Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Stem Cell Res Ther ; 14(1): 383, 2023 12 21.
Artículo en Inglés | MEDLINE | ID: mdl-38129923

RESUMEN

BACKGROUND: A challenging new branch of research related to aging-associated diseases is the identification of miRNAs capable of modulating the senescence-associated secretory phenotype (SASP) which characterizes senescent cells and contributes to driving inflammation. METHODS: Mesenchymal stem cells (MSC) from human umbilical cord stroma were stable modified using lentivirus transduction to inhibit miR-21-5p and shotgun proteomic analysis was performed in the MSC-derived extracellular vesicles (EV) to check the effect of miR-21 inhibition in their protein cargo. Besides, we studied the paracrine effect of those modified extracellular vesicles and also their effect on SASP. RESULTS: Syndecan-1 (SDC1) was the most decreased protein in MSC-miR21--derived EV, and it was involved in inflammation and EV production. MSC-miR21--derived EV were found to produce a statistically significant inhibitory effect on SASP and inflammaging markers expression in receptor cells, and in the opposite way, these receptor cells increased their SASP and inflammaging expression statistically significantly when treated with MSC-miR-21+-derived EV. CONCLUSION: This work demonstrates the importance of miR-21 in inflammaging and its role in SASP through SDC1.


Asunto(s)
Vesículas Extracelulares , Células Madre Mesenquimatosas , MicroARNs , Humanos , Proteómica , MicroARNs/genética , MicroARNs/metabolismo , Inflamación/metabolismo , Vesículas Extracelulares/metabolismo , Células Madre Mesenquimatosas/metabolismo
2.
Cell Mol Life Sci ; 79(11): 557, 2022 Oct 20.
Artículo en Inglés | MEDLINE | ID: mdl-36264388

RESUMEN

Osteoarthritis (OA) is closely linked to the increase in the number of senescent cells in joint tissues, and the senescence-associated secretory phenotype (SASP) is implicated in cartilage degradation. In the last decade, extracellular vesicles (EV) in combination with the use of miRNAs to modify post-transcriptional expressions of multiple genes have shown their utility in new therapies to treat inflammatory diseases. This work delves into the anti-inflammatory effect of extracellular vesicles derived from mesenchymal stem cells (MSC) previously modified to inhibit the expression of miR-21. We compare the efficacy of two treatments, MSC with their miR-21 inhibited through lentiviral transfection and their EV, against inflammation in a new OA animal model. The modified MSC and their EV were intraperitoneally injected in an OA animal model twice. One month after treatment, we checked which therapy was the most effective to reduce inflammation compared with animals untreated. Treated OA model sera were analyzed for cytokines and chemokines. Subsequently, different organs were analyzed to validate the results obtained. EV were the most effective treatment to reduce chemokines and cytokines in serum of OA animals as well as SASP, in their organs checked by proteomic and genomic techniques, compared with MSC alone in a statistically significant way. In conclusion, MSC-miR-21--derived EV showed a higher therapeutic potential in comparison with MSCs-miR-21-. They ameliorate the systemic inflammation through inactivation of ERK1/2 pathway in OA in vivo model. Workflow of the realization of the animal model of OA by injecting cells into the joint cavity of the left knee of the animals, which produces an increase in serum cytokines and chemokines in the animals in addition to the increase in SASP and markers of inflammation. Inhibition of miR-21 in MSCs, from the stroma of the human umbilical cord, by lentivirus and extraction of their EVs by ultracentrifugation. Finally, application of MSC therapy with its miR-21 inhibited or its EVs produces a decrease in serum cytokines and chemokines in the treated animals, in addition to an increase in SASP and markers of inflammation. The cell-free therapy being the one that produces a greater decrease in the parameters studied.


