; 35(11): 1852-1871, 2023 11 07.
Artículo en Inglés | MEDLINE | ID: mdl-37939656

RESUMEN

Metabolic dysfunction-associated steatotic liver disease (MASLD) is an unabated risk factor for end-stage liver diseases with no available therapies. Dysregulated immune responses are critical culprits of MASLD pathogenesis. Independent contributions from either the innate or adaptive arms of the immune system or their unidirectional interplay are commonly studied in MASLD. However, the bidirectional communication between innate and adaptive immune systems and its impact on MASLD remain insufficiently understood. Given that both innate and adaptive immune cells are indispensable for the development and progression of inflammation in MASLD, elucidating pathogenic contributions stemming from the bidirectional interplay between these two arms holds potential for development of novel therapeutics for MASLD. Here, we review the immune cell types and bidirectional pathways that influence the pathogenesis of MASLD and highlight potential pharmacologic approaches to combat MASLD based on current knowledge of this bidirectional crosstalk.


Asunto(s)
Hígado Graso , Enfermedades Metabólicas , Humanos , Hígado Graso/complicaciones , Inflamación , Páncreas , Factores de Riesgo
4.
Mucosal Immunol ; 16(6): 843-858, 2023 12.
Artículo en Inglés | MEDLINE | ID: mdl-37730122

RESUMEN

Influenza virus-induced respiratory pneumonia remains a major public health concern. Obesity, metabolic diseases, and female sex are viewed as independent risk factors for worsened influenza virus-induced lung disease severity. However, lack of experimental models of severe obesity in female mice limits discovery-based studies. Here, via utility of thermoneutral housing (30 °C) and high-fat diet (HFD) feeding, we induced severe obesity and metabolic disease in female C57BL/6 mice and compared their responses to severely obese male C57BL/6 counterparts during influenza virus infection. We show that lean male and female mice have similar lung edema, inflammation, and immune cell infiltration during influenza virus infection. At standard housing conditions, HFD-fed male, but not female, mice exhibit severe obesity, metabolic disease, and exacerbated influenza disease severity. However, combining thermoneutral housing and HFD feeding in female mice induces severe obesity and metabolic disease, which is sufficient to amplify influenza virus-driven disease severity to a level comparable to severely obese male counterparts. Lastly, increased total body weights of male and female mice at time of infection correlated with worsened influenza virus-driven disease severity metrics. Together, our findings confirm the impact of obesity and metabolic disease as key risk factors to influenza disease severity and present a novel mouse experimental model suitable for future mechanistic interrogation of sex, obesity, and metabolic disease traits in influenza virus-driven disease severity.


Asunto(s)
Gripe Humana , Enfermedades Metabólicas , Obesidad Mórbida , Infecciones por Orthomyxoviridae , Orthomyxoviridae , Masculino , Femenino , Animales , Ratones , Humanos , Obesidad Mórbida/complicaciones , Ratones Endogámicos C57BL , Obesidad , Gravedad del Paciente
5.
Cell Rep ; 42(4): 112352, 2023 04 25.
Artículo en Inglés | MEDLINE | ID: mdl-37027297

RESUMEN

Clinical evidence points to a function for B cell-activating factor (BAFF) in pregnancy. However, direct roles for BAFF-axis members in pregnancy have not been examined. Here, via utility of genetically modified mice, we report that BAFF promotes inflammatory responsiveness and increases susceptibility to inflammation-induced preterm birth (PTB). In contrast, we show that the closely related A proliferation-inducing ligand (APRIL) decreases inflammatory responsiveness and susceptibility to PTB. Known BAFF-axis receptors serve a redundant function in signaling BAFF/APRIL presence in pregnancy. Treatment with anti-BAFF/APRIL monoclonal antibodies or BAFF/APRIL recombinant proteins is sufficient to manipulate susceptibility to PTB. Notably, macrophages at the maternal-fetal interface produce BAFF, while BAFF and APRIL presence divergently shape macrophage gene expression and inflammatory function. Overall, our findings demonstrate that BAFF and APRIL play divergent inflammatory roles in pregnancy and provide therapeutic targets for mitigating risk of inflammation-induced PTB.


