Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 95
Filtrar
1.
Nat Commun ; 15(1): 4290, 2024 May 21.
Artículo en Inglés | MEDLINE | ID: mdl-38773093

RESUMEN

Energy absorbing efficiency is a key determinant of a structure's ability to provide mechanical protection and is defined by the amount of energy that can be absorbed prior to stresses increasing to a level that damages the system to be protected. Here, we explore the energy absorbing efficiency of additively manufactured polymer structures by using a self-driving lab (SDL) to perform >25,000 physical experiments on generalized cylindrical shells. We use a human-SDL collaborative approach where experiments are selected from over trillions of candidates in an 11-dimensional parameter space using Bayesian optimization and then automatically performed while the human team monitors progress to periodically modify aspects of the system. The result of this human-SDL campaign is the discovery of a structure with a 75.2% energy absorbing efficiency and a library of experimental data that reveals transferable principles for designing tough structures.

2.
J Orthop Res ; 42(6): 1343-1355, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38245852

RESUMEN

The intervertebral disc is an important structure for load transfer through the spine. Its injury and degeneration have been linked to pain and spinal fractures. Disc injury and spine fractures are associated with high stresses; however, these stresses cannot be measured, necessitating the use of finite element (FE) models. These models should include the disc's complex structure, as changes in disc geometry have been linked to altered mechanical behavior. However, image-based models using disc-specific structures have yet to be established. This study describes a multiphasic FE modeling approach for noninvasive estimates of subject-specific intervertebral disc mechanical behavior based on medical imaging. The models (n = 22) were used to study the influence of disc geometry on the predicted global mechanical response (moments and forces), internal local disc stresses, and tractions at the interface between the disc and the bone. Disc geometry was found to have a strong influence on the predicted moments and forces on the disc (R2 = 0.69-0.93), while assumptions regarding the side curvature (bulge) of the disc had only a minor effect. Strong variability in the predicted internal disc stresses and tractions was observed between the models (mean absolute differences of 5.1%-27.7%). Disc height had a systematic influence on the internal disc stresses and tractions at the disc-to-bone interface. The influence of disc geometry on mechanics highlights the importance of disc-specific modeling to estimate disc injury risk, loading on the adjacent vertebral bodies, and the mechanical environment present in disc tissues.


Asunto(s)
Análisis de Elementos Finitos , Disco Intervertebral , Disco Intervertebral/diagnóstico por imagen , Disco Intervertebral/fisiología , Humanos , Fenómenos Biomecánicos , Adulto , Masculino , Femenino , Estrés Mecánico , Persona de Mediana Edad , Vértebras Lumbares/diagnóstico por imagen , Vértebras Lumbares/fisiología , Modelos Biológicos
3.
Front Physiol ; 14: 1232698, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37877097

RESUMEN

At the macroscale, bones experience a variety of compressive and tensile loads, and these loads cause deformations of the cortical and trabecular microstructure. These deformations produce a variety of stimuli in the cellular microenvironment that can influence the differentiation of marrow stromal cells (MSCs) and the activity of cells of the MSC lineage, including osteoblasts, osteocytes, and chondrocytes. Mechanotransduction, or conversion of mechanical stimuli to biochemical and biological signals, is thus part of a multiscale mechanobiological process that drives bone modeling, remodeling, fracture healing, and implant osseointegration. Despite strong evidence of the influence of a variety of mechanical cues, and multiple paradigms proposed to explain the influence of these cues on tissue growth and differentiation, even a working understanding of how skeletal cells respond to the complex combinations of stimuli in their microenvironments remains elusive. This review covers the current understanding of what types of microenvironmental mechanical cues MSCs respond to and what is known about how they respond in the presence of multiple such cues. We argue that in order to realize the vast potential for harnessing the cellular microenvironment for the enhancement of bone regeneration, additional investigations of how combinations of mechanical cues influence bone regeneration are needed.

