Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 30
Filtrar
1.
Phys Med Biol ; 69(7)2024 Mar 14.
Artículo en Inglés | MEDLINE | ID: mdl-38198730

RESUMEN

Objective. To demonstrate that complete cone beam CT (CBCT) scans from both MV-energy and kV-energy LINAC sources can reduce metal artifacts in radiotherapy guidance, while maintaining standard-of-care x-ray doses levels.Approach. MV-CBCT and kV-CBCT scans are acquired at half normal dose. The impact of lowered dose on MV-CBCT data quality is mitigated by the use of a 4-layer MV-imager prototype and reduced LINAC energy settings (2.5 MV) to improve photon capture. Additionally, the MV-CBCT is used to determine the 3D position and pose of metal implants, which in turn is used to guide model-based poly-energetic correction and interleaving of the kV-CBCT and MV-CBCT data. Certain edge-preserving regularization steps incorporated into the model-based correction algorithm further reduce MV data noise.Main results. The method was tested in digital phantoms and a real pelvis phantom with large 2.5″ spherical inserts, emulating hip replacements of different materials. The proposed method demonstrated an appealing compromise between the high contrast of kV-CBCT and low artifact content of MV-CBCT. Contrast-to-noise improved 3-fold compared to MV-CBCT with a clinical 1-layer architecture at matched dose (37 mGy) and edge blur levels. Visual delineation of the bladder and prostate improved noteably over kV- or MV-CBCT alone.Significance. The proposed method demonstrates that a full MV-CBCT scan can be combined with kV-CBCT to reduce metal artifacts without resorting to complicated beam collimation strategies to limit the MV-CBCT dose contribution. Additionally, significant improvements in CNR can be achieved as compared to metal artifact reduction through current clinical MV-CBCT practices.


Asunto(s)
Artefactos , Tomografía Computarizada de Haz Cónico Espiral , Masculino , Humanos , Algoritmos , Tomografía Computarizada de Haz Cónico , Pelvis , Fantasmas de Imagen
2.
Med Phys ; 50(10): 5944-5955, 2023 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-37665764

RESUMEN

BACKGROUND: The incorporation of multi-energy capabilities into radiotherapy flat-panel detectors offers advantages including enhanced soft tissue visualization by reduction of signal from overlapping anatomy such as bone in 2D image projections; creation of virtual monoenergetic images for 3D contrast enhancement, metal artefact reduction and direct acquisition of relative electron density. A novel dual-layer on-board imager offering dual energy processing capabilities is being designed. As opposed to other dual-energy implementation techniques which require separate acquisition with two different x-ray spectra, the dual-layer detector design enables simultaneous acquisition of high and low energy images with a single exposure. A computational framework is required to optimize the design parameters and evaluate detector performance for specific clinical applications. PURPOSE: In this study, we report on the development of a Monte Carlo (MC) model of the imager including model validation. METHODS: The stack-up of the dual-layer imager (DLI) was implemented in GEANT4 Application for Tomographic Emission (GATE). The DLI model has an active area of 43×43 cm2 , with top and bottom Cesium Iodide (CsI) scintillators of 600 and 800 µm thickness, respectively. Measurement of spatial resolution and imaging of dedicated multi-material dual-energy (DE) phantoms were used to validate the model. The modulation transfer function (MTF) of the detector was calculated for a 120 kVp x-ray spectrum using a 0.5 mm thick tantalum edge rotated by 2.5o . For imaging validation, the DE phantom was imaged using a 140 kVp x-ray spectrum. For both validation simulations, corresponding measurements were done using an initial prototype of the imager. Agreement between simulations and measurement was assessed using normalized root mean square error (NRMSE) and 1D profile difference for the MTF and phantom images respectively. Further comparison between measurement and simulation was made using virtual monoenergetic images (VMIs) generated from basis material images derived using precomputed look-up tables. RESULTS: The MTF of the bottom layer of the dual-layer model shows values decreasing more quickly with spatial frequency, compared to the top layer, due to the thicker bottom scintillator thickness and scatter from the top layer. A comparison with measurement shows NRMSE of 0.013 and 0.015 as well as identical MTF50 of 0.8 mm1 and 1.0 mm1 for the top and bottom layer respectively. For the DE imaging of the DE-phantom, although a maximum deviation of 3.3% is observed for the 10 mm aluminum and Teflon inserts at the top layer, the agreement for all other inserts is less than 2.2% of the measured value at both layers. Material decomposition of simulated scatter-free DE images gives an average accuracy in PMMA and aluminum composition of 4.9% and 10.3% for 11-30 mm PMMA and 1-10 mm aluminum objects respectively. A comparison of decomposed values using scatter containing measured and simulated DE images shows good agreement within statistical uncertainty. CONCLUSION: Validation using both MTF and phantom imaging shows good agreement between simulation and measurements. With the present configuration of the digital prototype, the model can generate material decomposed images and virtual monoenergetic images.


