Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
PLoS Pathog ; 11(3): e1004723, 2015 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-25760349

RESUMEN

During vaccinia virus morphogenesis, intracellular mature virus (IMV) particles are wrapped by a double lipid bilayer to form triple enveloped virions called intracellular enveloped virus (IEV). IEV are then transported to the cell surface where the outer IEV membrane fuses with the cell membrane to expose a double enveloped virion outside the cell. The F12, E2 and A36 proteins are involved in transport of IEVs to the cell surface. Deletion of the F12L or E2L genes causes a severe inhibition of IEV transport and a tiny plaque size. Deletion of the A36R gene leads to a smaller reduction in plaque size and less severe inhibition of IEV egress. The A36 protein is present in the outer membrane of IEVs, and over-expressed fragments of this protein interact with kinesin light chain (KLC). However, no interaction of F12 or E2 with the kinesin complex has been reported hitherto. Here the F12/E2 complex is shown to associate with kinesin-1 through an interaction of E2 with the C-terminal tail of KLC isoform 2, which varies considerably between different KLC isoforms. siRNA-mediated knockdown of KLC isoform 1 increased IEV transport to the cell surface and virus plaque size, suggesting interaction with KLC isoform 1 is somehow inhibitory of IEV transport. In contrast, knockdown of KLC isoform 2 did not affect IEV egress or plaque formation, indicating redundancy in virion egress pathways. Lastly, the enhancement of plaque size resulting from loss of KLC isoform 1 was abrogated by removal of KLC isoforms 1 and 2 simultaneously. These observations suggest redundancy in the mechanisms used for IEV egress, with involvement of KLC isoforms 1 and 2, and provide evidence of interaction of F12/E2 complex with the kinesin-1 complex.


Asunto(s)
Proteínas Asociadas a Microtúbulos/metabolismo , Virus Vaccinia/metabolismo , Virus Vaccinia/patogenicidad , Proteínas Virales/metabolismo , Citometría de Flujo , Células HeLa , Humanos , Immunoblotting , Inmunoprecipitación , Cinesinas , Microscopía Confocal , Transporte de Proteínas/fisiología , Transfección
2.
Anal Biochem ; 441(1): 21-31, 2013 Oct 01.
Artículo en Inglés | MEDLINE | ID: mdl-23756734

RESUMEN

We have tested the application of high-mannose-binding lectins as analytical reagents to identify N-glycans in the early secretory pathway of HeLa cells during subcellular fractionation and cytochemistry. Post-endoplasmic reticulum (ER) pre-Golgi intermediates were separated from the ER on Nycodenz-sucrose gradients, and the glycan composition of each gradient fraction was profiled using lectin blotting. The fractions containing the post-ER pre-Golgi intermediates are found to contain a subset of N-linked α-mannose glycans that bind the lectins Galanthus nivalis agglutinin (GNA), Pisum sativum agglutinin (PSA), and Lens culinaris agglutinin (LCA) but not lectins binding Golgi-modified glycans. Cytochemical analysis demonstrates that high-mannose-containing glycoproteins are predominantly localized to the ER and the early secretory pathway. Indirect immunofluorescence microscopy revealed that GNA colocalizes with the ER marker protein disulfide isomerase (PDI) and the COPI coat protein ß-COP. In situ competition with concanavalin A (ConA), another high-mannose specific lectin, and subsequent GNA lectin histochemistry refined the localization of N-glyans containing nonreducing mannosyl groups, accentuating the GNA vesicular staining. Using GNA and treatments that perturb ER-Golgi transport, we demonstrate that lectins can be used to detect changes in membrane trafficking pathways histochemically. Overall, we find that conjugated plant lectins are effective tools for combinatory biochemical and cytological analysis of membrane trafficking of glycoproteins.