Asunto(s)
Nacimiento Prematuro , Animales , Femenino , Ratones , Embarazo , Factor Activador de Células B , Inflamación , Transducción de Señal , Miembro 13 de la Superfamilia de Ligandos de Factores de Necrosis Tumoral/genética
6.
Front Immunol ; 14: 1095132, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-36875069

RESUMEN

Introduction: Inflammation is a common unifying factor in experimental models of non-alcoholic fatty liver disease (NAFLD) progression. Recent evidence suggests that housing temperature-driven alterations in hepatic inflammation correlate with exacerbated hepatic steatosis, development of hepatic fibrosis, and hepatocellular damage in a model of high fat diet-driven NAFLD. However, the congruency of these findings across other, frequently employed, experimental mouse models of NAFLD has not been studied. Methods: Here, we examine the impact of housing temperature on steatosis, hepatocellular damage, hepatic inflammation, and fibrosis in NASH diet, methionine and choline deficient diet, and western diet + carbon tetrachloride experimental models of NAFLD in C57BL/6 mice. Results: We show that differences relevant to NAFLD pathology uncovered by thermoneutral housing include: (i) augmented NASH diet-driven hepatic immune cell accrual, exacerbated serum alanine transaminase levels and increased liver tissue damage as determined by NAFLD activity score; (ii) augmented methionine choline deficient diet-driven hepatic immune cell accrual and increased liver tissue damage as indicated by amplified hepatocellular ballooning, lobular inflammation, fibrosis and overall NAFLD activity score; and (iii) dampened western diet + carbon tetrachloride driven hepatic immune cell accrual and serum alanine aminotransferase levels but similar NAFLD activity score. Discussion: Collectively, our findings demonstrate that thermoneutral housing has broad but divergent effects on hepatic immune cell inflammation and hepatocellular damage across existing experimental NAFLD models in mice. These insights may serve as a foundation for future mechanistic interrogations focused on immune cell function in shaping NAFLD progression.


Asunto(s)
Enfermedad del Hígado Graso no Alcohólico , Animales , Ratones , Ratones Endogámicos C57BL , Tetracloruro de Carbono , Vivienda , Cirrosis Hepática , Metionina , Alanina Transaminasa , Colina , Modelos Animales de Enfermedad , Inflamación
7.
PLoS One ; 17(3): e0266071, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35333906

RESUMEN

The microbially-derived short-chain fatty acid butyrate is a central inhibitor of inflammatory innate and adaptive immune responses. Emerging evidence suggests that butyrate induces differentiation of IL-10-producing (IL-10+) regulatory B cells. However, the underlying mechanisms of butyrate-driven modulation of B cell differentiation are not fully defined. Given the dominant role of regulatory plasma cells (PCs) as the main source of anti-inflammatory cytokines including IL-10 and the observation that butyrate also induces the differentiation of PCs, we here investigated the effect of the microbial metabolite butyrate on the induction of regulatory IL-10+ PCs and underlying mechanisms. Here we show that butyrate induces the differentiation of IL-10+IgM+ PCs. Ex vivo, butyrate, but hardly propionate, another microbially-derived short-chain fatty acid, induced the differentiation of IL-10+IgM+ CD138high PCs from isolated splenic murine B cells. In vivo, administration of butyrate via drinking water or by daily intraperitoneal injection increased the number of IL-10+IgM+ CD138high PCs in the spleens of Ovalbumin (Ova)/complete Freund's adjuvant-immunized mice. The induction of these regulatory PCs was associated with an increase of anti-Ova IgM, but a reduction of anti-Ova class-switched pathogenic IgG2b serum antibodies. Based on the knowledge that butyrate inhibits histone deacetylases (HDACs) thereby increasing histone acetylation, we identified here that HDAC3 inhibition was sufficient to induce PC differentiation and IL-10+ expression. Furthermore, reduced mitochondrial superoxide levels following butyrate treatment and HDAC3 inhibition were necessary for PC differentiation, but not IL-10 expression. In summary, the microbial metabolite butyrate promotes the differentiation of IgM+ PCs and their expression of IL-10. HDAC3 inhibition may be involved as an underlying pathway for both PC differentiation and IL-10 expression, while reduced mitochondrial superoxide levels are crucial only for PC differentiation. The induction of regulatory IL-10+IgM+ PCs and the inhibition of class switching to antigen-specific pathogenic IgG subclasses might represent important pathways of butyrate to limit inflammation.