Asunto(s)
Aluminio , Polimetil Metacrilato , Radiografía , Rayos X , Simulación por Computador , Fantasmas de Imagen
3.
J Appl Clin Med Phys ; 24(8): e13993, 2023 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-37071500

RESUMEN

PURPOSE: To determine the effect of megavoltage (MV) scatter on the accuracy of markerless tumor tracking (MTT) for lung tumors using dual energy (DE) imaging and to consider a post-processing technique to mitigate the effects of MV scatter on DE-MTT. METHODS: A Varian TrueBeam linac was used to acquire a series of interleaved 60/120 kVp images of a motion phantom with simulated tumors (10 and 15 mm diameter). Two sets of consecutive high/low energy projections were acquired, with and without MV beam delivery. The MV field sizes (FS) ranged from 2 × 2 cm2 -6 × 6 cm2 in steps of 1 × 1 cm2 . Weighted logarithmic subtraction was performed on sequential images to produce soft-tissue images for kV only (DEkV ) and kV with MV beam on (DEkV+MV ). Wavelet and fast Fourier transformation filtering (wavelet-FFT) was used to remove stripe noise introduced by MV scatter in the DE images ( DE kV + MV Corr ${\rm{DE}}_{{\rm{kV}} + {\rm{MV}}}^{{\rm{Corr}}}$ ). A template-based matching algorithm was then used to track the target on DEkV, DEkV+MV , and DE kV + MV Corr ${\rm{DE}}_{{\rm{kV}} + {\rm{MV}}}^{{\rm{Corr}}}$ images. Tracking accuracy was evaluated using the tracking success rate (TSR) and mean absolute error (MAE). RESULTS: For the 10 and 15 mm targets, the TSR for DEkV images was 98.7% and 100%, and MAE was 0.53 and 0.42 mm, respectively. For the 10 mm target, the TSR, including the effects of MV scatter, ranged from 86.5% (2 × 2 cm2 ) to 69.4% (6 × 6 cm2 ), while the MAE ranged from 2.05 mm to 4.04 mm. The application of wavelet-FFT algorithm to remove stripe noise ( DE kV + MV Corr ${\rm{DE}}_{{\rm{kV}} + {\rm{MV}}}^{{\rm{Corr}}}$ ) resulted in TSR values of 96.9% (2 × 2 cm2 ) to 93.4% (6 × 6 cm2 ) and subsequent MAE values were 0.89 mm to 1.37 mm. Similar trends were observed for the 15 mm target. CONCLUSION: MV scatter significantly impacts the tracking accuracy of lung tumors using DE images. Wavelet-FFT filtering can improve the accuracy of DE-MTT during treatment.


Asunto(s)
Neoplasias Pulmonares , Humanos , Rayos X , Radiografía , Neoplasias Pulmonares/diagnóstico por imagen , Neoplasias Pulmonares/radioterapia , Fantasmas de Imagen , Algoritmos
4.
J Appl Clin Med Phys ; 23(12): e13821, 2022 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-36350280

RESUMEN

PURPOSE: To evaluate the impact of various noise reduction algorithms and template matching parameters on the accuracy of markerless tumor tracking (MTT) using dual-energy (DE) imaging. METHODS: A Varian TrueBeam linear accelerator was used to acquire a series of alternating 60 and 120 kVp images (over a 180° arc) using fast kV switching, on five early-stage lung cancer patients. Subsequently, DE logarithmic weighted subtraction was performed offline on sequential images to remove bone. Various noise reduction techniques-simple smoothing, anticorrelated noise reduction (ACNR), noise clipping (NC), and NC-ACNR-were applied to the resultant DE images. Separately, tumor templates were generated from the individual planning CT scans, and band-pass parameter settings for template matching were varied. Template tracking was performed for each combination of noise reduction techniques and templates (based on band-pass filter settings). The tracking success rate (TSR), root mean square error (RMSE), and missing frames (percent unable to track) were evaluated against the estimated ground truth, which was obtained using Bayesian inference. RESULTS: DE-ACNR, combined with template band-pass filter settings of σlow  = 0.4 mm and σhigh  = 1.6 mm resulted in the highest TSR (87.5%), RMSE (1.40 mm), and a reasonable amount of missing frames (3.1%). In comparison to unprocessed DE images, with optimized band-pass filter settings of σlow  = 0.6 mm and σhigh  = 1.2 mm, the TSR, RMSE, and missing frames were 85.3%, 1.62 mm, and 2.7%, respectively. Optimized band-pass filter settings resulted in improved TSR values and a lower missing frame rate for both unprocessed DE and DE-ACNR as compared to the use previously published band-pass parameters based on single energy kV images. CONCLUSION: Noise reduction strategies combined with the optimal selection of band-pass filter parameters can improve the accuracy and TSR of MTT for lung tumors when using DE imaging.


Asunto(s)
Neoplasias Pulmonares , Humanos , Teorema de Bayes , Fantasmas de Imagen , Neoplasias Pulmonares/diagnóstico por imagen , Pulmón , Algoritmos
5.
Phys Med Biol ; 66(8)2021 04 16.
Artículo en Inglés | MEDLINE | ID: mdl-33503603