Asunto(s)
Técnicas Citológicas , Glicoproteínas/química , Glicoproteínas/metabolismo , Membranas Intracelulares/metabolismo , Oligosacáridos/análisis , Oligosacáridos/metabolismo , Lectinas de Plantas/química , Retículo Endoplásmico/química , Retículo Endoplásmico/metabolismo , Galanthus/química , Glicoproteínas/análisis , Aparato de Golgi/química , Aparato de Golgi/metabolismo , Células HeLa , Humanos , Membranas Intracelulares/química , Yohexol , Lens (Planta)/química , Oligosacáridos/química , Pisum sativum/química , Transporte de Proteínas , Sacarosa
3.
PLoS Pathog ; 6(2): e1000785, 2010 Feb 26.
Artículo en Inglés | MEDLINE | ID: mdl-20195521

RESUMEN

Vaccinia virus (VACV) uses microtubules for export of virions to the cell surface and this process requires the viral protein F12. Here we show that F12 has structural similarity to kinesin light chain (KLC), a subunit of the kinesin-1 motor that binds cargo. F12 and KLC share similar size, pI, hydropathy and cargo-binding tetratricopeptide repeats (TPRs). Moreover, molecular modeling of F12 TPRs upon the crystal structure of KLC2 TPRs showed a striking conservation of structure. We also identified multiple TPRs in VACV proteins E2 and A36. Data presented demonstrate that F12 is critical for recruitment of kinesin-1 to virions and that a conserved tryptophan and aspartic acid (WD) motif, which is conserved in the kinesin-1-binding sequence (KBS) of the neuronal protein calsyntenin/alcadein and several other cellular kinesin-1 binding proteins, is essential for kinesin-1 recruitment and virion transport. In contrast, mutation of WD motifs in protein A36 revealed they were not required for kinesin-1 recruitment or IEV transport. This report of a viral KLC-like protein containing a KBS that is conserved in several cellular proteins advances our understanding of how VACV recruits the kinesin motor to virions, and exemplifies how viruses use molecular mimicry of cellular components to their advantage.


Asunto(s)
Proteínas Asociadas a Microtúbulos/química , Virus Vaccinia/fisiología , Proteínas Virales/química , Secuencias de Aminoácidos , Secuencia de Aminoácidos , Secuencia Conservada , Microscopía por Crioelectrón , Células HeLa , Humanos , Cinesinas , Microscopía Inmunoelectrónica , Proteínas Asociadas a Microtúbulos/genética , Proteínas Asociadas a Microtúbulos/metabolismo , Modelos Moleculares , Imitación Molecular , Datos de Secuencia Molecular , Reacción en Cadena de la Polimerasa , Estructura Terciaria de Proteína , Virus Vaccinia/patogenicidad , Proteínas Virales/genética , Proteínas Virales/metabolismo , Virión/patogenicidad , Virión/fisiología
4.
Mol Cell Biol ; 25(9): 3774-83, 2005 May.
Artículo en Inglés | MEDLINE | ID: mdl-15831481

RESUMEN

Trypanosoma brucei is a flagellated protozoan with a highly polarized cellular structure. TbLRTP is a trypanosomal protein containing multiple SDS22-class leucine-rich repeats and a coiled-coil domain with high similarity to a mammalian testis-specific protein of unknown function. Homologues are present in a wide range of higher eukaryotes including zebra fish, where the gene product has been implicated in polycystic kidney disease. Western blot analysis and immunofluorescence with antibodies against recombinant TbLRTP indicate that the protein is expressed throughout the trypanosome life cycle and localizes to distal zones of the basal bodies. Overexpression and RNA interference demonstrate that TbLRTP is important for faithful basal body duplication and flagellum biogenesis. Expression of excess TbLRTP suppresses new flagellum assembly, while reduction of TbLRTP protein levels often results in the biogenesis of additional flagellar axonemes and paraflagellar rods that, most remarkably, are intracellular and fully contained within the cytoplasm. The mutant flagella are devoid of membrane and are often associated with four microtubules in an arrangement similar to that observed in the normal flagellar attachment zone. Aberrant basal body and flagellar biogenesis in TbLRTP mutants also influences cell size and cytokinesis. These findings demonstrate that TbLRTP suppresses basal body replication and subsequent flagellar biogenesis and indicate a critical role for the LRTP family of proteins in the control of the cell cycle. These data further underscore the role of aberrant flagellar biogenesis as a disease mechanism.


