Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 25
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Adv Mater ; 36(9): e2307461, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-37917032

RESUMEN

Although electro-organic synthesis is currently receiving renewed interest because of its potential to enable sustainability in chemical processes to value-added products, challenges in process development persist: For reductive transformations performed in protic media, an inherent issue is the limited choice of metallic cathode materials that can effectively suppress the parasitic hydrogen evolution reaction (HER) while maintaining a high activity toward the targeted electro-organic reaction. Current development trends are aimed at avoiding the previously used HER-suppressing elements (Cd, Hg, and Pb) because of their toxicity. Here, this work reports the rational design of highly porous foam-type binary and ternary electrocatalysts with reduced Pb content. Optimized cathodes are tested in electro-organic reductions using an oxime to nitrile transformation as a model reaction relevant for the synthesis of fine chemicals. Their electrocatalytic performance is compared with that of the model CuSn7Pb15 bronze alloy that has recently been endorsed as the best cathode replacement for bare Pb electrodes. All developed metal foam catalysts outperform both bare Pb and the CuSn7Pb15 benchmark in terms of chemical yield and energetic efficiency. Moreover, post-electrolysis analysis of the crude electrolyte mixture and the cathode's surfaces through inductively coupled plasma mass spectrometry (ICP-MS) and scanning electron microscopy (SEM), respectively, reveal the foam catalysts' elevated resistance to cathodic corrosion.

2.
JACS Au ; 3(1): 124-130, 2023 Jan 23.
Artículo en Inglés | MEDLINE | ID: mdl-36711103

RESUMEN

Enzymatic electrocatalysis holds promise for new biotechnological approaches to produce chemical commodities such as molecular hydrogen (H2). However, typical inhibitory limitations include low stability and/or low electrocatalytic currents (low product yields). Here we report a facile single-step electrode preparation procedure using indium-tin oxide nanoparticles on carbon electrodes. The subsequent immobilization of a model [FeFe]-hydrogenase from Clostridium pasteurianum ("CpI") on the functionalized carbon electrode permits comparatively large quantities of H2 to be produced in a stable manner. Specifically, we observe current densities of >8 mA/cm2 at -0.8 V vs the standard hydrogen electrode (SHE) by direct electron transfer (DET) from cyclic voltammetry, with an onset potential for H2 production close to its standard potential at pH 7 (approximately -0.4 V vs. SHE). Importantly, hydrogenase-modified electrodes show high stability retaining ∼92% of their electrocatalytic current after 120 h of continuous potentiostatic H2 production at -0.6 V vs. SHE; gas chromatography confirmed ∼100% Faradaic efficiency. As the bioelectrode preparation method balances simplicity, performance, and stability, it paves the way for DET on other electroenzymatic reactions as well as semiartificial photosynthesis.

3.
Chimia (Aarau) ; 75(9): 733-743, 2021 Sep 15.
Artículo en Inglés | MEDLINE | ID: mdl-34526178

RESUMEN

In this mini-review we compare two prototypical metal foam electrocatalysts applied to the transformation of CO2 into value-added products (e.g. alcohols on Cu foams and formate on Bi foams). A substantial improvement in the catalyst performance is typically achieved through thermal annealing of the as-deposited foam materials, followed by the electro-reduction of the pre-formed oxidic precursors prior or during the actual CO2 electrolysis. Utilizing highly insightful and sensitive complementary operando analytical techniques (XAS, XRD, and Raman spectroscopy) we demonstrate that this catalyst pre-activation process is entirely accomplished in case of the oxidized Cu foams prior to the formation of hydrocarbons and alcohols from the CO2. The actually active catalyst is therefore the metallic Cu derived from the precursor by means of oxide electro-reduction. Conversely, in their oxidic form, the Cu-based foam catalysts are inactive towards the CO2 reduction reaction (denoted ec-CO2 RR). Oxidized Bi foams can be regarded as an excellent counter example to the above-mentioned Cu case as both metallic and the thermally derived oxidic Bi foams are highly active towards ec-CO2 RR (formate production). Indeed, operando Raman spectroscopy reveals that CO2 electrolysis occurs upon its embedment into the oxidic Bi2O3 foam precursor, which itself undergoes partial transformation into an active sub-carbonate phase. The potential-dependent transition of sub-carbonates/oxides into the corresponding metallic Bi foam dictates the characteristic changes of the ec-CO2 RR pathway. Identical location (IL) microscopic inspection of the catalyst materials, e.g. by means of scanning electron microscopy, demonstrates substantial morphological alterations on the nm length scale on the material surface as consequence of the sub-carbonate formation and the potential-driven oxide reduction into the metallic Bi foam. The foam morphology on a mesoscopic length scale (macroporosity) remains, by contrast, fully unaffected by these phase transitions.