4.
Bone Rep ; 18: 101657, 2023 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-37425193

RESUMEN

Prior studies of acute phosphate restriction during the endochondral phase of fracture healing showed delayed chondrocyte differentiation was mechanistically linked to decreased bone morphogenetic protein signaling. In the present study, transcriptomic analysis of fracture callus gene expression in three strains of mice was used to identify differentially expressed (FDR = q ≤ 0.05) genes in response to phosphate (Pi) restriction. Ontology and pathway analysis of these genes showed that independent of genetic background, a Pi-deficient diet downregulated (p = 3.16 × 10-23) genes associated with mitochondrial oxidative phosphorylation pathways as well as multiple other pathways of intermediate metabolism. Temporal clustering was used to identify co-regulation of these specific pathways. This analysis showed that specific Ox/Phos, tricarboxylic acid cycle, pyruvate dehydrogenase. Arginine, proline metabolism genes, and prolyl 4-hydroxylase were all co-regulated in response to dietary Pi restriction. The murine C3H10T½ mesenchymal stem cell line was used to assess the functional relationships between BMP2-induced chondrogenic differentiation, oxidative metabolism and extracellular matrix formation. BMP2-induced chondrogenic differentiation of C3H10T½ was carried out in culture media in the absence or presence of ascorbic acid, the necessary co-factor for proly hydroxylation, and in media with normal and 25 % phosphate levels. BMP2 treatment led to decreased proliferation, increased protein accumulation and increased collagen and aggrecan gene expression. Across all conditions, BMP2 increased total oxidative activity and ATP synthesis. Under all conditions, the presence of ascorbate further increased total protein accumulation, proly-hydroxylation and aggrecan gene expression, oxidative capacity and ATP production. Lower phosphate levels only diminished aggrecan gene expression with no other effects of metabolic activity being observed. These data suggest that dietary phosphate restriction controls endochondral growth in vivo indirectly through BMP signaling, which upregulates oxidative activity that is linked to overall protein production and collagen hydroxylation.

5.
J Mech Behav Biomed Mater ; 145: 106029, 2023 09.
Artículo en Inglés | MEDLINE | ID: mdl-37499524

RESUMEN

This study aims to gain mechanistic understanding of how aging-related changes in the microstructure of cortical bone drive mechanical consequences at the macroscale. To that end, cortical bone was modeled as a bundle of elastic-plastic, parallel fibers, which represented osteons and interstitial tissue, loaded in uniaxial tension. Distinct material properties were assigned to each fiber in either the osteon or interstitial fiber "families." Models representative of mature (20-60 yrs.) bone, and elderly (60+) bone were created by modeling aging via the following changes to the input parameters: (i) increasing porosity from 5% to 15%, (ii) increasing the ratio of the number of osteon fibers relative to interstitial fibers from 40% to 50%, and (iii) changing the fiber material properties from representing mature bone samples to representing elderly bone samples (i.e., increased strength and decreased toughness of interstitial fibers together with decreased toughness of osteon fibers). To understand the respective contributions of these changes, additional models isolating one or two of each of these were also created. From the computed stress-strain curve for the fiber bundle, the yield point (ϵy, σy), ultimate point (ϵu, σu), and toughness (UT) for the bundle as a whole were measured. We found that changes to all three input parameters were required for the model to capture the aging-related decline in cortical bone mechanical properties consistent with those previously reported in the literature. In both mature and elderly bundles, rupture of the interstitial fibers drove the initial loss of strength following the ultimate point. Plasticity and more gradual rupture of the osteons drove the remainder of the response. Both the onset and completion of interstitial fiber rupture occurred at lower strains in the elderly vs. mature case. These findings point to the importance of studying microstructural changes beyond porosity, such as the area fraction of osteons and the material properties of osteon and interstitial tissue, in order to further understanding of aging-related changes in bone.