Asunto(s)
Flagelos/metabolismo , Proteínas Protozoarias/fisiología , Trypanosoma brucei brucei/fisiología , Secuencia de Aminoácidos , Animales , División Celular/fisiología , Evolución Molecular , Flagelos/genética , Flagelos/ultraestructura , Datos de Secuencia Molecular , Mutación/genética , Enfermedades Renales Poliquísticas/etiología , Proteínas Protozoarias/genética , Interferencia de ARN , Alineación de Secuencia , Trypanosoma brucei brucei/citología , Trypanosoma brucei brucei/genética
5.
Exp Parasitol ; 109(1): 33-7, 2005 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-15639137

RESUMEN

To investigate the role of clathrin-mediated trafficking during the Leishmania lifecycle, open reading frames encoding clathrin heavy chain and the beta-adaptins, major components of the adaptor complexes, have been analysed both in silico and experimentally. The Leishmania genome encodes three beta-adaptins, which arose at a time predating speciation of these divergent trypanosomatids. Unlike Trypanosoma brucei, both clathrin heavy chain and beta-adaptin1 are constitutively expressed throughout the Leishmania life cycle. Clathrin relocalises in amastigotes relative to promastigotes, consistent with developmental alterations to the morphology of the endo-membrane system.


Asunto(s)
Subunidades beta de Complejo de Proteína Adaptadora/fisiología , Cadenas Pesadas de Clatrina/fisiología , Leishmania major/química , Subunidades beta de Complejo de Proteína Adaptadora/química , Subunidades beta de Complejo de Proteína Adaptadora/genética , Subunidades beta de Complejo de Proteína Adaptadora/inmunología , Animales , Anticuerpos Antiprotozoarios/inmunología , Western Blotting , Cadenas Pesadas de Clatrina/química , Cadenas Pesadas de Clatrina/genética , Cadenas Pesadas de Clatrina/inmunología , Reacciones Cruzadas , Técnica del Anticuerpo Fluorescente , Regulación del Desarrollo de la Expresión Génica , Genoma de Protozoos , Aparato de Golgi/química , Leishmania major/clasificación , Leishmania major/genética , Leishmania major/inmunología , Ratones , Ratones Endogámicos BALB C , Sistemas de Lectura Abierta , Filogenia
6.
Microsc Microanal ; 10(5): 621-36, 2004 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-15525435

RESUMEN

Protozoan parasites are fearsome pathogens responsible for a substantial proportion of human mortality, morbidity, and economic hardship. The principal disease agents are members of the orders Apicomplexa (Plasmodium, Toxoplasma, Eimeria) and Kinetoplastida (Trypanosomes, Leishmania). The majority of humans are at risk from infection from one or more of these organisms, with profound effects on the economy, social structure and quality of life in endemic areas; Plasmodium itself accounts for over one million deaths per annum, and an estimated 4 x 10(7) disability-adjusted life years (DALYs), whereas the Kinetoplastida are responsible for over 100,000 deaths per annum and 4 x 10(6) DALYs. Current control strategies are failing due to drug resistance and inadequate implementation of existing public health strategies. Trypanosoma brucei, the African Trypanosome, has emerged as a favored model system for the study of basic cell biology in Kinetoplastida, because of several recent technical advances (transfection, inducible expression systems, and RNA interference), and these advantages, together with genome sequencing efforts are widely anticipated to provide new strategies of therapeutic intervention. Here we describe a suite of methods that have been developed for the microscopic analysis of T. brucei at the light and ultrastructural levels, an essential component of analysis of gene function and hence identification of therapeutic targets.


Asunto(s)
Trypanosoma brucei brucei/ultraestructura , Animales , Antígenos de Protozoos/metabolismo , Inmunohistoquímica , Microscopía Electrónica de Transmisión/métodos , Microscopía Fluorescente
7.
J Biol Chem ; 279(11): 10692-701, 2004 Mar 12.
Artículo en Inglés | MEDLINE | ID: mdl-14670954

RESUMEN

Members of the evolutionarily conserved dynamin-related GTPase family mediate numerous cellular membrane remodeling events. Dynamin family functions include the scission of clathrin-coated pits from the plasma membrane, mitochondrial fission, and chloroplast division. Here we report that the divergent eukaryote Trypanosoma brucei possesses a single dynamin family gene, which we have designated TbDLP. Furthermore, a single dynamin family gene is also found in the Leishmania major and Trypanosoma vivax genomes, indicating that this is a conserved feature among the kinetoplastida. TbDLP is most homologous to the DMN/DRP family of dynamin-like proteins. Indirect immunofluorescence microscopy reveals that TbDLP is distributed in punctate structures within the cell that partially co-localize with the mitochondrion when labeled with MitoTracker. To define TbDLP function, we have used RNA interference to silence the TbDLP gene. Reduction of TbDLP protein levels causes a profound alteration in mitochondrial morphology without affecting the structure of other membrane-bound compartments, including the endocytic and exocytic apparatus. The mitochondrial profiles present in wild type trypanosomes fuse and collapse in the mutant cells, and by electron microscopy the mitochondria are found to contain an accumulation of constriction sites. These findings demonstrate TbDLP functions in division of the mitochondrial membrane. Most significantly, as TbDLP is the sole member of the dynamin family in this organism, scission of clathrin-coated pits involved in protein trafficking through the highly active endocytic system in trypanosomes must function in the absence of dynamin. The evolutionary implications of these findings are discussed.


Asunto(s)
Dinaminas/biosíntesis , Dinaminas/química , Dinaminas/fisiología , Endocitosis , Mitocondrias/metabolismo , Trypanosoma brucei brucei/metabolismo , Secuencia de Aminoácidos , Animales , Northern Blotting , Western Blotting , Clonación Molecular , ADN/química , Bases de Datos como Asunto , Evolución Molecular , Técnica del Anticuerpo Fluorescente Indirecta , Genoma , Leishmania major/metabolismo , Microscopía Electrónica , Datos de Secuencia Molecular , Filogenia , Reacción en Cadena de la Polimerasa , Estructura Terciaria de Proteína , Interferencia de ARN , Factores de Tiempo , Trypanosoma vivax/metabolismo
8.
Mol Biol Cell ; 14(5): 2029-40, 2003 May.
Artículo en Inglés | MEDLINE | ID: mdl-12802073

RESUMEN

Recently, proteins linked to glycosylphosphatidylinositol (GPI) residues have received considerable attention both for their association with lipid microdomains and for their specific transport between cellular membranes. Basic features of trafficking of GPI-anchored proteins or glycolipids may be explored in flagellated protozoan parasites, which offer the advantage that their surface is dominated by these components. In Trypanosoma brucei, the GPI-anchored variant surface glycoprotein (VSG) is efficiently sorted at multiple intracellular levels, leading to a 50-fold higher membrane concentration at the cell surface compared with the endoplasmic reticulum. We have studied the membrane and VSG flow at an invagination of the plasma membrane, the flagellar pocket, the sole region for endo- and exocytosis in this organism. VSG enters trypanosomes in large clathrin-coated vesicles (135 nm in diameter), which deliver their cargo to endosomes. In the lumen of cisternal endosomes, VSG is concentrated by default, because a distinct class of small clathrin-coated vesicles (50-60 nm in diameter) budding from the cisternae is depleted in VSG. TbRAB11-positive cisternal endosomes, containing VSG, fragment by an unknown process giving rise to intensely TbRAB11- as well as VSG-positive, disk-like carriers (154 nm in diameter, 34 nm in thickness), which are shown to fuse with the flagellar pocket membrane, thereby recycling VSG back to the cell surface.


Asunto(s)
Vesículas Cubiertas por Clatrina/fisiología , Endocitosis/fisiología , Endosomas/fisiología , Exocitosis/fisiología , Glicosilfosfatidilinositoles/fisiología , Proteínas de Unión al GTP rab/fisiología , Animales , Endosomas/ultraestructura , Flagelos/fisiología , Aparato de Golgi/ultraestructura , Microscopía Electrónica , Trypanosoma brucei brucei/fisiología , Glicoproteínas Variantes de Superficie de Trypanosoma/fisiología
9.
Trends Parasitol ; 18(11): 491-6, 2002 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-12473365

RESUMEN

The endocytic system of kinetoplastid parasites is a highly polarized membrane network focused on the flagellar pocket localized at one end of the cell. When first characterized, the endosomal network was envisioned as a simple system for uptake of extracellular material by fluid-phase or receptor-mediated mechanisms. Subsequently, it has become clear that the kinetoplastid endosomal system has an active and vital role in avoiding the host immune system and virulence, as well as providing the basic functions to fulfil cellular nutritional requirements. In two reviews, recent advances in the definition and comprehension of kinetoplastida endocytosis are discussed and, in Trypanosoma brucei in particular as the more developed experimental system. In Part 1, the endocytic system is considered in context of the surface molecules and their potential roles in virulence.


Asunto(s)
Endocitosis/fisiología , Trypanosoma brucei brucei/metabolismo , Glicoproteínas Variantes de Superficie de Trypanosoma/metabolismo , Animales , Flagelos/metabolismo , Flagelos/ultraestructura , Interacciones Huésped-Parásitos , Leishmania/inmunología , Leishmania/metabolismo , Trypanosoma brucei brucei/inmunología , Trypanosoma brucei brucei/ultraestructura , Glicoproteínas Variantes de Superficie de Trypanosoma/inmunología , Virulencia/fisiología
10.
Trends Parasitol ; 18(12): 540-6, 2002 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-12482539

RESUMEN

Endocytic systems within eukaryotic cells are a diverse set of intracellular transport pathways responsible for uptake, recycling, interaction with the exocytic system and degradation of molecules. Each of these pathways requires the interaction of distinct protein components that function in macromolecule sorting, control of transport rates and in membrane biogenesis. In the second of two articles on kinetoplastida endocytosis, the endocytic system in Trypanosoma brucei is considered as a model, and the molecules that control this system and the protein components of the endocytic pathway are discussed. We also consider novel mechanisms for sorting that have been proposed to operate in trypanosomes.


Asunto(s)
Endocitosis/fisiología , Trypanosoma brucei brucei/fisiología , Complejo 1 de Proteína Adaptadora/metabolismo , Animales , Clatrina/metabolismo , Flagelos/metabolismo , Flagelos/ultraestructura , Interacciones Huésped-Parásitos , Kinetoplastida/citología , Kinetoplastida/fisiología , Modelos Moleculares , Filogenia , Trypanosoma brucei brucei/inmunología , Trypanosoma brucei brucei/ultraestructura , Glicoproteínas Variantes de Superficie de Trypanosoma/inmunología , Glicoproteínas Variantes de Superficie de Trypanosoma/metabolismo
11.
Mol Biochem Parasitol ; 121(1): 63-74, 2002 Apr 30.
Artículo en Inglés | MEDLINE | ID: mdl-11985863

RESUMEN

The trypanosomal secretory system is broadly similar to that of higher eukaryotes as proteins enter the system via the endoplasmic reticulum and are transported to the Golgi complex for elaboration of glycan chains. Importantly N-glycan processing is stage specific with only the bloodstream form (BSF) processing beyond the oligomannose form. Increased complexity of the BSF Golgi apparatus, as evidenced by morphological studies, may underpin this higher activity, but few trypanosome-specific Golgi proteins have been described that may play a role in this developmental alteration. Here we describe a novel member of the T. brucei Rab family, TbRAB18, which is stage-regulated and highly expressed in the BSF whilst barely detectable in the insect stage. This stage-specific expression suggests the presence of a TbRAB18-dependent transport pathway required for survival in the mammalian host. Furthermore, data indicate that TbRAB18 localises to membranes in close juxtaposition to structures stained with BODIPY-ceramide, a Golgi marker. Wild type TbRAB18, ectopically expressed in insect stage cells colocalises with TbRAB31, and hence is targeted to the Golgi complex, consistent with the location of the endogenous protein in the bloodstream form, whilst GTP and GDP-locked mutant isoforms demonstrate distinct localisations, suggesting that Golgi-targetting of TbRAB18 is nucleotide-state dependent. We also find that ectopic expression of TbRAB18 wild type and mutant isoforms has no detectable effect on the synthetic anteriograde trafficking probe, TbBiPN. Finally, the location, and hence function, of TbRAB18 are distinct from the closest metazoan homologue, murine Rab18; the latter protein is involved in endocytic transport pathways whilst clearly TbRAB18 is not. Our data indicate further complexity in the evolution of small GTPases, and highlight the need for robust functional data prior to assignment of members of complex gene families.


Asunto(s)
GTP Fosfohidrolasas/metabolismo , Regulación del Desarrollo de la Expresión Génica , Aparato de Golgi/enzimología , Trypanosoma brucei brucei/enzimología , Trypanosoma brucei brucei/crecimiento & desarrollo , Secuencia de Aminoácidos , Animales , Línea Celular , Clonación Molecular , GTP Fosfohidrolasas/química , GTP Fosfohidrolasas/genética , Datos de Secuencia Molecular , Mutagénesis , Isoformas de Proteínas , Análisis de Secuencia de ADN , Fracciones Subcelulares/enzimología , Trypanosoma brucei brucei/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...