RESUMEN

Multi-layer imaging (MLI) devices improve the detective quantum efficiency (DQE) while maintaining the spatial resolution of conventional mega-voltage (MV) x-ray detectors for applications in radiotherapy. To date, only MLIs with identical detector layers have been explored. However, it may be possible to instead use different scintillation materials in each layer to improve the final image quality. To this end, we developed and validated a method for optimally combining the individual images from each layer of MLI devices that are built with heterogeneous layers. Two configurations were modeled within the GATE Monte Carlo package by stacking different layers of a terbium doped gadolinium oxysulfide Gd2O2S:Tb (GOS) phosphor and a LKH-5 glass scintillator. Detector response was characterized in terms of the modulation transfer function (MTF), normalized noise power spectrum (NNPS) and DQE. Spatial frequency-dependent weighting factors were then analytically derived for each layer such that the total DQE of the summed combination image would be maximized across all spatial modes. The final image is obtained as the weighted sum of the sub-images from each layer. Optimal weighting factors that maximize the DQE were found to be the quotient of MTF and NNPS of each layer in the heterogeneous MLI detector. Results validated the improvement of the DQE across the entire frequency domain. For the LKH-5 slab configuration, DQE(0) increases between 2%-3% (absolute), while the corresponding improvement for the LKH-5 pixelated configuration was 7%. The performance of the weighting method was quantitatively evaluated with respect to spatial resolution, contrast-to-noise ratio (CNR) and signal-to-noise ratio (SNR) of simulated planar images of phantoms at 2.5 and 6 MV. The line pair phantom acquisition exhibited a twofold increase in CNR and SNR, however MTF was degraded at spatial frequencies greater than 0.2 lp mm-1. For the Las Vegas phantom, the weighting improved the CNR by around 30% depending on the contrast region while the SNR values are higher by a factor of 2.5. These results indicate that the imaging performance of MLI systems can be enhanced using the proposed frequency-dependent weighting scheme. The CNR and SNR of the weighted combined image are improved across all spatial scales independent of the detector combination or photon beam energy.


Asunto(s)
Diagnóstico por Imagen , Método de Montecarlo , Fantasmas de Imagen , Relación Señal-Ruido
6.
Phys Med Biol ; 66(13)2021 06 21.
Artículo en Inglés | MEDLINE | ID: mdl-33472189

RESUMEN

Simultaneous acquisition of cone beam CT (CBCT) projections using both the kV and MV imagers of an image guided radiotherapy system reduces set-up scan times-a benefit to lung cancer radiation oncology patients-but increases noise in the 3D reconstruction. In this article, we present a kV-MV scan time reduction technique that uses two noise-reducing measures to achieve superior performance. The first is a high-DQE multi-layer MV imager prototype. The second is a beam hardening correction algorithm which combines poly-energetic modeling with edge-preserving, regularized smoothing of the projections. Performance was tested in real acquisitions of the Catphan 604 and a thorax phantom. Percent noise was quantified from voxel values in a soft tissue volume of interest (VOI) while edge blur was quantified from a VOI straddling a boundary between air and soft material. Comparisons in noise/resolution performance trade-off were made between our proposed approach, a dose-equivalent kV-only scan, and a kV-MV reconstruction technique previously published by Yinet al(2005Med. Phys.329). The proposed technique demonstrated lower noise as a function of spatial resolution than the baseline kV-MV method, notably a 50% noise reduction at typical edge blur levels. Our proposed method also exhibited fainter non-uniformity artifacts and in some cases superior contrast. Overall, we find that the combination of a multi-layer MV imager, acquiring at a LINAC source energy of 2.5 MV, and a denoised beam hardening correction algorithm enables noise, resolution, and dose performance comparable to standard kV-imager only set-up CBCT, but with nearly half the gantry rotation time.


Asunto(s)
Radioterapia Guiada por Imagen , Tomografía Computarizada de Haz Cónico Espiral , Tomografía Computarizada de Haz Cónico , Humanos , Aceleradores de Partículas , Fantasmas de Imagen
7.
Phys Med Biol ; 65(23): 235042, 2020 12 02.
Artículo en Inglés | MEDLINE | ID: mdl-33263311

RESUMEN

Monte Carlo simulation (MCS) is one of the most accurate computation methods for dose calculation and image formation in radiation therapy. However, the high computational complexity and long execution time of MCS limits its broad use. In this paper, we present a novel strategy to accelerate MCS using a graphic processing unit (GPU), and we demonstrate the application in mega-voltage (MV) cone-beam computed tomography (CBCT) simulation. A new framework that generates a series of MV projections from a single simulation run is designed specifically for MV-CBCT acquisition. A Geant4-based GPU code for photon simulation is incorporated into the framework for the simulation of photon transport through a phantom volume. The FastEPID method, which accelerates the simulation of MV images, is modified and integrated into the framework. The proposed GPU-based simulation strategy was tested for its accuracy and efficiency in a Catphan 604 phantom and an anthropomorphic pelvis phantom with beam energies at 2.5 MV, 6 MV, and 6 MV FFF. In all cases, the proposed GPU-based simulation demonstrated great simulation accuracy and excellent agreement with measurement and CPU-based simulation in terms of reconstructed image qualities. The MV-CBCT simulation was accelerated by factors of roughly 900-2300 using an NVIDIA Tesla V100 GPU card against a 2.5 GHz AMD Opteron™ Processor 6380.