Asunto(s)
Butiratos , Interleucina-10 , Animales , Butiratos/farmacología , Ácidos Grasos Volátiles , Inmunoglobulina M , Interleucina-10/metabolismo , Ratones , Células Plasmáticas/metabolismo , Superóxidos
8.
STAR Protoc ; 2(4): 100937, 2021 12 17.
Artículo en Inglés | MEDLINE | ID: mdl-34778849

RESUMEN

Isolation of viable immune cells from human tissues is critical for the characterization of cellular and molecular processes underlying disease pathogenesis. Here, we describe protocols for the isolation of highly viable immune cells from liver wedges and mesenteric white adipose tissue resections from obese persons. Notably, characterization of the isolated single-immune cell suspensions, via utility of basic immunological interrogations and genetic approaches, promises to generate an improved understanding of altered immunological pathways in obese individuals with or without metabolic diseases. For complete details on the use and execution of this protocol, please refer to Moreno-Fernandez et al. (2021).


Asunto(s)
Separación Celular/métodos , Sistema Inmunológico/citología , Hígado , Mesenterio , Análisis de la Célula Individual/métodos , Tejido Adiposo Blanco/citología , Tejido Adiposo Blanco/patología , Adolescente , Biopsia , Células Cultivadas , Femenino , Humanos , Hígado/citología , Hígado/patología , Masculino , Mesenterio/citología , Mesenterio/patología , Obesidad Infantil
9.
Int J Obes (Lond) ; 45(11): 2377-2387, 2021 11.
Artículo en Inglés | MEDLINE | ID: mdl-34302121

RESUMEN

OBJECTIVE: The risks of excess sugar intake in addition to high-fat diet consumption on immunopathogenesis of obesity-associated metabolic diseases are poorly defined. Interleukin-4 (IL-4) and IL-13 signaling via IL-4Rα regulates adipose tissue lipolysis, insulin sensitivity, and liver fibrosis in obesity. However, the contribution of IL-4Rα to sugar rich diet-driven obesity and metabolic sequelae remains unknown. METHODS: WT, IL-4Rα-deficient (IL-4Rα-/-) and STAT6-deficient mice (STAT6-/-) male mice were fed low-fat chow, high fat (HF) or HF plus high carbohydrate (HC/fructose) diet (HF + HC). Analysis included quantification of: (i) body weight, adiposity, energy expenditure, fructose metabolism, fatty acid oxidation/synthesis, glucose dysmetabolism and hepatocellular damage; (ii) the contribution of the hematopoietic or non-hematopoietic IL-4Rα expression; and (iii) the relevance of IL-4Rα downstream canonical STAT6 signaling pathway in this setting. RESULTS: We show that IL-4Rα regulated HF + HC diet-driven weight gain, whole body adiposity, adipose tissue inflammatory gene expression, energy expenditure, locomotor activity, glucose metabolism, hepatic steatosis, hepatic inflammatory gene expression and hepatocellular damage. These effects were potentially, and in part, dependent on non-hematopoietic IL-4Rα expression but were independent of direct STAT6 activation. Mechanistically, hepatic ketohexokinase-A and C expression was dependent on IL-4Rα, as it was reduced in IL-4Rα-deficient mice. KHK activity was also affected by HF + HC dietary challenge. Further, reduced expression/activity of KHK in IL-4Rα mice had a significant effect on fatty acid oxidation and fatty acid synthesis pathways. CONCLUSION: Our findings highlight potential contribution of non-hematopoietic IL-4Rα activation of a non-canonical signaling pathway that regulates the HF + HC diet-driven induction of obesity and severity of obesity-associated sequelae.