Asunto(s)
Huesos , Hueso Cortical , Humanos , Anciano , Porosidad , Hueso Cortical/fisiología , Envejecimiento/fisiología , Modelos Teóricos , Osteón
6.
Comput Methods Biomech Biomed Engin ; 26(5): 508-516, 2023 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-35579530

RESUMEN

MicroCT-based finite element models were used to compute power law relations for uniaxial compressive yield stress versus bone volume fraction for 78 cores of human trabecular bone from five anatomic sites. The leading coefficient of the power law for calcaneus differed from those for most of the other sites (p < 0.05). However, after normalizing by site-specific mean values, neither the leading coefficient (p > 0.5) nor exponent (p > 0.5) differed among sites, suggesting that a given percentage deviation from mean bone volume fraction has the same mechanical consequence for all sites investigated. These findings help explain the success of calcaneal x-ray and ultrasound measurements for predicting hip fracture risk.


Asunto(s)
Calcáneo , Fracturas de Cadera , Humanos , Cuello Femoral/diagnóstico por imagen , Tibia/diagnóstico por imagen , Hueso Esponjoso/diagnóstico por imagen , Calcáneo/diagnóstico por imagen , Fémur/diagnóstico por imagen , Columna Vertebral , Densidad Ósea
7.
Front Bioeng Biotechnol ; 11: 1289127, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-38164405

RESUMEN

Bone defects represent a challenging clinical problem as they can lead to non-union. In silico models are well suited to study bone regeneration under varying conditions by linking both cellular and systems scales. This paper presents an in silico micro-multiphysics agent-based (micro-MPA) model for bone regeneration following an osteotomy. The model includes vasculature, bone, and immune cells, as well as their interaction with the local environment. The model was calibrated by time-lapsed micro-computed tomography data of femoral osteotomies in C57Bl/6J mice, and the differences between predicted bone volume fractions and the longitudinal in vivo measurements were quantitatively evaluated using root mean square error (RMSE). The model performed well in simulating bone regeneration across the osteotomy gap, with no difference (5.5% RMSE, p = 0.68) between the in silico and in vivo groups for the 5-week healing period - from the inflammatory phase to the remodelling phase - in the volume spanning the osteotomy gap. Overall, the proposed micro-MPA model was able to simulate the influence of the local mechanical environment on bone regeneration, and both this environment and cytokine concentrations were found to be key factors in promoting bone regeneration. Further, the validated model matched clinical observations that larger gap sizes correlate with worse healing outcomes and ultimately simulated non-union. This model could help design and guide future experimental studies in bone repair, by identifying which are the most critical in vivo experiments to perform.

8.
Elife ; 112022 11 23.
Artículo en Inglés | MEDLINE | ID: mdl-36416764

RESUMEN

Genome-wide association studies (GWASs) for bone mineral density (BMD) in humans have identified over 1100 associations to date. However, identifying causal genes implicated by such studies has been challenging. Recent advances in the development of transcriptome reference datasets and computational approaches such as transcriptome-wide association studies (TWASs) and expression quantitative trait loci (eQTL) colocalization have proven to be informative in identifying putatively causal genes underlying GWAS associations. Here, we used TWAS/eQTL colocalization in conjunction with transcriptomic data from the Genotype-Tissue Expression (GTEx) project to identify potentially causal genes for the largest BMD GWAS performed to date. Using this approach, we identified 512 genes as significant using both TWAS and eQTL colocalization. This set of genes was enriched for regulators of BMD and members of bone relevant biological processes. To investigate the significance of our findings, we selected PPP6R3, the gene with the strongest support from our analysis which was not previously implicated in the regulation of BMD, for further investigation. We observed that Ppp6r3 deletion in mice decreased BMD. In this work, we provide an updated resource of putatively causal BMD genes and demonstrate that PPP6R3 is a putatively causal BMD GWAS gene. These data increase our understanding of the genetics of BMD and provide further evidence for the utility of combined TWAS/colocalization approaches in untangling the genetics of complex traits.