Asunto(s)
Simulación por Computador , Tomografía Computarizada de Haz Cónico , Método de Montecarlo , Gráficos por Computador , Fantasmas de Imagen , Fotones
8.
Adv Radiat Oncol ; 5(5): 1006-1013, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-33089019

RESUMEN

PURPOSE: To describe and characterize fast-kV switching, dual-energy (DE) imaging implemented within the on-board imager of a commercial linear accelerator for markerless tumor tracking (MTT). METHODS AND MATERIALS: Fast-kV switching, DE imaging provides for rapid switching between programmed tube voltages (ie, 60 and 120 kVp) from one image frame to the next. To characterize this system, the weighting factor used for logarithmic subtraction and signal difference-to-noise ratio were analyzed as a function of time and frame rate. MTT was evaluated using a thorax motion phantom and fast kV, DE imaging was compared versus single energy (SE) imaging over 360 degrees of rotation. A template-based matching algorithm was used to track target motion on both DE and SE sequences. Receiver operating characteristics were used to compare tracking results for both modalities. RESULTS: The weighting factor was inversely related to frame rate and stable over time. After applying the frame rate-dependent weighting factor, the signal difference-to-noise ratio was consistent across all frame rates considered for simulated tumors ranging from 5 to 25 mm in diameter. An analysis of receiver operating characteristics curves showed improved tracking with DE versus SE imaging. The area under the curve for the 10-mm target ranged from 0.821 to 0.858 for SE imaging versus 0.968 to 0.974 for DE imaging. Moreover, the residual tracking errors for the same target size ranged from 2.02 to 2.18 mm versus 0.79 to 1.07 mm for SE and DE imaging, respectively. CONCLUSIONS: Fast-kV switching, DE imaging was implemented on the on-board imager of a commercial linear accelerator. DE imaging resulted in improved MTT accuracy over SE imaging. Such an approach may have application for MTT of patients with lung cancer receiving stereotactic body radiation therapy, particularly for small tumors where MTT with SE imaging may fail.

9.
Phys Med Biol ; 65(13): 135004, 2020 07 06.
Artículo en Inglés | MEDLINE | ID: mdl-32244240

RESUMEN

Intensive computation time is required to simulate images of electronic portal imaging device (EPID) using Monte Carlo (MC) technique, limiting the development of applications associated with EPID, such as mega-voltage cone-beam computed tomography (MV-CBCT). In this study, a fast, accurate simulation strategy for MV-CBCT utilizing the FastEPID technique has been developed and validated. During FastEPID simulation, photon detection was determined by pre-calculated photon energy deposition efficiency (η) and particle transport within the EPID was replaced with a pre-calculated optical photon spread function. This method is capable of reducing the time required for EPID image simulation by a factor of 90-140, without compromising image quality. MV-CBCT images reconstructed from the FastEPID simulated projections have been validated against measurement in terms of mean Hounsfield unit (HU), noise, and cupping artifact. These images were obtained with both a Catphan 604 phantom and an anthropomorphic pelvis phantom, under treatment beam energies of 2.5 MV, 6 MV, and 6 MV flattening filter free. The agreement between measurement and simulation was excellent in all cases. This novel strategy was capable of reducing the run time of a full scan simulation of MV-CBCT performed on a CPU cluster to a matter of hours, rather than weeks or months required by a conventional approach. Multiple applications associated with MV-CBCT (e.g. imager design optimization) are anticipated to gain from the implementation of this novel simulation strategy.


Asunto(s)
Tomografía Computarizada de Haz Cónico , Procesamiento de Imagen Asistido por Computador/métodos , Algoritmos , Artefactos , Humanos , Método de Montecarlo , Pelvis/diagnóstico por imagen , Fantasmas de Imagen , Factores de Tiempo
10.
Med Phys ; 47(4): 1827-1835, 2020 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-31930516

RESUMEN

PURPOSE: The feasibility of low-dose megavoltage cone-beam acquisition (MVCBCT) using a novel, high detective quantum efficiency (DQE) multi-layer imager (MLI) was investigated. The aim of this work was to reconstruct MVCBCT images using the MLI at different total dose levels, and assess Hounsfield Unit (HU) accuracy, noise and contrast-to-noise ratio (CNR) for low-dose megavoltage cone-beam acquisition. METHODS: The MLI has four stacked layers; each layer contains a combination of copper filter/converter, gadolinium oxysulfide (GOS) scintillator and a-Si detector array. In total, 720 projections of a CATPHAN® phantom were acquired over 360° at 2.5, 6, and 6 MV flattening filter free (FFF) beam energies on a Varian TrueBeam LINAC. The dose per projection was 0.01, 0.0167, and 0.05 MU for 2.5, 6, and 6 MV FFF, respectively. MVCBCT images were reconstructed with varying numbers of projections to provide a range of doses for evaluation. Hounsfield Unit uniformity, accuracy, noise and CNR were estimated. Improvements were quantified relative to the standard AS1200 single-layer imager. RESULTS: Average HU uniformity for the MLI reconstructions was within a range of 95%-99% for all of the energies studied. Relative electron density estimation from HU values was within 0.4% ± 1.8% from nominal values. The CNR for MVCBCT based on MLI projections was 2-4× greater than from AS1200 projections. The 2.5 MV beam acquisition with the MLI exhibited the lowest noise and the best balance between CNR and dose for low-dose reconstructions. CONCLUSIONS: Megavoltage cone-beam acquisition imaging with a novel MLI prototype mounted on a clinical linear accelerator demonstrated substantial improvement over the standard AS1200 EPID. Further optimization of MVCBCT reconstruction, particularly for 2.5 MV acquisitions, will improve image metrics. Overall, the MLI improves CNR at substantially lower doses than currently required by conventional detectors. This new high DQE detector could provide high-quality MVCBCT at clinically acceptable doses.