Asunto(s)
Metabolismo Energético/fisiología , Interleucina-4/metabolismo , Obesidad/metabolismo , Animales , Modelos Animales de Enfermedad , Fructosa/efectos adversos , Resistencia a la Insulina/fisiología , Interleucina-4/análisis , Ratones , Obesidad/inmunología
10.
Nutr Diabetes ; 11(1): 15, 2021 06 07.
Artículo en Inglés | MEDLINE | ID: mdl-34099626

RESUMEN

BACKGROUND: Understanding gender-associated bias in aging and obesity-driven metabolic derangements has been hindered by the inability to model severe obesity in female mice. METHODS: Here, using chow- or high fat diet (HFD)-feeding regimens at standard (TS) and thermoneutral (TN) housing temperatures, the latter to model obesity in female mice, we examined the impact of gender and aging on obesity-associated metabolic derangements and immune responsiveness. Analysis included quantification of: (i) weight gain and adiposity; (ii) the development and severity of glucose dysmetabolism and non-alcoholic fatty liver disease (NAFLD); and (iii) induction of inflammatory pathways related to metabolic dysfunction. RESULTS: We show that under chow diet feeding regimen, aging was accompanied by increased body weight and white adipose tissue (WAT) expansion in a gender independent manner. HFD feeding regimen in aged, compared to young, male mice at TS, resulted in attenuated glucose dysmetabolism and hepatic steatosis. However, under TS housing conditions only aged, but not young, HFD fed female mice developed obesity. At TN however, both young and aged HFD fed female mice developed severe obesity. Independent of gender or housing conditions, aging attenuated the severity of metabolic derangements in HFD-fed obese mice. Tempered severity of metabolic derangements in aged mice was associated with increased splenic frequency of regulatory T (Treg) cells, Type I regulatory (Tr1)-like cells and circulating IL-10 levels and decreased vigor of HFD-driven induction of inflammatory pathways in adipose and liver tissues. CONCLUSION: Our findings suggest that aging-associated altered immunological profile and inflammatory vigor may play a dominant role in the attenuation of obesogenic diet-driven metabolic dysfunction.


Asunto(s)
Envejecimiento/metabolismo , Enfermedades Metabólicas/metabolismo , Obesidad/metabolismo , Tejido Adiposo Blanco/metabolismo , Adiposidad , Animales , Dieta Alta en Grasa/métodos , Femenino , Glucosa/metabolismo , Humanos , Inflamación/metabolismo , Interleucina-10/metabolismo , Hígado/metabolismo , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Obesos , Enfermedad del Hígado Graso no Alcohólico/metabolismo , Factores Sexuales , Linfocitos T Reguladores/metabolismo , Aumento de Peso
11.
Cell Metab ; 33(6): 1187-1204.e9, 2021 06 01.
Artículo en Inglés | MEDLINE | ID: mdl-34004162

RESUMEN

Emerging evidence suggests a key contribution to non-alcoholic fatty liver disease (NAFLD) pathogenesis by Th17 cells. The pathogenic characteristics and mechanisms of hepatic Th17 cells, however, remain unknown. Here, we uncover and characterize a distinct population of inflammatory hepatic CXCR3+Th17 (ihTh17) cells sufficient to exacerbate NAFLD pathogenesis. Hepatic ihTh17 cell accrual was dependent on the liver microenvironment and CXCR3 axis activation. Mechanistically, the pathogenic potential of ihTh17 cells correlated with increased chromatin accessibility, glycolytic output, and concomitant production of IL-17A, IFNγ, and TNFα. Modulation of glycolysis using 2-DG or cell-specific PKM2 deletion was sufficient to reverse ihTh17-centric inflammatory vigor and NAFLD severity. Importantly, ihTh17 cell characteristics, CXCR3 axis activation, and hepatic expression of glycolytic genes were conserved in human NAFLD. Together, our data show that the steatotic liver microenvironment regulates Th17 cell accrual, metabolism, and competence toward an ihTh17 fate. Modulation of these pathways holds potential for development of novel therapeutic strategies for NAFLD.


