Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Molecules ; 26(23)2021 Nov 29.
Artículo en Inglés | MEDLINE | ID: mdl-34885825

RESUMEN

The δ-opioid receptor (δOR) holds great potential as a therapeutic target. Yet, clinical drug development, which has focused on δOR agonists that mimic the potent and selective tool compound SNC80 have largely failed. It has increasingly become apparent that the SNC80 scaffold carries with it potent and efficacious ß-arrestin recruitment. Here, we screened a relatively small (5120 molecules) physical drug library to identify δOR agonists that underrecruit ß-arrestin, as it has been suggested that compounds that efficaciously recruit ß-arrestin are proconvulsant. The screen identified a hit compound and further characterization using cellular binding and signaling assays revealed that this molecule (R995045, compound 1) exhibited ten-fold selectivity over µ- and κ-opioid receptors. Compound 1 represents a novel chemotype at the δOR. A subsequent characterization of fourteen analogs of compound 1, however did not identify a more potent δOR agonist. Computational modeling and in vitro characterization of compound 1 in the presence of the endogenous agonist leu-enkephalin suggest compound 1 may also bind allosterically and negatively modulate the potency of Leu-enkephalin to inhibit cAMP, acting as a 'NAM-agonist' in this assay. The potential physiological utility of such a class of compounds will need to be assessed in future in vivo assays.


Asunto(s)
Receptores Opioides delta/agonistas , Regulación Alostérica/efectos de los fármacos , Aminoácidos/química , Sitios de Unión , AMP Cíclico/metabolismo , Encefalina Leucina/química , Encefalina Leucina/farmacología , Células HEK293 , Humanos , Concentración 50 Inhibidora , Simulación de Dinámica Molecular , Receptores Opioides kappa/metabolismo , Receptores Opioides mu/metabolismo , beta-Arrestinas/metabolismo
2.
RSC Med Chem ; 12(11): 1958-1967, 2021 Nov 17.
Artículo en Inglés | MEDLINE | ID: mdl-34825191

RESUMEN

µ-Opioid receptor agonists provide potent and effective acute analgesia; however, their therapeutic window narrows considerably upon repeated administration, such as required for treating chronic pain. In contrast, bifunctional µ/δ opioid agonists, such as the endogenous enkephalins, have potential for treating both acute and chronic pain. However, enkephalins recruit ß-arrestins, which correlate with certain adverse effects at µ- and δ-opioid receptors. Herein, we identify the C-terminus of Tyr-ψ[(Z)CF[double bond, length as m-dash]CH]-Gly-Leu-enkephalin, a stable enkephalin derivative, as a key site to regulate bias of both δ- and µ-opioid receptors. Using in vitro assays, substitution of the Leu5 carboxylate with amides (NHEt, NMe2, NCyPr) reduced ß-arrestin recruitment efficacy through both the δ-opioid and µ-opioid, while retaining affinity and cAMP potency. For this series, computational studies suggest key ligand-receptor interactions that might influence bias. These findings should enable the discovery of a range of tool compounds with previously unexplored biased µ/δ opioid agonist pharmacological profiles.

3.
Br J Pharmacol ; 177(7): 1497-1513, 2020 04.
Artículo en Inglés | MEDLINE | ID: mdl-31705528

RESUMEN

BACKGROUND AND PURPOSE: Mitragyna speciosa, more commonly known as kratom, is a plant that contains opioidergic alkaloids but is unregulated in most countries. Kratom is used in the self-medication of chronic pain and to reduce illicit and prescription opioid dependence. Kratom may be less dangerous than typical opioids because of the stronger preference of kratom alkaloids to induce receptor interaction with G proteins over ß-arrestin proteins. We hypothesized that kratom (alkaloids) can also reduce alcohol intake. EXPERIMENTAL APPROACH: We pharmacologically characterized kratom extracts, kratom alkaloids (mitragynine, 7-hydroxymitragynine, paynantheine, and speciogynine) and synthetic carfentanil-amide opioids for their ability to interact with G proteins and ß-arrestin at µ, δ, and κ opioid receptors in vitro. We used C57BL/6 mice to assess to which degree these opioids could reduce alcohol intake and whether they had rewarding properties. KEY RESULTS: Kratom alkaloids were strongly G protein-biased at all three opioid receptors and reduced alcohol intake, but kratom and 7-hydroxymitragynine were rewarding. Several results indicated a key role for δ opioid receptors, including that the synthetic carfentanil-amide opioid MP102-a G protein-biased agonist with modest selectivity for δ opioid receptors-reduced alcohol intake, whereas the G protein-biased µ opioid agonist TRV130 did not. CONCLUSION AND IMPLICATIONS: Our results suggest that kratom extracts can decrease alcohol intake but still carry significant risk upon prolonged use. Development of more δ opioid-selective synthetic opioids may provide a safer option than kratom to treat alcohol use disorder with fewer side effects.