Asunto(s)
Tomografía Computarizada de Haz Cónico/métodos , Dosis de Radiación , Algoritmos , Estudios de Factibilidad , Procesamiento de Imagen Asistido por Computador , Fantasmas de Imagen
11.
Phys Med Biol ; 65(1): 015013, 2020 01 13.
Artículo en Inglés | MEDLINE | ID: mdl-31775131

RESUMEN

To evaluate fast-kV switching (FS) dual energy (DE) cone beam computed tomography (CBCT) using the on-board imager (OBI) of a commercial linear accelerator to produce virtual monoenergetic (VM) and relative electron density (RED) images. Using an polynomial attenuation mapping model, CBCT phantom projections obtained at 80 and 140 kVp with FS imaging, were decomposed into equivalent thicknesses of aluminum (Al) and polymethyl methacrylate (PMMA). All projections were obtained with the titanium foil and bowtie filter in place. Basis material projections were then recombined to create VM images by using the linear attenuation coefficients at the specified energy for each material. Similarly, RED images were produced by replacing the linear attenuation values of Al and PMMA by their respective RED values in the projection space. VM and RED images were reconstructed using Feldkamp-Davis-Kress (FDK) and an iterative algorithm (iCBCT, Varian Medical Systems). Hounsfield units (HU), contrast-to-noise ratio (CNR) and RED values were compared against known values. The results after VM-CBCT production showed good material decomposition and consistent HUVM values, with measured root mean square errors (RMSE) from theoretical values, after FDK reconstruction, of 20.5, 5.7, 12.8 and 21.7 HU for 50, 80, 100 and 150 keV, respectively. The largest CNR improvements, when compared to polychromatic images, were observed for the 50 keV VM images. Image noise was reduced up to 28% in the VM-CBCT images after iterative image reconstruction. RED values measured for our method resulted in a mean percentage error of 0.0% ± 1.8%. This study describes a method to generate VM-CBCT and RED images using FS-DE scans obtained using the OBI of a linac, including the effects of the bowtie filter. The creation of VM and RED images increases the dynamic range of CBCT images, and provides additional data that may be used for adaptive radiotherapy, and on table verification for radiotherapy treatments.


Asunto(s)
Algoritmos , Tomografía Computarizada de Haz Cónico/métodos , Procesamiento de Imagen Asistido por Computador/métodos , Aceleradores de Partículas/instrumentación , Fantasmas de Imagen , Humanos
12.
Phys Med Biol ; 64(9): 095019, 2019 04 29.
Artículo en Inglés | MEDLINE | ID: mdl-30901759

RESUMEN

We have developed a novel method for fast image simulation of flat panel detectors, based on the photon energy deposition efficiency and the optical spread function (OSF). The proposed method, FastEPID, determines the photon detection using photon energy deposition and replaces particle transport within the detector with precalculated OSFs. The FastEPID results are validated against experimental measurement and conventional Monte Carlo simulation in terms of modulation transfer function (MTF), signal-to-noise ratio (SNR), contrast-to-noise ratio (CNR), contrast, and relative difference of pixel value, obtained with a slanted slit image, Las Vegas phantom, and anthropomorphic pelvis phantom. Excellent agreement is observed between simulation and measurement in all cases. Without degrading image quality, the FastEPID method is capable of reducing simulation time up to a factor of 150. Multiple applications, such as imager design optimization for planar and volumetric imaging, are expected to benefit from the implementation of the FastEPID method.


Asunto(s)
Diagnóstico por Imagen/instrumentación , Fotones , Diagnóstico por Imagen/normas , Humanos , Método de Montecarlo , Fantasmas de Imagen , Relación Señal-Ruido
13.
Med Phys ; 46(3): 1323-1330, 2019 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-30586163

RESUMEN

PURPOSE: The purpose of this study was to evaluate the performance of a prototype electric portal imaging device (EPID) with a high detective quantum efficiency (DQE) scintillator, LKH-5. Specifically, image quality in context of both planar and megavoltage (MV) cone-beam computed tomography (CBCT) is analyzed. METHODS: Planar image quality in terms of modulation transfer function (MTF), noise power spectrum (NPS), and DQE are measured and compared to an existing EPID (AS-1200) using the 6 MV beamline for a Varian TrueBeam linac. Imager performance is contextualized for three-dimensional (3D), MV-CBCT performance by measuring imager lag and analyzing the expected degradation of the DQE as a function of dose. Finally, comparisons between reconstructed images of the Catphan phantom in terms of qualitative quality and signal-difference-to-noise ratio (SDNR) are made for 6 MV images using both conventional and LKH-5 EPIDs as well as for the kilovoltage (kV) on-board imager (OBI). RESULTS: Analysis of the NPS reveals linearity at all measured doses using the prototype LKH-5 detector. While the first zero of the MTF is much lower for the LKH-5 detector than the conventional EPID (0.6 cycles/mm vs 1.6 cycles/mm), the normalized NPS (NNPS) multiplied by total quanta (qNNPS) of the LKH-5 detector is roughly a factor of seven to eight times lower, yielding a DQE(0) of approximately 8%. First, second, and third frame lag were measured at approximately 23%, 5%, and 1%, respectively, although no noticeable image artifacts were apparent in reconstructed volumes. Analysis of low-dose performance reveals that DQE(0) remains at 80% of its maximum value at a dose as low as 7.5 × 10-6  MU. For a 400 projection technique, this represents a total scan dose of 0.0030 MU, suggesting that if imaging doses are increased to a value typical of kV-CBCT scans (~2.7 cGy), the LKH-5 detector will retain quantum noise limited performance. Finally, comparing Catphan scans, the prototype detector exhibits much lower image noise than the conventional EPID, resulting in improved small object representation. Furthermore, SDNR of H2 O and polystyrene cylinders improved from -1.95 and 2.94 to -15 and 18.7, respectively. CONCLUSIONS: Imaging performance of the prototype LKH-5 detector was measured and analyzed for both planar and 3D contexts. Improving noise transfer of the detector results in concurrent improvement of DQE(0). For 3D imaging, temporal characteristics were adequate for artifact-free performance and at relevant doses, the detector retained quantum noise limited performance. Although quantitative MTF measurements suggest poorer resolution, small object representation of the prototype imager is qualitatively improved over the conventional detector due to the measured reduction in noise.