Asunto(s)
Proteínas Portadoras/inmunología , Proteínas de la Membrana/inmunología , Enfermedad del Hígado Graso no Alcohólico/inmunología , Piruvato Quinasa/inmunología , Receptores CXCR3/inmunología , Células Th17/inmunología , Hormonas Tiroideas/inmunología , Animales , Línea Celular , Femenino , Humanos , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Células Th17/citología , Proteínas de Unión a Hormona Tiroide
12.
Nat Commun ; 12(1): 2911, 2021 05 18.
Artículo en Inglés | MEDLINE | ID: mdl-34006859

RESUMEN

The impact of immune mediators on weight homeostasis remains underdefined. Interrogation of resistance to diet-induced obesity in mice lacking a negative regulator of Toll-like receptor signaling serendipitously uncovered a role for B cell activating factor (BAFF). Here we show that overexpression of BAFF in multiple mouse models associates with protection from weight gain, approximating a log-linear dose response relation to BAFF concentrations. Gene expression analysis of BAFF-stimulated subcutaneous white adipocytes unveils upregulation of lipid metabolism pathways, with BAFF inducing white adipose tissue (WAT) lipolysis. Brown adipose tissue (BAT) from BAFF-overexpressing mice exhibits increased Ucp1 expression and BAFF promotes brown adipocyte respiration and in vivo energy expenditure. A proliferation-inducing ligand (APRIL), a BAFF homolog, similarly modulates WAT and BAT lipid handling. Genetic deletion of both BAFF and APRIL augments diet-induced obesity. Lastly, BAFF/APRIL effects are conserved in human adipocytes and higher BAFF/APRIL levels correlate with greater BMI decrease after bariatric surgery. Together, the BAFF/APRIL axis is a multifaceted immune regulator of weight gain and adipose tissue function.


Asunto(s)
Factor Activador de Células B/genética , Obesidad/genética , Transducción de Señal/genética , Miembro 13 de la Superfamilia de Ligandos de Factores de Necrosis Tumoral/genética , Aumento de Peso/genética , Adipocitos/citología , Adipocitos/metabolismo , Tejido Adiposo Pardo/citología , Tejido Adiposo Pardo/metabolismo , Tejido Adiposo Blanco/citología , Tejido Adiposo Blanco/metabolismo , Animales , Factor Activador de Células B/metabolismo , Células Cultivadas , Dieta Alta en Grasa/efectos adversos , Perfilación de la Expresión Génica/métodos , Humanos , Masculino , Ratones Endogámicos C57BL , Ratones Noqueados , Ratones Transgénicos , Obesidad/etiología , Obesidad/metabolismo , Miembro 13 de la Superfamilia de Ligandos de Factores de Necrosis Tumoral/metabolismo
13.
Front Aging ; 2: 732414, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-35822048

RESUMEN

Aging and obesity are two conditions characterized by chronic, low-grade inflammation. While both conditions are also associated with dysfunctional immune responses, the shared and distinct underlying mechanisms are just starting to be uncovered. In fact, recent findings have suggested that the effects of obesity on the immune system can be thought of as a state of accelerated aging. Here we propose that chronic, low-grade inflammation seen in obesity and aging is complex, affects multiple cell types, and results in an altered basal immune state. In aging, part of this altered state is the emergence of regulatory immune populations that lead to further immune dysfunction in an attempt to reduce chronic inflammation. While in obesity, part of the altered state is the effect of expanding adipose tissue on immune cell function. Thus, in this review, we compare, and contrast altered immune states in aging and obesity and discuss their potential contribution to a shared clinical problem- decreased vaccine responsiveness.