Asunto(s)
Estudio de Asociación del Genoma Completo , Sitios de Carácter Cuantitativo , Humanos , Ratones , Animales , Transcriptoma , Densidad Ósea/genética , Predisposición Genética a la Enfermedad
9.
Curr Osteoporos Rep ; 20(5): 309-319, 2022 10.
Artículo en Inglés | MEDLINE | ID: mdl-36048316

RESUMEN

PURPOSE OF REVIEW: We reviewed advances over the past 3 years in assessment of fracture risk based on CT scans, considering methods that use finite element models, machine learning, or a combination of both. RECENT FINDINGS: Several studies have demonstrated that CT-based assessment of fracture risk, using finite element modeling or biomarkers derived from machine learning, is equivalent to currently used clinical tools. Phantomless calibration of CT scans for bone mineral density enables accurate measurements from routinely taken scans. This opportunistic use of CT scans for fracture risk assessment is facilitated by high-quality automated segmentation with deep learning, enabling workflows that do not require user intervention. Modeling of more realistic and diverse loading conditions, as well as improved modeling of fracture mechanisms, has shown promise to enhance our understanding of fracture processes and improve the assessment of fracture risk beyond the performance of current clinical tools. CT-based screening for fracture risk is effective and, by analyzing scans that were taken for other indications, could be used to expand the pool of people screened, therefore improving fracture prevention. Finite element modeling and machine learning both provide valuable tools for fracture risk assessment. Future approaches should focus on including more loading-related aspects of fracture risk.


Asunto(s)
Densidad Ósea , Fracturas Óseas , Análisis de Elementos Finitos , Fracturas Óseas/diagnóstico por imagen , Humanos , Aprendizaje Automático , Medición de Riesgo/métodos , Tomografía Computarizada por Rayos X
10.
J Bone Miner Res ; 37(8): 1500-1510, 2022 08.
Artículo en Inglés | MEDLINE | ID: mdl-35695880

RESUMEN

Osteoporosis, characterized by low bone mineral density (BMD), is the most common complex disease affecting bone and constitutes a major societal health problem. Genome-wide association studies (GWASs) have identified over 1100 associations influencing BMD. It has been shown that perturbations to long noncoding RNAs (lncRNAs) influence BMD and the activities of bone cells; however, the extent to which lncRNAs are involved in the genetic regulation of BMD is unknown. Here, we combined the analysis of allelic imbalance (AI) in human acetabular bone fragments with a transcriptome-wide association study (TWAS) and expression quantitative trait loci (eQTL) colocalization analysis using data from the Genotype-Tissue Expression (GTEx) project to identify lncRNAs potentially responsible for GWAS associations. We identified 27 lncRNAs in bone that are located in proximity to a BMD GWAS association and harbor single-nucleotide polymorphisms (SNPs) demonstrating AI. Using GTEx data we identified an additional 31 lncRNAs whose expression was associated (false discovery rate [FDR] correction < 0.05) with BMD through TWAS and had a colocalizing eQTL (regional colocalization probability [RCP] > 0.1). The 58 lncRNAs are located in 43 BMD associations. To further support a causal role for the identified lncRNAs, we show that 23 of the 58 lncRNAs are differentially expressed as a function of osteoblast differentiation. Our approach identifies lncRNAs that are potentially responsible for BMD GWAS associations and suggest that lncRNAs play a role in the genetics of osteoporosis. © 2022 The Authors. Journal of Bone and Mineral Research published by Wiley Periodicals LLC on behalf of American Society for Bone and Mineral Research (ASBMR).


Asunto(s)
Osteoporosis , ARN Largo no Codificante , Densidad Ósea/genética , Predisposición Genética a la Enfermedad , Estudio de Asociación del Genoma Completo , Humanos , Osteoporosis/metabolismo , Polimorfismo de Nucleótido Simple/genética , ARN Largo no Codificante/genética
11.
Front Cell Dev Biol ; 10: 832460, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35531098