Asunto(s)
Tomografía Computarizada de Haz Cónico/instrumentación , Vidrio/química , Procesamiento de Imagen Asistido por Computador/métodos , Fantasmas de Imagen , Conteo por Cintilación/instrumentación , Diseño de Equipo , Humanos , Dosis de Radiación , Relación Señal-Ruido
14.
Phys Med Biol ; 63(23): 235030, 2018 Dec 06.
Artículo en Inglés | MEDLINE | ID: mdl-30520416

RESUMEN

In radiation therapy, improvements in treatment conformality are often limited by movement of target tissue. To better treat the target, tumor tracking strategies involving beam's-eye-view (BEV) have been explored. However, localization surrogates like implanted fiducial markers may sometimes leave the field-of-view (FOV), as defined by the linear accelerator (LINAC) multi-leaf collimator (MLC). Radiation leakage through the MLC has been measured previously at approximately 1%-2%. High sensitivity prototype detectors imagers may improve the ability to visualize objects outside of the MLC FOV during treatment. The present study presents a proof-of-concept for tracking fiducial markers outside the MLC FOV by employing high sensitivity detectors using a high-efficiency, prototype scintillating glass called LKH-5 and also investigates the impact of multi-layer imager (MLI) architecture. It was found that by improving the detector efficiency, using either of these methods results in a reduction of dose required for fiducial marker visibility. Further, image correction by a rectangular median filter will improve fiducial marker representation in the MLC blocked images. Quantified by measuring the peak-to-sidelobe ratio (PSR) of the normalized cross correlation (NCC) between a template of the fiducial marker with the blocked MLC acquisition, visibility has been found at a threshold of roughly 5 for all configurations with a 3 × 3 cm2 ROI. For typical gadolinium oxysulfide (GOS) detectors in single and simulated 4-layer configurations, the minimum dose required for visualization was 20 and 10 MU, respectively. For LKH-5 detectors in single and simulated 4-layer configurations, this minimum dose was reduced to 4 and 2 MU, respectively. With a 6 MV flattening filter free (FFF) beam dose rate of 1400 MU min-1, the maximum detector frame rate while maintaining fiducial visibility is approximately 12 fps for a 4-layer LKH-5 configuration.


Asunto(s)
Planificación de la Radioterapia Asistida por Computador/métodos , Radioterapia Conformacional/métodos , Conteo por Cintilación/instrumentación , Estudios de Factibilidad , Marcadores Fiduciales , Humanos , Aceleradores de Partículas , Planificación de la Radioterapia Asistida por Computador/normas , Radioterapia Conformacional/normas , Conteo por Cintilación/normas
15.
Phys Med Biol ; 63(16): 165013, 2018 08 20.
Artículo en Inglés | MEDLINE | ID: mdl-30051879

RESUMEN

We have developed a Monte Carlo computational model of a clinically employed electronic portal imaging device (EPID), and demonstrated the impact of phosphor optical properties on the imaging performance. The EPID model was built with Geant4 application for tomographic emission. Both radiative and optical transport were included in the model. Modulation transfer function (MTF), normalized noise-power spectrum times the incident x-ray fluence (qNNPS), and detective quantum efficiency (DQE) were calculated for simulated and measured data, and their agreement was quantified by the normalized root-mean-square error (NRMSE). MTF was computed using a 100 µm wide slit tilted by 1.5° and qNNPS was estimated using the Fujita-Lubberts-Swank method. DQE was calculated from MTF and qNNPS data. The NRMSE value was 0.0467 for MTF, 0.0217 for qNNPS, and 0.0885 for DQE, showing good agreement between measurement and simulation. Five major optical properties, phosphor grain size, phosphor thickness, phosphor refractive index, binder refractive index, and packing ratio were tested for their influence on the qNNPS, MTF, and DQE(0) of the model. Generally, the effect on the qNNPS is greater than MTF, and no impact on DQE(0), except from phosphor thickness, was observed. Multiple applications, such as imager design optimization and investigations of the dosimetric performance, are expected to benefit from the validated model.


