Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Neurotoxicol Teratol ; 102: 107336, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38402997

RESUMEN

Microglial cells mediate diverse homeostatic, inflammatory, and immune processes during normal development and in response to cytotoxic challenges. During these functional activities, microglial cells undergo distinct numerical and morphological changes in different tissue volumes in both rodent and human brains. However, it remains unclear how these cytostructural changes in microglia correlate with region-specific neurochemical functions. To better understand these relationships, neuroscientists need accurate, reproducible, and efficient methods for quantifying microglial cell number and morphologies in histological sections. To address this deficit, we developed a novel deep learning (DL)-based classification, stereology approach that links the appearance of Iba1 immunostained microglial cells at low magnification (20×) with the total number of cells in the same brain region based on unbiased stereology counts as ground truth. Once DL models are trained, total microglial cell numbers in specific regions of interest can be estimated and treatment groups predicted in a high-throughput manner (<1 min) using only low-power images from test cases, without the need for time and labor-intensive stereology counts or morphology ratings in test cases. Results for this DL-based automatic stereology approach on two datasets (total 39 mouse brains) showed >90% accuracy, 100% percent repeatability (Test-Retest) and 60× greater efficiency than manual stereology (<1 min vs. ∼ 60 min) using the same tissue sections. Ongoing and future work includes use of this DL-based approach to establish clear neurodegeneration profiles in age-related human neurological diseases and related animal models.


Asunto(s)
Aprendizaje Profundo , Microglía , Animales , Ratones , Humanos , Encéfalo/patología , Recuento de Células/métodos
2.
J Neurosci Methods ; 354: 109102, 2021 04 15.
Artículo en Inglés | MEDLINE | ID: mdl-33607171

RESUMEN

BACKGROUND: Quantifying cells in a defined region of biological tissue is critical for many clinical and preclinical studies, especially in the fields of pathology, toxicology, cancer and behavior. As part of a program to develop accurate, precise and more efficient automatic approaches for quantifying morphometric changes in biological tissue, we have shown that both deep learning-based and hand-crafted algorithms can estimate the total number of histologically stained cells at their maximal profile of focus in Extended Depth of Field (EDF) images. Deep learning-based approaches show accuracy comparable to manual counts on EDF images but significant enhancement in reproducibility, throughput efficiency and reduced error from human factors. However, a majority of the automated counts are designed for single-immunostained tissue sections. NEW METHOD: To expand the automatic counting methods to more complex dual-staining protocols, we developed an adaptive method to separate stain color channels on images from tissue sections stained by a primary immunostain with secondary counterstain. COMPARISON WITH EXISTING METHODS: The proposed method overcomes the limitations of the state-of-the-art stain-separation methods, like the requirement of pure stain color basis as a prerequisite or stain color basis learning on each image. RESULTS: Experimental results are presented for automatic counts using deep learning-based and hand-crafted algorithms for sections immunostained for neurons (Neu-N) or microglial cells (Iba-1) with cresyl violet counterstain. CONCLUSION: Our findings show more accurate counts by deep learning methods compared to the handcrafted method. Thus, stain-separated images can function as input for automatic deep learning-based quantification methods designed for single-stained tissue sections.


Asunto(s)
Aprendizaje Profundo , Algoritmos , Colorantes , Humanos , Procesamiento de Imagen Asistido por Computador , Reproducibilidad de los Resultados , Coloración y Etiquetado
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...