14.
Mucosal Immunol ; 14(2): 500-510, 2021 03.
Artículo en Inglés | MEDLINE | ID: mdl-32811993

RESUMEN

Severe Clostridiodes difficile infection (CDI) is life-threatening and responds poorly to treatment. Obesity is associated with development of severe CDI. Therefore, to define the mechanisms that exacerbate disease severity, we examined CDI pathogenesis in high-fat diet (HFD)-fed obese mice. Compared to control mice, HFD-fed mice failed to clear C. difficile bacteria which resulted in protracted diarrhea, weight loss and colonic damage. After infection, HFD-induced obese mice had an intestinal bile acid (BA) pool that was dominated by primary BAs which are known promoters of C. difficile spore germination, and lacked secondary BAs that inhibit C. difficile growth. Concurrently, synthesis of primary BAs from liver was significantly increased in C. difficile-infected HFD-fed mice. A key pathway that regulates hepatic BA synthesis is via feedback inhibition from intestinal Farnesoid X receptors (FXRs). Our data reveal that the proportion of FXR agonist BAs to FXR antagonist BAs in the intestinal lumen was significantly reduced in HFD-fed mice after CDI. Treatment of HFD-fed mice with an FXR agonist Obeticholic acid, resulted in decreased primary BA synthesis, fewer C. difficile bacteria and better CDI outcomes. Thus, OCA treatment holds promise as a therapy for severe CDI.


Asunto(s)
Anticolesterolemiantes/uso terapéutico , Ácido Quenodesoxicólico/análogos & derivados , Clostridioides difficile/fisiología , Infecciones por Clostridium/tratamiento farmacológico , Obesidad/tratamiento farmacológico , Animales , Ácido Quenodesoxicólico/uso terapéutico , Dieta Alta en Grasa , Modelos Animales de Enfermedad , Progresión de la Enfermedad , Humanos , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Obesos , Proteínas de Unión al ARN/metabolismo
15.
Cell Metab ; 32(3): 328-330, 2020 09 01.
Artículo en Inglés | MEDLINE | ID: mdl-32877688

RESUMEN

Macrophages are central to the pathogenesis of non-alcoholic steatohepatitis (NASH). However, the identities and functional relationships between tissue-resident and tissue-recruited macrophages in NASH remain poorly understood. A recent study from Seidman et al. (2020) elucidates, at single-cell resolution, the fates, niches, and regulatory landscapes of liver tissue-resident and tissue-recruited macrophage populations in NASH.


Asunto(s)
Enfermedad del Hígado Graso no Alcohólico , Epigénesis Genética , Humanos , Hígado , Macrófagos , Células Progenitoras Mieloides
16.
Nat Commun ; 11(1): 2745, 2020 06 02.
Artículo en Inglés | MEDLINE | ID: mdl-32488081

RESUMEN

White adipose tissue inflammation, in part via myeloid cell contribution, is central to obesity pathogenesis. Mechanisms regulating adipocyte inflammatory potential and consequent impact of such inflammation in disease pathogenesis remain poorly defined. We show that activation of the type I interferon (IFN)/IFNα receptor (IFNAR) axis amplifies adipocyte inflammatory vigor and uncovers dormant gene expression patterns resembling inflammatory myeloid cells. IFNß-sensing promotes adipocyte glycolysis, while glycolysis inhibition impeded IFNß-driven intra-adipocyte inflammation. Obesity-driven induction of the type I IFN axis and activation of adipocyte IFNAR signaling contributes to obesity-associated pathogenesis in mice. Notably, IFNß effects are conserved in human adipocytes and detection of the type I IFN/IFNAR axis-associated signatures positively correlates with obesity-driven metabolic derangements in humans. Collectively, our findings reveal a capacity for the type I IFN/IFNAR axis to regulate unifying inflammatory features in both myeloid cells and adipocytes and hint at an underappreciated contribution of adipocyte inflammation in disease pathogenesis.