Asunto(s)
Simulación por Computador , Método de Montecarlo , Radiometría/instrumentación , Tomografía Computarizada por Rayos X/instrumentación , Tomografía Computarizada por Rayos X/métodos , Diseño de Equipo , Procesamiento de Imagen Asistido por Computador/métodos
16.
Phys Med Biol ; 63(12): 125016, 2018 06 20.
Artículo en Inglés | MEDLINE | ID: mdl-29846180

RESUMEN

Megavoltage (MV) cone-beam computed tomography (CBCT) using an electronic portal imaging (EPID) offers advantageous features, including 3D mapping, treatment beam registration, high-z artifact suppression, and direct radiation dose calculation. Adoption has been slowed by image quality limitations and concerns about imaging dose. Developments in imager design, including pixelated scintillators, structured phosphors, inexpensive scintillation materials, and multi-layer imager (MLI) architecture have been explored to improve EPID image quality and reduce imaging dose. The present study employs a hybrid Monte Carlo and linear systems model to determine the effect of detector design elements, such as multi-layer architecture and scintillation materials. We follow metrics of image quality including modulation transfer function (MTF) and noise power spectrum (NPS) from projection images to 3D reconstructions to in-plane slices and apply a task based figure-of-merit, the ideal observer signal-to-noise ratio (d') to determine the effect of detector design on object detectability. Generally, detectability was limited by detector noise performance. Deploying an MLI imager with a single scintillation material for all layers yields improvement in noise performance and d' linear with the number of layers. In general, improving x-ray absorption using thicker scintillators results in improved DQE(0). However, if light yield is low, performance will be affected by electronic noise at relatively high doses, resulting in rapid image quality degradation. Maximizing image quality in a heterogenous MLI detector (i.e. multiple different scintillation materials) is most affected by limiting total noise. However, while a second-order effect, maximizing total spatial resolution of the MLI detector is a balance between the intensity contribution of each layer against its individual MTF. So, while a thinner scintillator may yield a maximal individual-layer MTF, its quantum efficiency will be relatively low in comparison to a thicker scintillator and thus, intensity contribution may be insufficient to noticeably improve the total detector MTF.


Asunto(s)
Tomografía Computarizada de Haz Cónico Espiral/métodos , Humanos , Método de Montecarlo , Relación Señal-Ruido , Tomografía Computarizada de Haz Cónico Espiral/instrumentación , Tomografía Computarizada de Haz Cónico Espiral/normas
17.
Phys Med Biol ; 63(10): 105002, 2018 05 10.
Artículo en Inglés | MEDLINE | ID: mdl-29652670

RESUMEN

The architecture of multi-layer imagers (MLIs) can be exploited to provide megavoltage spectral imaging (MVSPI) for specific imaging tasks. In the current work, we investigated bone suppression and gold fiducial contrast enhancement as two clinical tasks which could be improved with spectral imaging. A method based on analytical calculations that enables rapid investigation of MLI component materials and thicknesses was developed and validated against Monte Carlo computations. The figure of merit for task-specific imaging performance was the contrast-to-noise ratio (CNR) of the gold fiducial when the CNR of bone was equal to zero after a weighted subtraction of the signals obtained from each MLI layer. Results demonstrated a sharp increase in the CNR of gold when the build-up component or scintillation materials and thicknesses were modified. The potential for low-cost, prompt implementation of specific modifications (e.g. composition of the build-up component) could accelerate clinical translation of MVSPI.


Asunto(s)
Huesos/diagnóstico por imagen , Diagnóstico por Imagen/métodos , Oro/química , Diagnóstico por Imagen/instrumentación , Marcadores Fiduciales , Humanos , Método de Montecarlo , Dosis de Radiación , Relación Señal-Ruido
18.
Phys Med Biol ; 63(3): 035022, 2018 01 30.
Artículo en Inglés | MEDLINE | ID: mdl-29235440

RESUMEN

While megavoltage cone-beam computed tomography (CBCT) using an electronic portal imaging device (EPID) provides many advantages over kilovoltage (kV) CBCT, clinical adoption is limited by its high doses. Multi-layer imager (MLI) EPIDs increase DQE(0) while maintaining high resolution. However, even well-designed, high-performance MLIs suffer from increased electronic noise from each readout, degrading low-dose image quality. To improve low-dose performance, shift-and-bin addition (ShiBA) imaging is proposed, leveraging the unique architecture of the MLI. ShiBA combines hardware readout-binning and super-resolution concepts, reducing electronic noise while maintaining native image sampling. The imaging performance of full-resolution (FR); standard, aligned binned (BIN); and ShiBA images in terms of noise power spectrum (NPS), electronic NPS, modulation transfer function (MTF), and the ideal observer signal-to-noise ratio (SNR)-the detectability index (d')-are compared. The FR 4-layer readout of the prototype MLI exhibits an electronic NPS magnitude 6-times higher than a state-of-the-art single layer (SLI) EPID. Although the MLI is built on the same readout platform as the SLI, with each layer exhibiting equivalent electronic noise, the multi-stage readout of the MLI results in electronic noise 50% higher than simple summation. Electronic noise is mitigated in both BIN and ShiBA imaging, reducing its total by ~12 times. ShiBA further reduces the NPS, effectively upsampling the image, resulting in a multiplication by a sinc2 function. Normalized NPS show that neither ShiBA nor BIN otherwise affects image noise. The LSF shows that ShiBA removes the pixilation artifact of BIN images and mitigates the effect of detector shift, but does not quantifiably improve the MTF. ShiBA provides a pre-sampled representation of the images, mitigating phase dependence. Hardware binning strategies lower the quantum noise floor, with 2 × 2 implementation reducing the dose at which DQE(0) degrades by 10% from 0.01 MU to 0.004 MU, representing 20% improvement in d'.