4.
Chimia (Aarau) ; 75(3): 163-168, 2021 Mar 31.
Artículo en Inglés | MEDLINE | ID: mdl-33766198

RESUMEN

Metallic nanoparticles of different shape can be used as efficient electrocatalysts for many technologically and environmentally relevant processes, like the electroreduction of CO2. Intense research is thus targeted at finding the morphology of nanosized features that best suits catalytic needs. In order to control the shape and size distribution of the designed nanoobjects, and to prevent their aggregation, synthesis routes often rely on the use of organic capping agents (surfactants). It is known, however, that these agents tend to remain adsorbed on the surface of the synthesized nanoparticles and may significantly impair their catalytic performance, both in terms of overall yield and of product selectivity. It thus became a standard procedure to apply certain methods (e.g. involving UV-ozone or plasma treatments) for the removal of capping agents from the surface of nanoparticles, before they are used as catalysts. Proper design of the operating procedure of the electrocatalysis process may, however, render such cleaning steps unnecessary. In this paper we use poly-vinylpyrrolidone (PVP) capped Ag nanocubes to demonstrate a mere electrochemical, operando activation method. The proposed method is based on an observed hysteresis of the catalytic yield of CO (the desired product of CO2 electroreduction) as a function of the applied potential. When as-synthesized nanocubes were directly used for CO2 electroreduction, the CO yield was rather low at moderate overpotentials. However, following a potential excursion to more negative potentials, most of the (blocking) PVP was irreversibly removed from the catalyst surface, allowing a significantly higher catalytic yield even under less harsh operating conditions. The described hysteresis of the product distribution is shown to be of transient nature, and following operando activation by a single 'break-in' cycle, a truly efficient catalyst was obtained that retained its stability during long hours of operation.

5.
Sci Rep ; 10(1): 9641, 2020 06 15.
Artículo en Inglés | MEDLINE | ID: mdl-32541786

RESUMEN

For the last four decades space exploration missions have searched for molecular life on planetary surfaces beyond Earth. Often pyrolysis gas chromatography mass spectrometry has been used as payload on such space exploration missions. These instruments have relatively low detection sensitivity and their measurements are often undermined by the presence of chloride salts and minerals. Currently, ocean worlds in the outer Solar System, such as the icy moons Europa and Enceladus, represent potentially habitable environments and are therefore prime targets for the search for biosignatures. For future space exploration missions, novel measurement concepts, capable of detecting low concentrations of biomolecules with significantly improved sensitivity and specificity are required. Here we report on a novel analytical technique for the detection of extremely low concentrations of amino acids using ORIGIN, a compact and lightweight laser desorption ionization - mass spectrometer designed and developed for in situ space exploration missions. The identified unique mass fragmentation patterns of amino acids coupled to a multi-position laser scan, allows for a robust identification and quantification of amino acids. With a detection limit of a few fmol mm-2, and the possibility for sub-fmol detection sensitivity, this measurement technique excels current space exploration systems by three orders of magnitude. Moreover, our detection method is not affected by chemical alterations through surface minerals and/or salts, such as NaCl that is expected to be present at the percent level on ocean worlds. Our results demonstrate that ORIGIN is a promising instrument for the detection of signatures of life and ready for upcoming space missions, such as the Europa Lander.


Asunto(s)
Aminoácidos/análisis , Medio Ambiente Extraterrestre/química , Espectrometría de Masa por Láser de Matriz Asistida de Ionización Desorción/métodos , Espectrometría de Masa por Láser de Matriz Asistida de Ionización Desorción/instrumentación
6.
Anal Chem ; 92(6): 4301-4308, 2020 03 17.
Artículo en Inglés | MEDLINE | ID: mdl-32081004

RESUMEN

The use of rotating disk electrodes (RDEs) is probably the most convenient way of studying simple electrode reactions under well-defined transport conditions. Standard RDEs become, however, less expedient when the studied electrode process is a complex one, leading to the formation of various reaction products. In these cases, the accurate detection and quantification of the formed products are desirable. If the formed products are gaseous, then the usual way of quantifying them is the use of online gas chromatography (GC), a method that is not compatible with open RDE cells. In order to overcome these difficulties, we present here a sophisticated inverted RDE (iRDE) cell design. The design combines various advantages: it is amenable to the same mathematical treatment as standard (downward-facing) RDEs; it can be operated airtight and coupled to online GC; and due to its upward-facing design, the electrode surface is less prone to blockage by any formed gas bubbles. The iRDE&GC design is tested using simple model reactions and is demonstratively used for studying the electrochemical reduction of CO2, accompanied by parasitic hydrogen evolution, on a silver electrode.

7.
Chimia (Aarau) ; 73(11): 922-927, 2019 Nov 01.
Artículo en Inglés | MEDLINE | ID: mdl-31753073

RESUMEN

In this work, we discuss the application of a gas diffusion electrode (GDE) setup for benchmarking electrocatalysts for the reductive conversion of CO2 (CO2 RR: CO2 reduction reaction). Applying a silver nanowire (Ag-NW) based catalyst, it is demonstrated that in the GDE setup conditions can be reached, which are relevant for the industrial conversion of CO2 to CO. This reaction is part of the so-called 'Rheticus' process that uses the CO for the subsequent production of butanol and hexanol based on a fermentation approach. In contrast to conventional half-cell measurements using a liquid electrolyte, in the GDE setup CO2 RR current densities comparable to technical cells (>100 mA cm-2) are reached without suffering from mass transport limitations of the CO2 reactant gas. The results are of particular importance for designing CO2 RR catalysts exhibiting high faradaic efficiencies towards CO at technological reaction rates.

8.
Astrobiology ; 18(8): 1071-1080, 2018 08.
Artículo en Inglés | MEDLINE | ID: mdl-30095994

RESUMEN

The recognition of biosignatures on planetary bodies requires the analysis of the putative microfossil with a set of complementary analytical techniques. This includes localized elemental and isotopic analysis of both, the putative microfossil and its surrounding host matrix. If the analysis can be performed with spatial resolution at the micrometer level and ppm detection sensitivities, valuable information on the (bio)chemical and physical processes that influenced the sample material can be gained. Our miniaturized laser ablation ionization mass spectrometry (LIMS)-time-of-flight mass spectrometer instrument is a valid candidate for performing the required chemical analysis in situ. However, up until now it was limited by the spatial accuracy of the sampling. In this contribution, we introduce a newly developed microscope system with micrometer accuracy for Ultra High Vacuum application, which allows a significant increase in the measurement capabilities of our miniature LIMS system. The new enhancement allows identification and efficient and accurate sampling of features of micrometer-sized fossils in a host matrix. The performance of our system is demonstrated by the identification and chemical analysis of signatures of micrometer-sized fossil structures in the 1.9 billion-year-old Gunflint chert.


Asunto(s)
Fósiles , Rayos Láser , Espectrometría de Masas/instrumentación , Microscopía/instrumentación , Fenómenos Ópticos , Isótopos , Reproducibilidad de los Resultados , Vacio
9.
ACS Appl Mater Interfaces ; 10(37): 31355-31365, 2018 Sep 19.
Artículo en Inglés | MEDLINE | ID: mdl-30136836

RESUMEN

In this work, we aim to develop a Zn-based metal foam catalyst with very large specific area suitable for efficient CO production. Its manufacture is based on the dynamic hydrogen bubble template method that consists of the superposition of metal deposition and hydrogen evolution at the solid-liquid interface. We employed Cu ions in the Zn2+-rich electroplating bath as foaming agent. The concentration of Cu as foaming agent was systematically studied and an optimized Zn94Cu6 foam alloy was developed, which, to the best of our knowledge, is the most selective Zn-based CO2 electrocatalyst toward CO in aqueous bicarbonate solution (FECO = 90% at -0.95 V vs reversible hydrogen electrode). This high efficiency is ascribed to the combination of high density of low-coordinated active sites and preferential Zn(101) over Zn(002) texturing. X-ray photoelectron spectroscopy investigations demonstrate that the actual catalyst material is shaped upon reduction of an oxide/hydroxide-terminating surface under CO2 electrolysis conditions. Moreover, intentional stressing by oxidation at room conditions proved to be beneficial for further activation of the catalyst. Identical location scanning electron microscopy imaging before and after CO2 electrolysis and long-term electrolysis experiments also showed that the developed Zn94Cu6 foam catalyst is both structurally and chemically stable at reductive conditions.

10.
Anal Chem ; 90(11): 6666-6674, 2018 06 05.
Artículo en Inglés | MEDLINE | ID: mdl-29722528

RESUMEN

State-of-the-art three-dimensional very large-scale integration (3D-VLSI) relies, among other factors, on the purity of high-aspect-ratio Cu interconnects such as through-silicon-vias (TSVs). Accurate spatial chemical analysis of electroplated TSV structures has been proven to be challenging due to their large aspect ratios and their multimaterial composition (Cu and Si) with distinct physical properties. Here, we demonstrate that these structures can be accurately analyzed by femtosecond (fs) laser beam ablation techniques in combination with ionization mass spectrometry (LIMS). We specifically report on novel preparation approaches for the postablation analysis of craters formed upon TSV depth profiling. The novel TSV sample preparation is based on deep and material-selective reactive-ion etching of the Si matrix surrounding the Cu interconnects thus facilitating systematic focused-ion-beam (FIB) investigations of the high-aspect-ratio TSV structures upon ablation. The particular structure of the TSV analyte combined with the ⌀beam > ⌀Cu-TSV condition allowed for an in-depth investigation of fundamental laser ablation processes, particularly focusing on the redeposition of ablated material at the inner side-walls of the LIMS craters. This phenomenon is of imminent importance for the ultimate quantification in any laser ablation-based depth profiling. In addition, we have developed a new method which allows the unambiguous determination of the crossing-point of the Si/Cu||bare Si interface upon Cu-TSV depth profiling which is based on pronounced, depth-dependent changes in the mass-spectrometric detection of those Si xy+ species formed upon the LIMS depth erosion.

11.
Anal Chem ; 90(8): 5179-5186, 2018 04 17.
Artículo en Inglés | MEDLINE | ID: mdl-29578694

RESUMEN

Through-silicon-via (TSV) technology enables 3D integration of multiple 2D components in advanced microchip architectures. Key in the TSV fabrication is an additive-assisted Cu electroplating process in which the additives employed may get embedded in the TSV body. This incorporation negatively influences the reliability and durability of the Cu interconnects. Here, we present a novel approach toward the chemical analysis of TSVs which is based on femtosecond laser ablation ionization mass spectrometry (fs-LIMS). The conditions for LIMS depth profiling were identified by a systematic variation of the laser pulse energy and the number of laser shots applied. In this contribution, new aspects are addressed related to the analysis of highly heterogeneous specimens having dimensions in the range of the probing beam itself. Particularly challenging were the different chemical and physical properties of which the target specimens were composed. Depth profiling of the TSVs along their main axis (approach 1) revealed a gradient in the carbon (C) content. These differences in the C concentration inside the TSVs could be confirmed and quantified by LIMS analyses of cross-sectionally sliced TSVs (approach 2). Our quantitative analysis revealed a C content that is ∼1.5 times higher at the TSV top surface compared to its bottom. Complementary Scanning Auger Microscopy (SAM) data confirmed a preferential embedment of suppressor additives at the side walls of the TSV. These results demonstrate that the TSV filling concept significantly deviates from common Damascene electroplating processes and will therefore contribute to a more comprehensive, mechanistic understanding of the underlying mechanisms.

12.
Anal Chem ; 90(4): 2692-2700, 2018 02 20.
Artículo en Inglés | MEDLINE | ID: mdl-29400952

RESUMEN

State-of-the-art laser ablation (LA) depth-profiling techniques (e.g. LA-ICP-MS, LIBS, and LIMS) allow for chemical composition analysis of solid materials with high spatial resolution at micro- and nanometer levels. Accurate determination of LA-volume is essential to correlate the recorded chemical information to the specific location inside the sample. In this contribution, we demonstrate two novel approaches towards a better quantitative analysis of LA craters with dimensions at micrometer level formed by femtosecond-LA processes on single-crystalline Si(100) and polycrystalline Cu model substrates. For our parametric crater evolution studies, both the number of applied laser shots and the pulse energy were systematically varied, thus yielding 2D matrices of LA craters which vary in depth, diameter, and crater volume. To access the 3D structure of LA craters formed on Si(100), we applied a combination of standard lithographic and deep reactive-ion etching (DRIE) techniques followed by a HR-SEM inspection of the previously formed crater cross sections. As DRIE is not applicable for other material classes such as metals, an alternative and more versatile preparation technique was developed and applied to the LA craters formed on the Cu substrate. After the initial LA treatment, the Cu surface was subjected to a polydimethylsiloxane (PDMS) casting process yielding a mold being a full 3D replica of the LA craters, which was then analyzed by HR-SEM. Both approaches revealed cone-like shaped craters with depths ranging between 1 and 70 µm and showed a larger ablation depth of Cu that exceed the one of Si by a factor of about 3.

13.
Anal Chem ; 89(3): 1632-1641, 2017 02 07.
Artículo en Inglés | MEDLINE | ID: mdl-28105805

RESUMEN

Femtosecond laser ablation/ionization mass spectrometry (LIMS) has been applied to probe the spatial element composition of three ternary Cu-Sn-Pb model bronze alloys (lead bronzes: CuSn10Pb10, CuSn7Pb15, and CuSn5Pb20), which were recently identified as high-performance cathode materials in the context of electro-organic synthesis (dehalogenation, deoxygenation) of pharmaceutically relevant building blocks. The quantitative and spatially resolved element analysis of such cathode materials will help in understanding the observed profound differences in their electrochemical reactivity and stability. For that purpose, we developed a measurement procedure using the LIMS technique which allows analyzing the element composition of these ternary alloys in all three spatial dimensions. Their chemical composition was determined spotwise, by ablating material from various surface locations on a 4 × 4 raster array (50 µm pitch distance, ablation crater diameter of ∼20 µm). The element analyses show significant chemical inhomogeneities in all three ternary bronze alloys with profound local deviations from their nominal bulk compositions and indicate further differences in the nature and origin of these compositional inhomogeneities. In addition, the element analyses showed specific compositional correlations among the major elements (Cu, Sn, and Pb) in these alloys. On selected sample positions minor (Ni, Zn, Ag, and Sb) and trace elements (C, P, Fe, and As) were quantified. These results are in agreement with inductively coupled plasma collision/reaction interface mass spectrometry (ICP-CRI-MS) and laser ablation inductively coupled plasma mass spectrometry (LA-ICPMS) reference measurements, thus proving the LIMS depth profiling technique as a powerful alternative methodology to conventional quantification techniques with the advantage, however, of a highly localized measurement capability.

14.
Chimia (Aarau) ; 70(4): 268-73, 2016.
Artículo en Inglés | MEDLINE | ID: mdl-27131112

RESUMEN

Direct quantitative and sensitive chemical analysis of solid materials with high spatial resolution, both in lateral and vertical direction is of high importance in various fields of analytical research, ranging from in situ space research to the semiconductor industry. Accurate knowledge of the chemical composition of solid materials allows a better understanding of physical and chemical processes that formed/altered the material and allows e.g. to further improve these processes. So far, state-of-the-art techniques such as SIMS, LA-ICP-MS or GD-MS have been applied for chemical analyses in these fields of research. In this report we review the current measurement capability and the applicability of our Laser Ablation/Ionisation Mass Spectrometer (instrument name LMS) for the chemical analysis of solids with high spatial resolution. The most recent chemical analyses conducted on various solid materials, including e.g. alloys, fossils and meteorites are discussed.

15.
Rapid Commun Mass Spectrom ; 30(8): 1031-6, 2016 Apr 30.
Artículo en Inglés | MEDLINE | ID: mdl-27003040

RESUMEN

RATIONALE: There is an increasing interest in the quest for low molecular weight biomarkers that can be studied on extra-terrestrial objects by direct laser desorption mass spectrometry (LD-MS). Although molecular structure investigations have recently been carried out by direct LD-MS approaches, there is still a lack of suitable instruments for implementation on a spacecraft due to weight, size and power consumption demands. In this contribution we demonstrate the feasibility of LD-MS structural analysis of molecular species by a miniature laser desorption-ionization mass spectrometer (instrument name LMS) originally designed for in situ elemental and isotope analysis of solids in space research. METHODS: Direct LD-MS studies with molecular resolution were carried out by means of a Laser Ablation/Ionization Mass Spectrometry (LIMS) technique. Two polymer samples served as model systems: neutral polyethylene glycol (PEG) and cationic polymerizates of imidazole and epichlorohydrin (IMEP). Optimal conditions for molecular fragmentation could be identified for both polymers by tuning the laser energy and the instrument-sample distance. RESULTS: PEG and IMEP polymers show sufficient stability over a relatively wide laser energy range. Under mild LD conditions only moderate fragmentation of the polymers takes place so that valuable structural characterization based on fragment ions can be achieved. As the applied laser pulse energy rises, the abundance of fragment ions increases, reaches a plateau and subsequently drops down due to more severe fragmentation and atomization of the polymers. At this final stage, usually referred to as laser ablation, only elemental/isotope analysis can be achieved. CONCLUSIONS: Our investigations demonstrate the versatility of the LMS instrument that can be tuned to favourable laser desorption conditions that successfully meet molecule-specific requirements and deliver abundant fragment ion signals with detailed structural information. Overall, the results show promise for use in similar studies on planetary surfaces beyond Earth where no or minimal sample preparation is essential.


Asunto(s)
Simulación por Computador , Medio Ambiente Extraterrestre/química , Espectrometría de Masas/métodos , Biomarcadores/análisis , Biomarcadores/química , Modelos Químicos , Polímeros/análisis , Polímeros/química , Vuelo Espacial
16.
J Am Chem Soc ; 137(6): 2318-27, 2015 Feb 18.
Artículo en Inglés | MEDLINE | ID: mdl-25651069

RESUMEN

Single molecule charge transport characteristics of buckminsterfullerene-capped symmetric fluorene-based dumbbell-type compound 1 were investigated by scanning tunneling microscopy break junction (STM-BJ), current sensing atomic force microscopy break junction (CS-AFM-BJ), and mechanically controlled break junction (MCBJ) techniques, under ambient conditions. We also show that compound 1 is able to form highly organized defect-free surface adlayers, allowing the molecules on the surface to be addressed specifically. Two distinct single molecule conductance states (called high G(H)(1) and low G(L)(1)) were observed, depending on the pressure exerted by the probe on the junction, thus allowing molecule 1 to function as a mechanically driven molecular switch. These two distinct conductance states were attributed to the electron tunneling through the buckminsterfullerene anchoring group and fully extended molecule 1, respectively. The assignment of conductance features to these configurations was further confirmed by control experiments with asymmetrically designed buckminsterfullerene derivative 2 as well as pristine buckminsterfullerene 3, both lacking the G(L) feature.

17.
Anal Chem ; 87(4): 2037-41, 2015 Feb 17.
Artículo en Inglés | MEDLINE | ID: mdl-25642789

RESUMEN

High-resolution chemical depth profiling measurements of copper films are presented. The 10 µm thick copper test samples were electrodeposited on a Si-supported Cu seed under galvanostatic conditions in the presence of particular plating additives (SPS, Imep, PEI, and PAG) used in the semiconductor industry for the on-chip metallization of interconnects. To probe the trend of these plating additives toward inclusion into the deposit upon growth, quantitative elemental mass spectrometric measurements at trace level concentration were conducted by using a sensitive miniature laser ablation ionization mass spectrometer (LIMS), originally designed and developed for in situ space exploration. An ultrashort pulsed laser system (τ ∼ 190 fs, λ = 775 nm) was used for ablation and ionization of sample material. We show that with our LIMS system, quantitative chemical mass spectrometric analysis with an ablation rate at the subnanometer level per single laser shot can be conducted. The measurement capabilities of our instrument, including the high vertical depth resolution coupled with high detection sensitivity of ∼10 ppb, high dynamic range ≥10(8), measurement accuracy and precision, is of considerable interest in various fields of application, where investigations with high lateral and vertical resolution of the chemical composition of solid materials are required, these include, e.g., wafers from semiconductor industry or studies on space weathered samples in space research.

18.
J Am Chem Soc ; 136(52): 17922-5, 2014 Dec 31.
Artículo en Inglés | MEDLINE | ID: mdl-25494539

RESUMEN

Controlling charge transport through a single molecule connected to metallic electrodes remains one of the most fundamental challenges of nanoelectronics. Here we use electrochemical gating to reversibly tune the conductance of two different organic molecules, both containing anthraquinone (AQ) centers, over >1 order of magnitude. For electrode potentials outside the redox-active region, the effect of the gate is simply to shift the molecular energy levels relative to the metal Fermi level. At the redox potential, the conductance changes abruptly as the AQ unit is oxidized/reduced with an accompanying change in the conjugation pattern between linear and cross conjugation. The most significant change in conductance is observed when the electron pathway connecting the two electrodes is via the AQ unit. This is consistent with the expected occurrence of destructive quantum interference in that case. The experimental results are supported by an excellent agreement with ab initio transport calculations.

19.
Chem Commun (Camb) ; 50(100): 15975-8, 2014 Dec 28.
Artículo en Inglés | MEDLINE | ID: mdl-25384081

RESUMEN

We report an electrochemical gating approach with ∼100% efficiency to tune the conductance of single-molecule 4,4'-bipyridine junctions using scanning-tunnelling-microscopy break junction technique. Density functional theory calculation suggests that electrochemical gating aligns molecular frontier orbitals relative to the electrode Fermi-level, switching the molecule from an off resonance state to "partial" resonance.

20.
Nanoscale ; 6(24): 15117-26, 2014 Dec 21.
Artículo en Inglés | MEDLINE | ID: mdl-25372883

RESUMEN

Single gold particles may serve as room temperature single electron memory units because of their size dependent electronic level spacing. Here, we present a proof-of-concept study by electrochemically controlled scanning probe experiments performed on tailor-made Au particles of narrow dispersity. In particular, the charge transport characteristics through chemically synthesized hexane-1-thiol and 4-pyridylbenzene-1-thiol mixed monolayer protected Au(144) clusters (MPCs) by differential pulse voltammetry (DPV) and electrochemical scanning tunneling spectroscopy (EC-STS) are reported. The pyridyl groups exposed by the Au-MPCs enable their immobilization on Pt(111) substrates. By varying the humidity during their deposition, samples coated by stacks of compact monolayers of Au-MPCs or decorated with individual, laterally separated Au-MPCs are obtained. DPV experiments with stacked monolayers of Au(144)-MPCs and EC-STS experiments with laterally separated individual Au(144)-MPCs are performed both in aqueous and ionic liquid electrolytes. Lower capacitance values were observed for individual clusters compared to ensemble clusters. This trend remains the same irrespective of the composition of the electrolyte surrounding the Au(144)-MPC. However, the resolution of the energy level spacing of the single clusters is strongly affected by the proximity of neighboring particles.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...