RESUMEN

As a precursor to type 2 diabetes mellitus (T2D), obesity adversely alters bone cell functions, causing decreased bone quality. Currently, the mechanisms leading to alterations in bone quality in obesity and subsequently T2D are largely unclear. Emerging evidence suggests that long noncoding RNAs (lncRNAs) participate in a vast repertoire of biological processes and play essential roles in gene expression and posttranscriptional processes. Mechanistically, the expression of lncRNAs is implicated in pathogenesis surrounding the aggregation or alleviation of human diseases. To investigate the functional link between specific lncRNA and obesity-associated poor bone quality and elucidate the molecular mechanisms underlying the interaction between the two, we first assessed the structure of the bones in a diet-induced obese (DIO) mouse model. We found that bone microarchitecture markedly deteriorated in the DIO mice, mainly because of aberrant remodeling in the bone structure. The results of in vitro mechanistic experiments supported these observations. We then screened mRNAs and lncRNAs from DIO bones and functionally identified a specific lncRNA, Gm15222. Further analyses demonstrated that Gm15222 promotes osteogenesis and inhibits the expression of adipogenesis-related genes in DIO via recruitment of lysine demethylases KDM6B and KDM4B, respectively. Through this epigenetic pathway, Gm15222 modulates histone methylation of osteogenic genes. In addition, Gm15222 showed a positive correlation with the expression of a neighboring gene, BMP4. Together, the results of this study identified and provided initial characterization of Gm15222 as a critical epigenetic modifier that regulates osteogenesis and has potential roles in targeting the pathophysiology of bone disease in obesity and potential T2D.

12.
JBMR Plus ; 6(2): e10579, 2022 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-35229061

RESUMEN

Time is a central element of the sexual dimorphic patterns of development, pathology, and aging of the skeleton. Because the transcriptome is a representation of the phenome, we hypothesized that both sex and sex-specific temporal, transcriptomic differences in bone tissues over an 18-month period would be informative to the underlying molecular processes that lead to postnatal sexual dimorphism. Regardless of age, sex-associated changes of the whole bone transcriptomes were primarily associated not only with bone but also vascular and connective tissue ontologies. A pattern-based approach used to screen the entire Gene Expression Omnibus (GEO) database against those that were sex-specific in bone identified two coordinately regulated gene sets: one related to high phosphate-induced aortic calcification and one induced by mechanical stimulation in bone. Temporal clustering of the transcriptome identified two skeletal tissue-associated, sex-specific patterns of gene expression. One set of genes, associated with skeletal patterning and morphology, showed peak expression earlier in females. The second set of genes, associated with coupled remodeling, had quantitatively higher expression in females and exhibited a broad peak between 3 to 12 months, concurrent with the animals' reproductive period. Results of phenome-level structural assessments of the tibia and vertebrae, and in vivo and in vitro analysis of cells having osteogenic potential, were consistent with the existence of functionally unique, skeletogenic cell populations that are separately responsible for appositional growth and intramedullary functions. These data suggest that skeletal sexual dimorphism arises through sex-specific, temporally different processes controlling morphometric growth and later coupled remodeling of the skeleton during the reproductive period of the animal. © 2021 The Authors. JBMR Plus published by Wiley Periodicals LLC on behalf of American Society for Bone and Mineral Research.

13.
Bone Rep ; 16: 101155, 2022 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-34984214

RESUMEN

Osteoarthritis (OA) is known to involve profound changes in bone density and microstructure near to, and even distal to, the joint. Critically, however, a full, spatial picture of these abnormalities has not been well documented in a quantitative fashion in hip OA. Here, micro-computed tomography (44.8 µm/voxel) and data-driven computational anatomy were used to generate 3-D maps of the distribution of bone density and microstructure in human femoral neck samples with early (6F/4M, mean age = 51.3 years), moderate (14F/8M, mean age = 60 years), and severe (16F/6M, mean age = 63.3 years) radiographic OA. With increasing severity of radiographic OA, there was decreased cortical bone mineral density (BMD) (p=0.003), increased cortical thickness (p=0.001), increased cortical porosity (p=0.0028), and increased cortical cross-sectional area (p=0.0012, due to an increase in periosteal radius (p=0.018)), with no differences detected in the total femoral neck or trabecular compartment measures. No OA-related region-specific differences were detected through Statistical Parametric Mapping, but there were trends towards decreased tissue mineral density (TMD) in the inferior femoral neck with increasing OA severity (0.050 < p ≤ 0.091), possibly due to osteophytes. Overall, the lack of differences in cortical TMD among radiographic OA groups indicated that the decrease in cortical BMD with increasing OA severity was largely due to the increased cortical porosity rather than decreased tissue mineralization. As porosity is inversely associated with stiffness and strength in cortical bone, increased porosity may offset the effect that increased cortical cross-sectional area would be expected to have on reducing stresses within the femoral neck. The use of high-resolution imaging and quantitative spatial assessment in this study provide insight into the heterogeneous and multi-faceted changes in density and microstructure in hip OA, which have implications for OA progression and fracture risk.