Asunto(s)
Alcoholismo , Mitragyna , Alcoholismo/tratamiento farmacológico , Amidas , Analgésicos Opioides , Animales , Fentanilo/análogos & derivados , Proteínas de Unión al GTP , Ratones , Ratones Endogámicos C57BL , Alcaloides de Triptamina Secologanina
4.
Molecules ; 24(24)2019 Dec 12.
Artículo en Inglés | MEDLINE | ID: mdl-31842282

RESUMEN

As tool compounds to study cardiac ischemia, the endogenous δ-opioid receptors (δOR) agonist Leu5-enkephalin and the more metabolically stable synthetic peptide (d-Ala2, d-Leu5)-enkephalin are frequently employed. However, both peptides have similar pharmacological profiles that restrict detailed investigation of the cellular mechanism of the δOR's protective role during ischemic events. Thus, a need remains for δOR peptides with improved selectivity and unique signaling properties for investigating the specific roles for δOR signaling in cardiac ischemia. To this end, we explored substitution at the Phe4 position of Leu5-enkephalin for its ability to modulate receptor function and selectivity. Peptides were assessed for their affinity to bind to δORs and µ-opioid receptors (µORs) and potency to inhibit cAMP signaling and to recruit ß-arrestin 2. Additionally, peptide stability was measured in rat plasma. Substitution of the meta-position of Phe4 of Leu5-enkephalin provided high-affinity ligands with varying levels of selectivity and bias at both the δOR and µOR and improved peptide stability, while substitution with picoline derivatives produced lower-affinity ligands with G protein biases at both receptors. Overall, these favorable substitutions at the meta-position of Phe4 may be combined with other modifications to Leu5-enkephalin to deliver improved agonists with finely tuned potency, selectivity, bias and drug-like properties.


Asunto(s)
Encefalina Leucina/farmacología , Receptores Opioides delta/metabolismo , Receptores Opioides mu/metabolismo , Transducción de Señal/efectos de los fármacos , Animales , Células CHO , Cricetulus , Encefalina Leucina/genética , Humanos , Fenilalanina , Receptores Opioides delta/agonistas , Receptores Opioides delta/genética , Receptores Opioides mu/agonistas , Receptores Opioides mu/genética , Transducción de Señal/genética
5.
Front Pharmacol ; 10: 407, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-31057409

RESUMEN

Between 2000 and 2005 several studies revealed that morphine is more potent and exhibits fewer side effects in beta-arrestin 2 knockout mice. These findings spurred efforts to develop opioids that signal primarily via G protein activation and do not, or only very weakly, recruit beta-arrestin. Development of such molecules targeting the mu opioid receptor initially outpaced those targeting the kappa, delta and nociceptin opioid receptors, with the G protein-biased mu opioid agonist oliceridine/TRV130 having completed phase III clinical trials with improved therapeutic window to treat moderate-to-severe acute pain. Recently however, there has been a sharp increase in the development of novel G protein-biased kappa agonists. It is hypothesized that G protein-biased kappa agonists can reduce pain and itch, but exhibit fewer side effects, such as anhedonia and psychosis, that have thus far limited the clinical development of unbiased kappa opioid agonists. Here we summarize recently discovered G protein-biased kappa agonists, comparing structures, degree of signal bias and preclinical effects. We specifically reviewed nalfurafine, 22-thiocyanatosalvinorin A (RB-64), mesyl-salvinorin B, 2-(4-(furan-2-ylmethyl)-5-((4-methyl-3-(trifluoromethyl)benzyl)thio)-4H-1,2,4-triazol-3-yl)pyridine (triazole 1.1), 3-(2-((cyclopropylmethyl)(phenethyl)amino)ethyl)phenol (HS666), N-n-butyl-N-phenylethyl-N-3-hydroxyphenylethyl-amine (compound 5/BPHA), 6-guanidinonaltrindole (6'GNTI), and collybolide. These agonists encompass a variety of chemical scaffolds and range in both their potency and efficacy in terms of G protein signaling and beta-arrestin recruitment. Thus unsurprisingly, the behavioral responses reported for these agonists are not uniform. Yet, it is our conclusion that the kappa opioid field will benefit tremendously from future studies that compare several biased agonists and correlate the degree of signaling bias to a particular pharmacological response.