Asunto(s)
Tomografía Computarizada de Haz Cónico/instrumentación , Tomografía Computarizada de Haz Cónico/métodos , Imagen Molecular/instrumentación , Fantasmas de Imagen , Relación Señal-Ruido , Humanos , Dosis de Radiación
19.
Phys Med Biol ; 62(23): 9127-9139, 2017 Nov 14.
Artículo en Inglés | MEDLINE | ID: mdl-29053107

RESUMEN

We assess the feasibility of clinical megavoltage (MV) spectral imaging for material and bone separation with a novel multi-layer imager (MLI) prototype. The MLI provides higher detective quantum efficiency and lower noise than conventional electronic portal imagers. Simulated experiments were performed using a validated Monte Carlo model of the MLI to estimate energy absorption and energy separation between the MLI components. Material separation was evaluated experimentally using solid water and aluminum (Al), copper (Cu) and gold (Au) for 2.5 MV, 6 MV and 6 MV flattening filter free (FFF) clinical photon beams. An anthropomorphic phantom with implanted gold fiducials was utilized to further demonstrate bone/gold separation. Weighted subtraction imaging was employed for material and bone separation. The weighting factor (w) was iteratively estimated, with the optimal w value determined by minimization of the relative signal difference ([Formula: see text]) and signal-difference-to-noise ratio (SDNR) between material (or bone) and the background. Energy separation between layers of the MLI was mainly the result of beam hardening between components with an average energy separation between 34 and 47 keV depending on the x-ray beam energy. The minimum average energy of the detected spectrum in the phosphor layer was 123 keV in the top layer of the MLI with the 2.5 MV beam. The w values that minimized [Formula: see text] and SDNR for Al, Cu and Au were 0.89, 0.76 and 0.64 for 2.5 MV; for 6 MV FFF, w was 0.98, 0.93 and 0.77 respectively. Bone suppression in the anthropomorphic phantom resulted in improved visibility of the gold fiducials with the 2.5 MV beam. Optimization of the MLI design is required to achieve optimal separation at clinical MV beam energies.


Asunto(s)
Huesos/diagnóstico por imagen , Diagnóstico por Imagen/métodos , Diagnóstico por Imagen/instrumentación , Humanos , Método de Montecarlo , Aceleradores de Partículas , Fantasmas de Imagen , Dosis de Radiación , Relación Señal-Ruido , Agua
20.
Med Phys ; 44(11): 5650-5659, 2017 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-28887836

RESUMEN

PURPOSE: In-treatment imaging using an electronic portal imaging device (EPID) can be used to confirm patient and tumor positioning. Real-time tumor tracking performance using current digital megavolt (MV) imagers is hindered by poor image quality. Novel EPID designs may help to improve quantum noise response, while also preserving the high spatial resolution of the current clinical detector. Recently investigated EPID design improvements include but are not limited to multi-layer imager (MLI) architecture, thick crystalline and amorphous scintillators, and phosphor pixilation and focusing. The goal of the present study was to provide a method of quantitating improvement in tracking performance as well as to reveal the physical underpinnings of detector design that impact tracking quality. The study employs a generalizable ideal observer methodology for the quantification of tumor tracking performance. The analysis is applied to study both the effect of increasing scintillator thickness on a standard, single-layer imager (SLI) design as well as the effect of MLI architecture on tracking performance. METHODS: The present study uses the ideal observer signal-to-noise ratio (d') as a surrogate for tracking performance. We employ functions which model clinically relevant tasks and generalized frequency-domain imaging metrics to connect image quality with tumor tracking. A detection task for relevant Cartesian shapes (i.e., spheres and cylinders) was used to quantitate trackability of cases employing fiducial markers. Automated lung tumor tracking algorithms often leverage the differences in benign and malignant lung tissue textures. These types of algorithms (e.g., soft-tissue localization - STiL) were simulated by designing a discrimination task, which quantifies the differentiation of tissue textures, measured experimentally and fit as a power-law in trend (with exponent ß) using a cohort of MV images of patient lungs. The modeled MTF and NPS were used to investigate the effect of scintillator thickness and MLI architecture on tumor tracking performance. RESULTS: Quantification of MV images of lung tissue as an inverse power-law with respect to frequency yields exponent values of ß = 3.11 and 3.29 for benign and malignant tissues, respectively. Tracking performance with and without fiducials was found to be generally limited by quantum noise, a factor dominated by quantum detective efficiency (QDE). For generic SLI construction, increasing the scintillator thickness (gadolinium oxysulfide - GOS) from a standard 290 µm to 1720 µm reduces noise to about 10%. However, 81% of this reduction is appreciated between 290 and 1000 µm. In comparing MLI and SLI detectors of equivalent individual GOS layer thickness, the improvement in noise is equal to the number of layers in the detector (i.e., 4) with almost no difference in MTF. Further, improvement in tracking performance was slightly less than the square-root of the reduction in noise, approximately 84-90%. In comparing an MLI detector with an SLI with a GOS scintillator of equivalent total thickness, improvement in object detectability is approximately 34-39%. CONCLUSIONS: We have presented a novel method for quantification of tumor tracking quality and have applied this model to evaluate the performance of SLI and MLI EPID designs. We showed that improved tracking quality is primarily limited by improvements in NPS. When compared to very thick scintillator SLI, employing MLI architecture exhibits the same gains in QDE, but by mitigating the effect of optical Swank noise, results in more dramatic improvements in tracking performance.


Asunto(s)
Equipos y Suministros Eléctricos , Neoplasias Pulmonares/diagnóstico por imagen , Imagen Molecular/instrumentación , Diseño de Equipo , Marcadores Fiduciales , Humanos , Fantasmas de Imagen , Relación Señal-Ruido , Transistores Electrónicos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...