14.
Glob Chall ; 5(11): 2100039, 2021 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-34754507

RESUMEN

Diagnostic testing that facilitates containment, surveillance, and treatment of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), or future respiratory viruses, depends on a sample collection device that efficiently collects nasopharyngeal tissue and that can be manufactured on site when an outbreak or public health emergency is declared by a government. Here two novel stereolithography-based three-dimensional (3D)-printed nasopharyngeal swabs are reported which are made using a biocompatible and sterilizable photoresist. Such swabs are readily manufactured on-site and on-demand to ensure availability, if supply chain shortages emerge. Additionally, the 3D-printed swabs easily adapt to current workflow and testing procedures in hospital clinical laboratories to allow for effortless scaling up of test kits. Finally, the 3D-printed nasopharyngeal swabs demonstrate concordant SARS-CoV-2 testing results between the 3D-printed swabs and the COPAN commercial swabs, and enable detection of SARS-CoV-2 in clinical samples obtained from autopsies.

15.
Front Cell Dev Biol ; 9: 703670, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34650969

RESUMEN

To investigate the effects and mechanisms of irisin, a newly discovered myokine, in cartilage development, osteoarthritis (OA) pathophysiology and its therapeutic potential for treating OA we applied the following five strategical analyses using (1) murine joint tissues at different developmental stages; (2) human normal and OA pathological tissue samples; (3) experimental OA mouse model; (4) irisin gene knockout (KO) and knock in (KI) mouse lines and their cartilage cells; (5) in vitro mechanistic experiments. We found that Irisin was involved in all stages of cartilage development. Both human and mouse OA tissues showed a decreased expression of irisin. Intra-articular injection of irisin attenuated ACLT-induced OA progression. Irisin knockout mice developed severe OA while irisin overexpression in both irisin KI mice and intraarticular injection of irisin protein attenuated OA progression. Irisin inhibited inflammation and promoted anabolism in chondrogenic ADTC5 cells. Proliferative potential of primary chondrocytes from KI mice was found to be enhanced, while KO mice showed an inhibition under normal or inflammatory conditions. The primary chondrocytes from irisin KI mice showed reduced expression of inflammatory factors and the chondrocytes isolated from KO mice showed an opposite pattern. In conclusion, it is the first time to show that irisin is involved in cartilage development and OA pathogenesis. Irisin has the potential to ameliorate OA progression by decreasing cartilage degradation and inhibiting inflammation, which could lead to the development of a novel therapeutic target for treating bone and cartilage disorders including osteoarthritis.

16.
JOR Spine ; 4(3): e1170, 2021 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-34611592

RESUMEN

BACKGROUND: Although deformation and fracture of the vertebral endplate have been implicated in spinal conditions such as vertebral fracture and disc degeneration, few biomechanical studies of this structure are available. The goal of this study was to quantify the mechanical behavior of the vertebral endplate. METHODS: Eight-five rectangular specimens were dissected from the superior and/or inferior central endplates of human lumbar spine segments L1 to L4. Micro-computed tomography (µCT) imaging, four-point-bend testing, and ashing were performed to quantify the apparent elastic modulus and yield stress (modulus and yield stress, respectively, of the porous vertebral endplate), tissue yield stress (yield stress of the tissue of the vertebral endplate, excluding pores), ultimate strain, fracture strain, bone volume fraction (BV/TV), bone mineral density (BMD), and various measures of tissue density and composition (tissue mineral density, ash fraction, and ash density). Regression was used to assess the dependence of mechanical properties on density and composition. RESULTS: Wide variations in elastic and failure properties, and in density and tissue composition, were observed. BMD and BV/TV were good predictors of many of the apparent-level mechanical properties, including modulus, yield stress, and in the case of the inferior vertebral endplate, failure strains. Similar values of the mechanical properties were noted between superior and inferior vertebral endplates. In contrast to the dependence of apparent stiffness and strength on BMD and BV/TV, none of the mechanical properties depended on any of the tissue-level density measurements. CONCLUSION: The dependence of many of the mechanical properties of the vertebral endplate on BV/TV and BMD suggests possibilities for noninvasive assessment of how this region of the spine behaves during habitual and injurious loading. Further study of the nonmineral components of the endplate tissue is required to understand how the composition of this tissue may influence the overall mechanical behavior of the vertebral endplate.

17.
Br Dent J ; 231(4): 221-224, 2021 08.
Artículo en Inglés | MEDLINE | ID: mdl-34446892

RESUMEN

COVID-19 has dominated our lives since the start of the pandemic in 2020, as well as greatly impacting dentistry, its patients and the dental profession. A new and potentially further problematic phenomenon is that of long COVID, a term used to describe the effects of COVID-19 that continue for weeks, or even months, beyond the initial illness. It is characterised by debilitating symptoms including extreme fatigue, shortness of breath, insomnia, heart palpitations and prolonged high temperature. With one in ten people in the UK suffering from long COVID, there will undoubtedly be a considerable impact on dentistry provision; there will be ramifications not only for patients, but also the workforce, both physically and mentally. The aim of this article is to explore the obstacles we will face due to long COVID, examining possible challenges but also possible solutions.


Asunto(s)
COVID-19 , COVID-19/complicaciones , Odontología , Humanos , SARS-CoV-2 , Recursos Humanos , Síndrome Post Agudo de COVID-19
18.
iScience ; 24(4): 102262, 2021 Apr 23.
Artículo en Inglés | MEDLINE | ID: mdl-33817570

RESUMEN

Autonomous experimentation (AE) accelerates research by combining automation and machine learning to perform experiments intelligently and rapidly in a sequential fashion. While AE systems are most needed to study properties that cannot be predicted analytically or computationally, even imperfect predictions can in principle be useful. Here, we investigate whether imperfect data from simulation can accelerate AE using a case study on the mechanics of additively manufactured structures. Initially, we study resilience, a property that is well-predicted by finite element analysis (FEA), and find that FEA can be used to build a Bayesian prior and experimental data can be integrated using discrepancy modeling to reduce the number of needed experiments ten-fold. Next, we study toughness, a property not well-predicted by FEA and find that FEA can still improve learning by transforming experimental data and guiding experiment selection. These results highlight multiple ways that simulation can improve AE through transfer learning.

19.
Methods Mol Biol ; 2230: 17-37, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-33197006

RESUMEN

The study of postnatal skeletal repair is of immense clinical interest. Optimal repair of skeletal tissue is necessary in all varieties of elective and reparative orthopedic surgical treatments. However, the repair of fractures is unique in this context in that fractures are one of the most common traumas that humans experience and are the end-point manifestation of osteoporosis, the most common chronic disease of aging. In the first part of this introduction the basic biology of fracture healing is presented. The second part discusses the primary methodological approaches that are used to examine repair of skeletal hard tissue and specific considerations for choosing among and implementing these approaches.


Asunto(s)
Curación de Fractura , Fracturas Óseas/terapia , Sistema Musculoesquelético/fisiopatología , Osteoporosis/terapia , Envejecimiento/patología , Fracturas Óseas/fisiopatología , Humanos , Osteoporosis/fisiopatología
20.
Methods Mol Biol ; 2230: 63-73, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-33197008

RESUMEN

The most common procedure that has been developed for use in rats and mice to model fracture healing is described. The nature of the regenerative processes that may be assessed and the types of research questions that may be addressed with this model are briefly outlined. The detailed surgical protocol to generate closed simple transverse fractures is presented and general considerations when setting up an experiment using this model are described.


Asunto(s)
Curación de Fractura/fisiología , Fracturas Cerradas/cirugía , Animales , Fenómenos Biomecánicos , Modelos Animales de Enfermedad , Fracturas Cerradas/fisiopatología , Humanos , Masculino , Ratones , Ratas
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...