Asunto(s)
Adipocitos/metabolismo , Inflamación/metabolismo , Interferón Tipo I/metabolismo , Obesidad/metabolismo , Animales , Modelos Animales de Enfermedad , Expresión Génica , Humanos , Interferón beta/metabolismo , Masculino , Ratones , Ratones Endogámicos C57BL , Células Mieloides/metabolismo , Receptor de Interferón alfa y beta/metabolismo
17.
Clin Exp Allergy ; 49(9): 1245-1257, 2019 09.
Artículo en Inglés | MEDLINE | ID: mdl-31265181

RESUMEN

BACKGROUND: A close association between obesity and asthma has been described. The nature of this association remains elusive, especially with respect to allergic asthma. Controversial findings exist regarding the impact of short-term high-fat diet (HFD) feeding on the development of allergic asthma. OBJECTIVE: To delineate the impact of short-term HFD feeding on the development of experimental allergic asthma. METHODS: Female C57BL/6JRJ mice were fed with a short-term HFD or chow diet (CD) for 12 weeks. Allergic asthma was induced by intraperitoneal OVA/alum sensitization followed by repeated OVA airway challenges. We determined airway hyperresponsiveness (AHR) and pulmonary inflammation by histologic and flow cytometric analysis of immune cells. Furthermore, we assessed the impact of HFD on dendritic cell (DC)-mediated activation of T cells. RESULTS: Female mice showed a mild increase in body weight accompanied by mild metabolic alterations. Upon OVA challenge, CD-fed mice developed strong AHR and airway inflammation, which were markedly reduced in HFD-fed mice. Mucus production was similar in both treatment groups. OVA-induced increases in DC and CD4+ T-cell recruitment to the lungs were significantly attenuated in HFD-fed mice. MHC-II expression and CD40 expression in pulmonary CD11b+ DCs were markedly lower in HFD-fed compared to CD-fed mice, which was associated in vivo with a decreased T helper (Th) 1/17 differentiation and Treg formation without impacting Th2 differentiation. CONCLUSIONS/CLINICAL RELEVANCE: These findings suggest that short-term HFD feeding attenuates the development of AHR, airway inflammation, pulmonary DC recruitment and MHC-II/CD40 expression leading to diminished Th1/17 but unchanged Th2 differentiation. Thus, short-term HFD feeding and associated metabolic alterations may have protective effects in allergic asthma development.


Asunto(s)
Alimentación Animal , Asma/inmunología , Asma/prevención & control , Diferenciación Celular/efectos de los fármacos , Grasas de la Dieta/farmacología , Linfocitos T Colaboradores-Inductores/inmunología , Animales , Asma/inducido químicamente , Diferenciación Celular/inmunología , Modelos Animales de Enfermedad , Femenino , Ratones
18.
Front Immunol ; 10: 2893, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-31921154

RESUMEN

Obesity is a prevalent predisposing factor to non-alcoholic fatty liver disease (NAFLD), the most common chronic liver disease in the developed world. NAFLD spectrum of disease involves progression from steatosis (NAFL), to steatohepatitis (NASH), cirrhosis and hepatocellular carcinoma (HCC). Despite clinical and public health significance, current FDA approved therapies for NAFLD are lacking in part due to insufficient understanding of pathogenic mechanisms driving disease progression. The etiology of NAFLD is multifactorial. The induction of both systemic and tissue inflammation consequential of skewed immune cell metabolic state, polarization, tissue recruitment, and activation are central to NAFLD progression. Here, we review the current understanding of the above stated cellular and molecular processes that govern macrophage contribution to NAFLD pathogenesis and how adipose tissue and liver crosstalk modulates macrophage function. Notably, the manipulation of such events may lead to the development of new therapies for NAFLD.


Asunto(s)
Susceptibilidad a Enfermedades , Macrófagos/inmunología , Macrófagos/metabolismo , Enfermedad del Hígado Graso no Alcohólico/etiología , Enfermedad del Hígado Graso no Alcohólico/metabolismo , Animales , Biomarcadores , Movimiento Celular , Plasticidad de la Célula/inmunología , Citocinas/metabolismo , Manejo de la Enfermedad , Modelos Animales de Enfermedad , Metabolismo Energético , Humanos , Mediadores de Inflamación/metabolismo , Enfermedad del Hígado Graso no Alcohólico/patología , Enfermedad del Hígado Graso no Alcohólico/terapia , Transducción de Señal
19.
Hepatol Commun ; 2(5): 546-560, 2018 May.
Artículo en Inglés | MEDLINE | ID: mdl-29761170