Asunto(s)
Células Madre Mesenquimatosas , MicroARNs , Osteoartritis , Humanos , Animales , Proteómica , Osteoartritis/metabolismo , Cordón Umbilical/metabolismo , Inflamación/terapia , Inflamación/metabolismo , MicroARNs/genética , MicroARNs/metabolismo , Citocinas/metabolismo , Quimiocinas/metabolismo , Modelos Animales de Enfermedad , Antiinflamatorios/metabolismo
3.
Life (Basel) ; 12(4)2022 Apr 06.
Artículo en Inglés | MEDLINE | ID: mdl-35455036

RESUMEN

The accumulation process of proinflammatory components in the body due to aging influences intercellular communication and is known as inflammaging. This biological mechanism relates the development of inflammation to the aging process. Recently, it has been reported that small extracellular vesicles (sEVs) are mediators in the transmission of paracrine senescence involved in inflammatory aging. For this reason, their components, as well as mechanisms of action of sEVs, are relevant to develop a new therapy called senodrugs (senolytics and senomorphic) that regulates the intercellular communication of inflammaging. In this review, we include the most recent and relevant studies on the role of sEVs in the inflammatory aging process and in age-related diseases such as cancer and type 2 diabetes.

4.
Int J Mol Sci ; 22(14)2021 Jul 07.
Artículo en Inglés | MEDLINE | ID: mdl-34298947

RESUMEN

Hutchinson-Gilford progeria syndrome (HGPS) is a deadly childhood disorder, which is considered a very rare disease. It is caused by an autosomal dominant mutation on the LMNA gene, and it is characterized by accelerated aging. Human cell lines from HGPS patients and healthy parental controls were studied in parallel using next-generation sequencing (NGS) to unravel new non-previously altered molecular pathways. Nine hundred and eleven transcripts were differentially expressed when comparing healthy versus HGPS cell lines from a total of 21,872 transcripts; ITPR1, ITPR3, CACNA2D1, and CAMK2N1 stood out among them due to their links with calcium signaling, and these were validated by Western blot analysis. It was observed that the basal concentration of intracellular Ca2+ was statistically higher in HGPS cell lines compared to healthy ones. The relationship between genes involved in Ca2+ signaling and mitochondria-associated membranes (MAM) was demonstrated through cytosolic calcium handling by means of an automated fluorescent plate reading system (FlexStation 3, Molecular Devices), and apoptosis and mitochondrial ROS production were examined by means of flow cytometry analysis. Altogether, our data suggest that the Ca2+ signaling pathway is altered in HGPS at least in part due to the overproduction of reactive oxygen species (ROS). Our results unravel a new therapeutic window for the treatment of this rare disease and open new strategies to study pathologies involving both accelerated and healthy aging.


Asunto(s)
Señalización del Calcio/genética , Progeria/genética , Envejecimiento/genética , Apoptosis/genética , Células Cultivadas , Chaperón BiP del Retículo Endoplásmico , Secuenciación de Nucleótidos de Alto Rendimiento/métodos , Ensayos Analíticos de Alto Rendimiento/métodos , Humanos , Lamina Tipo A/genética , Mitocondrias/genética , Mutación/genética , Especies Reactivas de Oxígeno/metabolismo , Transducción de Señal/genética
5.
Int J Mol Sci ; 22(7)2021 Mar 25.
Artículo en Inglés | MEDLINE | ID: mdl-33805981

RESUMEN

Mesenchymal stem cells have an important potential in the treatment of age-related diseases. In the last years, small extracellular vesicles derived from these stem cells have been proposed as cell-free therapies. Cellular senescence and proinflammatory activation are involved in the loss of therapeutic capacity and in the phenomenon called inflamm-aging. The regulators of these two biological processes in mesenchymal stem cells are not well-known. In this study, we found that p65 is activated during cellular senescence and inflammatory activation in human umbilical cord-derived mesenchymal stem cell. To demonstrate the central role of p65 in these two processes, we used small-molecular inhibitors of p65, such as JSH-23, MG-132 and curcumin. We found that the inhibition of p65 prevents the cellular senescence phenotype in human umbilical cord-derived mesenchymal stem cells. Besides, p65 inhibition produced the inactivation of proinflammatory molecules as components of a senescence-associated secretory phenotype (SASP) (interleukin-6 and interleukin-8 (IL-6 and IL-8)). Additionally, we found that the inhibition of p65 prevents the transmission of paracrine senescence between mesenchymal stem cells and the proinflammatory message through small extracellular vesicles. Our work highlights the important role of p65 and its inhibition to restore the loss of functionality of small extracellular vesicles from senescent mesenchymal stem cells and their inflamm-aging signature.


Asunto(s)
Senescencia Celular/efectos de los fármacos , Células Madre Mesenquimatosas/citología , Factor de Transcripción ReIA/metabolismo , Adolescente , Adulto , Proliferación Celular/efectos de los fármacos , Células Cultivadas , Curcumina/farmacología , Daño del ADN , Femenino , Humanos , Inflamación , Leupeptinas/farmacología , Nanopartículas , Comunicación Paracrina/efectos de los fármacos , Fenotipo , Fenilendiaminas/farmacología , Cordón Umbilical/citología
6.
Methods Mol Biol ; 2259: 3-12, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-33687705

RESUMEN

In the present protocol, extracellular vesicles (EVs) released from a primary culture of human umbilical cord mesenchymal stem cells (MSCs) were isolated by ultracentrifugation processes, characterized by transmission electron microscopy (TEM) and measured by nanoparticle tracking analysis (NTA). Protein was extracted from EVs using RIPA buffer and then was assessed for integrity. The proteomic content of the total EV protein samples was analyzed by liquid chromatography-tandem mass spectrometry (LC-MS/MS) after labeling by tandem mass tag (TMT). This combined approach allowed the development of an effective strategy to study the protein cargo from MSC-derived EVs.


Asunto(s)
Vesículas Extracelulares/química , Vesículas Extracelulares/ultraestructura , Células Madre Mesenquimatosas/citología , Proteínas/análisis , Células Cultivadas , Cromatografía Liquida/métodos , Medios de Cultivo/química , Humanos , Células Madre Mesenquimatosas/química , Microscopía Electrónica de Transmisión/métodos , Cultivo Primario de Células/métodos , Proteínas/aislamiento & purificación , Proteómica/métodos , Espectrometría de Masas en Tándem/métodos , Cordón Umbilical/citología
7.
Stem Cell Res Ther ; 11(1): 13, 2020 01 03.
Artículo en Inglés | MEDLINE | ID: mdl-31900239

RESUMEN

INTRODUCTION: This study assessed whether mesenchymal stem cell (MSC)-derived extracellular vesicles influenced ageing and pluripotency markers in cell cultures where they are added. METHODS: MSC-derived extracellular vesicles from old and young rat bone marrows were isolated by ultracentrifugation and were characterised by western blotting, nanoparticle tracking analysis (NTA) and transmission electron microscopy (TEM). They were added to young and old MSC cultures. Real-time quantitative reverse transcription polymerase chain reactions and western blot analysis were performed to check the markers of ageing (vinculin and lamin A), pluripotency markers (Nanog and Oct4) and components of the mTOR signalling pathway (Rictor, Raptor, AKT and mTOR) in these cell populations. Subsequently, microRNA (miR)-188-3p expression was transiently inhibited in young MSCs to demonstrate the influence of mTOR2 on MSC ageing. RESULTS: Incubation with young MSC-derived extracellular vesicles decreased the levels of ageing markers and components of the mTOR pathway and increased the pluripotency markers from old MSC populations. By contrast, incubation of young MSCs with old MSC-derived extracellular vesicles generated the reverse effects. Inhibition of miR-188-3p expression in young MSCs produced extracellular vesicles that when incubated with old MSCs produced an increase in the levels of Rictor, as well as a decrease of phosphor-AKT, as indicated by a significant decrease in beta-galactosidase staining. CONCLUSIONS: MSC-derived extracellular vesicles affected the behaviour of MSC cultures, based on their composition, which could be modified in vitro. These experiments represented the basis for the development of new therapies against ageing-associated diseases using MSC-derived extracellular vesicles.


Asunto(s)
Vesículas Extracelulares/metabolismo , Células Madre Mesenquimatosas/metabolismo , Envejecimiento , Animales , Ratas , Ratas Wistar
8.
World J Stem Cells ; 11(6): 337-346, 2019 Jun 26.
Artículo en Inglés | MEDLINE | ID: mdl-31293716

RESUMEN

Organs whose source is the mesoderm lineage contain a subpopulation of stem cells that are able to differentiate among mesodermal derivatives (chondrocytes, osteocytes, adipocytes). This subpopulation of adult stem cells, called "mesenchymal stem cells" or "mesenchymal stromal cells (MSCs)", contributes directly to the homeostatic maintenance of their organs; hence, their senescence could be very deleterious for human bodily functions. MSCs are easily isolated and amenable their expansion in vitro because of the research demanding to test them in many diverse clinical indications. All of these works are shown by the rapidly expanding literature that includes many in vivo animal models. We do not have an in-depth understanding of mechanisms that induce cellular senescence, and to further clarify the consequences of the senescence process in MSCs, some hints may be derived from the study of cellular behaviour in vivo and in vitro, autophagy, mitochondrial stress and exosomal activity. In this particular work, we decided to review these biological features in the literature on MSC senescence over the last three years.

9.
PLoS One ; 13(10): e0205878, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-30379953

RESUMEN

Hutchinson-Gilford progeria syndrome (HGPS) is a very rare fatal disease characterized for accelerated aging. Although the causal agent, a point mutation in LMNA gene, was identified more than a decade ago, the molecular mechanisms underlying HGPS are still not fully understood and, currently, there is no cure for the patients, which die at a mean age of thirteen. With the aim of unraveling non-previously altered molecular pathways in the premature aging process, human cell lines from HGPS patients and from healthy parental controls were studied in parallel using Next-Generation Sequencing (RNAseq) and High-Resolution Quantitative Proteomics (iTRAQ) techniques. After selection of significant proteins and transcripts and crosschecking of the results a small set of protein/transcript pairs were chosen for validation. One of those proteins, ribose-phosphate pyrophosphokinase 1 (PRPS1), is essential for nucleotide synthesis. PRPS1 loss-of-function mutants present lower levels of purine. PRPS1 protein and transcript levels are detected as significantly decreased in HGPS cell lines vs. healthy parental controls. This modulation was orthogonally confirmed by targeted techniques in cell lines and also in an animal model of Progeria, the ZMPSTE24 knock-out mouse. In addition, functional experiments through supplementation with S-adenosyl-methionine (SAMe), a metabolite that is an alternative source of purine, were done. Results indicate that SAMe has a positive effect in the proliferative capacity and reduces senescence-associated Beta-galactosidase staining of the HPGS cell lines. Altogether, our data suggests that nucleotide and, specifically, purine-metabolism, are altered in premature aging, opening a new window for the therapeutic treatment of the disease.


Asunto(s)
Lamina Tipo A/genética , Progeria/genética , Purinas/metabolismo , ARN Mensajero/genética , Ribosa-Fosfato Pirofosfoquinasa/genética , Adulto , Animales , Línea Celular , Proliferación Celular , Niño , Biología Computacional/métodos , Modelos Animales de Enfermedad , Femenino , Efecto Fundador , Perfilación de la Expresión Génica , Regulación de la Expresión Génica , Secuenciación de Nucleótidos de Alto Rendimiento , Humanos , Lamina Tipo A/deficiencia , Proteínas de la Membrana/deficiencia , Proteínas de la Membrana/genética , Metaloendopeptidasas/deficiencia , Metaloendopeptidasas/genética , Ratones , Ratones Noqueados , Progeria/tratamiento farmacológico , Progeria/metabolismo , Progeria/patología , ARN Mensajero/metabolismo , Ribosa-Fosfato Pirofosfoquinasa/deficiencia , S-Adenosilmetionina/farmacología , beta-Galactosidasa/genética , beta-Galactosidasa/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...