6.
Neuropharmacology ; 152: 15-21, 2019 07 01.
Artículo en Inglés | MEDLINE | ID: mdl-30419245

RESUMEN

G protein-coupled receptors (GPCR) have a long history of being considered a prime target for drug development to treat a plethora of diseases and disorders. In fact in 1827, the first approved therapeutic in the United States was morphine, a drug that targets a GPCR, namely the mu opioid receptor. However, with the rise in biologics over the last two decades, the market share of small molecules targeting GPCRs has declined. Still, two phenomena concerning GPCR pharmacology, specifically heteromerization and biased signaling, have bolstered new interests in this particular class of drug targets. Heteromerization, the process by which two distinct GPCRs come together to form a unique signaling complex, has been demonstrated between many different GPCRs and has spurred efforts to discover heteromer selective drugs. Additionally, the discovery of biased signaling, a concept by which a GPCR can transduce intracellular signaling by favoring a specific pathway (e.g. G-protein) over another pathway (e.g. arrestin), has led to the development of signal-biased drugs with potentially fewer side effects. Our goal for this review is to highlight studies that have investigated the interplay of these two phenomena by providing an overview of the current literature describing instances where GPCR heteromers have distinct arrestin recruitment profiles when compared to the individual GPCRs, with a focus on those GPCRs expressed in the central nervous system. This article is part of the Special Issue entitled 'Receptor heteromers and their allosteric receptor-receptor interactions'.


Asunto(s)
Arrestinas/metabolismo , Receptores Acoplados a Proteínas G/metabolismo , Regulación Alostérica/fisiología , Multimerización de Proteína , Transducción de Señal , beta-Arrestinas
7.
Eur Neuropsychopharmacol ; 29(3): 450-456, 2019 03.
Artículo en Inglés | MEDLINE | ID: mdl-30591345

RESUMEN

The impact that ß-arrestin proteins have on G protein-coupled receptor trafficking, signaling and physiological behavior has gained much appreciation over the past decade. A number of studies have attributed the side effects associated with the use of naturally occurring and synthetic opioids, such as respiratory depression and constipation, to excessive recruitment of ß-arrestin. These findings have led to the development of biased opioid small molecule agonists that do not recruit ß-arrestin, activating only the canonical G protein pathway. Similar G protein-biased small molecule opioids have been found to occur in nature, particularly within kratom, and opioids within salvia have served as a template for the synthesis of other G protein-biased opioids. Here, we present the first report of naturally occurring peptides that selectively activate G protein signaling pathways at δ opioid receptors, but with minimal ß-arrestin recruitment. Specifically, we find that rubiscolin peptides, which are produced as cleavage products of the plant protein rubisco, bind to and activate G protein signaling at δ opioid receptors. However, unlike the naturally occurring δ opioid peptides leu-enkephalin and deltorphin II, the rubiscolin peptides only very weakly recruit ß-arrestin 2 and have undetectable recruitment of ß-arrestin 1 at the δ opioid receptor.


Asunto(s)
Receptores Opioides delta/química , Receptores Opioides delta/metabolismo , Ribulosa-Bifosfato Carboxilasa/metabolismo , Animales , Células CHO , Cricetulus , AMP Cíclico/metabolismo , Relación Dosis-Respuesta a Droga , Encefalina Leucina/farmacología , Modelos Moleculares , Oligopéptidos/química , Oligopéptidos/metabolismo , Ensayo de Unión Radioligante , Receptores Opioides delta/genética , Ribulosa-Bifosfato Carboxilasa/síntesis química , Ribulosa-Bifosfato Carboxilasa/química , Ribulosa-Bifosfato Carboxilasa/farmacología , Transfección , Arrestina beta 2/genética , Arrestina beta 2/metabolismo
8.
Front Psychiatry ; 9: 112, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-29686629

RESUMEN

The transition from non-dependent alcohol use to alcohol dependence involves increased activity of the dorsal striatum. Interestingly, the dorsal striatum expresses a large number of inhibitory G-protein-coupled receptors (GPCRs), which when activated may inhibit alcohol-induced increased activity and can decrease alcohol consumption. Here, we explore the hypothesis that dorsal striatal Gi/o-protein activation is sufficient to reduce voluntary alcohol intake. Using a voluntary, limited-access, two-bottle choice, drink-in-the-dark model of alcohol (10%) consumption, we validated the importance of Gi/o signaling in this region by locally expressing neuron-specific, adeno-associated-virus encoded Gi/o-coupled muscarinic M4 designer receptors exclusively activated by designer drugs (DREADD) in the dorsal striatum and observed a decrease in alcohol intake upon DREADD activation. We validated our findings by activating Gi/o-coupled delta-opioid receptors (DORs), which are natively expressed in the dorsal striatum, using either a G-protein biased agonist or a ß-arrestin-biased agonist. Local infusion of TAN-67, an in vitro-determined Gi/o-protein biased DOR agonist, decreased voluntary alcohol intake in wild-type and ß-arrestin-2 knockout (KO) mice. SNC80, a ß-arrestin-2 biased DOR agonist, increased alcohol intake in wild-type mice; however, SNC80 decreased alcohol intake in ß-arrestin-2 KO mice, thus resulting in a behavioral outcome generally observed for Gi/o-biased agonists and suggesting that ß-arrestin recruitment is required for SNC80-increased alcohol intake. Overall, these results suggest that activation Gi/o-coupled GPCRs expressed in the dorsal striatum, such as the DOR, by G-protein biased agonists may be a potential strategy to decrease voluntary alcohol consumption and ß-arrestin recruitment is to be avoided.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...