RESUMEN

Nonalcoholic fatty liver disease (NAFLD) represents a disease spectrum ranging from benign steatosis to life-threatening cirrhosis and hepatocellular carcinoma. Elevated levels of reactive oxygen species (ROS) and exacerbated inflammatory responses have been implicated in NAFLD progression. Nicotinamide adenine dinucleotide phosphate (reduced) oxidase 2 (NOX2; also known as gp91Phox), the main catalytic subunit of the nicotinamide adenine dinucleotide phosphate (reduced) oxidase complex, modulates ROS production, immune responsiveness, and pathogenesis of obesity-associated metabolic derangements. However, the role of NOX2 in the regulation of immune cell function and inflammatory vigor in NAFLD remains underdefined. Here, we demonstrate that obesogenic diet feeding promoted ROS production by bone marrow, white adipose tissue, and liver immune cells. Genetic ablation of NOX2 impeded immune cell ROS synthesis and was sufficient to uncouple obesity from glucose dysmetabolism and NAFLD pathogenesis. Protection from hepatocellular damage in NOX2-deficient mice correlated with reduced hepatic neutrophil, macrophage, and T-cell infiltration, diminished production of key NAFLD-driving proinflammatory cytokines, and an inherent reduction in T-cell polarization toward Th17 phenotype. Conclusion: Current findings demonstrate a crucial role of the NOX2-ROS axis in immune cell effector function and polarization and consequent NAFLD progression in obesity. Pharmacologic targeting of NOX2 function in immune cells may represent a viable approach for reducing morbidity of obesity-associated NAFLD pathogenesis. (Hepatology Communications 2018;2:546-560).

20.
JCI Insight ; 3(6)2018 03 22.
Artículo en Inglés | MEDLINE | ID: mdl-29563328

RESUMEN

Nonalcoholic fatty liver disease (NAFLD), a metabolic predisposition for development of hepatocellular carcinoma (HCC), represents a disease spectrum ranging from steatosis to steatohepatitis to cirrhosis. Acox1, a rate-limiting enzyme in peroxisomal fatty acid ß-oxidation, regulates metabolism, spontaneous hepatic steatosis, and hepatocellular damage over time. However, it is unknown whether Acox1 modulates inflammation relevant to NAFLD pathogenesis or if Acox1-associated metabolic and inflammatory derangements uncover and accelerate potential for NAFLD progression. Here, we show that mice with a point mutation in Acox1 (Acox1Lampe1) exhibited altered cellular metabolism, modified T cell polarization, and exacerbated immune cell inflammatory potential. Further, in context of a brief obesogenic diet stress, NAFLD progression associated with Acox1 mutation resulted in significantly accelerated and exacerbated hepatocellular damage via induction of profound histological changes in hepatocytes, hepatic inflammation, and robust upregulation of gene expression associated with HCC development. Collectively, these data demonstrate that ß-oxidation links metabolism and immune responsiveness and that a better understanding of peroxisomal ß-oxidation may allow for discovery of mechanisms central for NAFLD progression.


Asunto(s)
Acil-CoA Oxidasa/metabolismo , Carcinoma Hepatocelular/inmunología , Carcinoma Hepatocelular/metabolismo , Neoplasias Hepáticas/metabolismo , Enfermedad del Hígado Graso no Alcohólico/metabolismo , Acil-CoA Oxidasa/genética , Tejido Adiposo Pardo/metabolismo , Animales , Carcinoma Hepatocelular/genética , Carcinoma Hepatocelular/patología , Citocinas/metabolismo , Dieta , Modelos Animales de Enfermedad , Progresión de la Enfermedad , Ácidos Grasos/metabolismo , Regulación Neoplásica de la Expresión Génica , Hepatocitos/patología , Inflamación , Hígado/inmunología , Hígado/metabolismo , Hígado/patología , Cirrosis Hepática , Neoplasias Hepáticas/genética , Ratones , Ratones Endogámicos C57BL , Mitocondrias/metabolismo , Enfermedad del Hígado Graso no Alcohólico/patología , Obesidad , Mutación Puntual , Estrés Fisiológico , Linfocitos T
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA