Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 29
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Glob Chang Biol ; 28(22): 6741-6751, 2022 11.
Artículo en Inglés | MEDLINE | ID: mdl-36093790

RESUMEN

Climate change, disturbance, and plant invasion threaten grassland ecosystems, but their combined and interactive effects are poorly understood. Here, we examine how the combination of disturbance and plant invasion influences the sensitivity of mixed-grass prairie to elevated carbon dioxide (eCO2 ) and warming. We established subplots of intact prairie and disturbed/invaded prairie within a free-air CO2 enrichment (to 600 ppmv) by infrared warming (+1.5°C day, 3°C night) experiment and followed plant and soil responses for 5 years. Elevated CO2 initially led to moderate increases in biomass and plant diversity in both intact and disturbed/invaded prairie, but these effects shifted due to strong eCO2 responses of the invasive forb Centaurea diffusa. In the final 3 years, biomass responses to eCO2 in disturbed/invaded prairie were 10 times as large as those in intact prairie (+186% vs. +18%), resulting in reduced rather than increased plant diversity (-17% vs. +10%). At the same time, warming interacted with disturbance/invasion and year, reducing the rate of topsoil carbon recovery following disturbance. The strength of these interactions demonstrates the need to incorporate disturbance into predictions of climate change effects. In contrast to expectations from studies in intact ecosystems, eCO2 may threaten plant diversity in ecosystems subject to soil disturbance and invasion.


Asunto(s)
Pradera , Suelo , Dióxido de Carbono , Ecosistema , Poaceae
2.
Environ Toxicol Chem ; 40(2): 323-332, 2021 02.
Artículo en Inglés | MEDLINE | ID: mdl-33103780

RESUMEN

Natural organic matter (NOM) has long been shown to be the dominant factor in determining equilibrium and kinetic processes during sorption and desorption phenomena in sediment and soil experiments. Although several models have been suggested for predicting these processes, few offer mechanistic interpretations because the spatial location of organic matter on sediment particles is unknown. This investigation manually examined sediment particles from multiple locations, containing varying concentrations of NOM, using scanning electron microscopy with energy dispersive X-ray spectroscopy to determine the types of particles present by categorizing them as individual particles, aggregates, and "other" (detritus, algae, etc.). These types of particles were subsequently analyzed for their elemental composition, specifically the spatial location of carbon. By creating a carbon map of each particle, this investigation has determined that organic matter tends to occur in 2 forms: large aggregates or dispersed across individual sediment particles. These findings were then used to propose a more mechanistically sound mathematical model for pollutant desorption phenomena, assigning the traditional labile kinetic release component to the dispersed NOM spread randomly across sediment particles and the nonlabile kinetic release component to diffusion from densely packed NOM aggregates. Environ Toxicol Chem 2021;40:323-332. © 2020 SETAC.


Asunto(s)
Sedimentos Geológicos , Contaminantes Orgánicos Persistentes , Adsorción , Electrones , Microscopía Electrónica de Rastreo
3.
Ecol Lett ; 21(5): 674-682, 2018 05.
Artículo en Inglés | MEDLINE | ID: mdl-29508508

RESUMEN

Temporal variation in soil nitrogen (N) availability affects growth of grassland communities that differ in their use and reuse of N. In a 7-year-long climate change experiment in a semi-arid grassland, the temporal stability of plant biomass production varied with plant N turnover (reliance on externally acquired N relative to internally recycled N). Species with high N turnover were less stable in time compared to species with low N turnover. In contrast, N turnover at the community level was positively associated with asynchrony in biomass production, which in turn increased community temporal stability. Elevated CO2 and summer irrigation, but not warming, enhanced community N turnover and stability, possibly because treatments promoted greater abundance of species with high N turnover. Our study highlights the importance of plant N turnover for determining the temporal stability of individual species and plant communities affected by climate change.


Asunto(s)
Dióxido de Carbono , Nitrógeno , Agua , Biomasa , Pradera , Poaceae , Suelo
4.
J Chem Ecol ; 43(3): 307-316, 2017 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-28190150

RESUMEN

Rapid changes in the Earth's atmosphere and climate associated with human activity can have significant impacts on agriculture including livestock production. CO2 concentration has risen from the industrial revolution to the current time, and is expected to continue to rise. Climatic changes alter physiological processes, growth, and development in numerous plant species, potentially changing concentrations of plant secondary compounds. These physiological changes may influence plant population density, growth, fitness, and toxin concentrations and thus influence the risk of toxic plants to grazing livestock. Locoweeds, swainsonine-containing Astragalus species, are one group of plants that may be influenced by climate change. We evaluated how two different swainsonine-containing Astragalus species responded to elevated CO2 concentrations. Measurements of biomass, crude protein, water soluble carbohydrates and swainsonine concentrations were measured in two chemotypes (positive and negative for swainsonine) of each species after growth at CO2 levels near present day and at projected future concentrations. Biomass and water soluble carbohydrate concentrations responded positively while crude protein concentrations responded negatively to elevated CO2 in the two species. Swainsonine concentrations were not strongly affected by elevated CO2 in the two species. In the different chemotypes, biomass responded negatively and crude protein concentrations responded positively in the swainsonine-positive plants compared to the swainsonine-negative plants. Ultimately, changes in CO2 and endophyte status will likely alter multiple physiological responses in toxic plants such as locoweed, but it is difficult to predict how these changes will impact plant herbivore interactions.


Asunto(s)
Planta del Astrágalo/efectos de los fármacos , Planta del Astrágalo/metabolismo , Dióxido de Carbono/farmacología , Swainsonina/metabolismo , Planta del Astrágalo/crecimiento & desarrollo , Biomasa , Metabolismo de los Hidratos de Carbono/efectos de los fármacos , Cambio Climático , Relación Dosis-Respuesta a Droga , Proteínas de Plantas/metabolismo , Solubilidad
5.
Glob Chang Biol ; 23(9): 3623-3645, 2017 09.
Artículo en Inglés | MEDLINE | ID: mdl-28145053

RESUMEN

Multifactor experiments are often advocated as important for advancing terrestrial biosphere models (TBMs), yet to date, such models have only been tested against single-factor experiments. We applied 10 TBMs to the multifactor Prairie Heating and CO2 Enrichment (PHACE) experiment in Wyoming, USA. Our goals were to investigate how multifactor experiments can be used to constrain models and to identify a road map for model improvement. We found models performed poorly in ambient conditions; there was a wide spread in simulated above-ground net primary productivity (range: 31-390 g C m-2  yr-1 ). Comparison with data highlighted model failures particularly with respect to carbon allocation, phenology, and the impact of water stress on phenology. Performance against the observations from single-factors treatments was also relatively poor. In addition, similar responses were predicted for different reasons across models: there were large differences among models in sensitivity to water stress and, among the N cycle models, N availability during the experiment. Models were also unable to capture observed treatment effects on phenology: they overestimated the effect of warming on leaf onset and did not allow CO2 -induced water savings to extend the growing season length. Observed interactive (CO2  × warming) treatment effects were subtle and contingent on water stress, phenology, and species composition. As the models did not correctly represent these processes under ambient and single-factor conditions, little extra information was gained by comparing model predictions against interactive responses. We outline a series of key areas in which this and future experiments could be used to improve model predictions of grassland responses to global change.


Asunto(s)
Pradera , Calefacción , Poaceae/crecimiento & desarrollo , Dióxido de Carbono , Suelo , Wyoming
6.
AoB Plants ; 72015 Mar 30.
Artículo en Inglés | MEDLINE | ID: mdl-25829380

RESUMEN

The Earth's atmosphere will continue to be enriched with carbon dioxide (CO2) over the coming century. Carbon dioxide enrichment often reduces leaf transpiration, which in water-limited ecosystems may increase soil water content, change species abundances and increase the productivity of plant communities. The effect of increased soil water on community productivity and community change may be greater in ecosystems with lower precipitation, or on coarser-textured soils, but responses are likely absent in deserts. We tested correlations among yearly increases in soil water content, community change and community plant productivity responses to CO2 enrichment in experiments in a mesic grassland with fine- to coarse-textured soils, a semi-arid grassland and a xeric shrubland. We found no correlation between CO2-caused changes in soil water content and changes in biomass of dominant plant taxa or total community aboveground biomass in either grassland type or on any soil in the mesic grassland (P > 0.60). Instead, increases in dominant taxa biomass explained up to 85 % of the increases in total community biomass under CO2 enrichment. The effect of community change on community productivity was stronger in the semi-arid grassland than in the mesic grassland, where community biomass change on one soil was not correlated with the change in either the soil water content or the dominant taxa. No sustained increases in soil water content or community productivity and no change in dominant plant taxa occurred in the xeric shrubland. Thus, community change was a crucial driver of community productivity responses to CO2 enrichment in the grasslands, but effects of soil water change on productivity were not evident in yearly responses to CO2 enrichment. Future research is necessary to isolate and clarify the mechanisms controlling the temporal and spatial variations in the linkages among soil water, community change and plant productivity responses to CO2 enrichment.

7.
Glob Chang Biol ; 21(7): 2588-2602, 2015 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-25711935

RESUMEN

Terrestrial plant and soil respiration, or ecosystem respiration (Reco ), represents a major CO2 flux in the global carbon cycle. However, there is disagreement in how Reco will respond to future global changes, such as elevated atmosphere CO2 and warming. To address this, we synthesized six years (2007-2012) of Reco data from the Prairie Heating And CO2 Enrichment (PHACE) experiment. We applied a semi-mechanistic temperature-response model to simultaneously evaluate the response of Reco to three treatment factors (elevated CO2 , warming, and soil water manipulation) and their interactions with antecedent soil conditions [e.g., past soil water content (SWC) and temperature (SoilT)] and aboveground factors (e.g., vapor pressure deficit, photosynthetically active radiation, vegetation greenness). The model fits the observed Reco well (R2  = 0.77). We applied the model to estimate annual (March-October) Reco , which was stimulated under elevated CO2 in most years, likely due to the indirect effect of elevated CO2 on SWC. When aggregated from 2007 to 2012, total six-year Reco was stimulated by elevated CO2 singly (24%) or in combination with warming (28%). Warming had little effect on annual Reco under ambient CO2 , but stimulated it under elevated CO2 (32% across all years) when precipitation was high (e.g., 44% in 2009, a 'wet' year). Treatment-level differences in Reco can be partly attributed to the effects of antecedent SoilT and vegetation greenness on the apparent temperature sensitivity of Reco and to the effects of antecedent and current SWC and vegetation activity (greenness modulated by VPD) on Reco base rates. Thus, this study indicates that the incorporation of both antecedent environmental conditions and aboveground vegetation activity are critical to predicting Reco at multiple timescales (subdaily to annual) and under a future climate of elevated CO2 and warming.

8.
Nature ; 510(7504): 259-62, 2014 Jun 12.
Artículo en Inglés | MEDLINE | ID: mdl-24759322

RESUMEN

Observations of a longer growing season through earlier plant growth in temperate to polar regions have been thought to be a response to climate warming. However, data from experimental warming studies indicate that many species that initiate leaf growth and flowering earlier also reach seed maturation and senesce earlier, shortening their active and reproductive periods. A conceptual model to explain this apparent contradiction, and an analysis of the effect of elevated CO2--which can delay annual life cycle events--on changing season length, have not been tested. Here we show that experimental warming in a temperate grassland led to a longer growing season through earlier leaf emergence by the first species to leaf, often a grass, and constant or delayed senescence by other species that were the last to senesce, supporting the conceptual model. Elevated CO2 further extended growing, but not reproductive, season length in the warmed grassland by conserving water, which enabled most species to remain active longer. Our results suggest that a longer growing season, especially in years or biomes where water is a limiting factor, is not due to warming alone, but also to higher atmospheric CO2 concentrations that extend the active period of plant annual life cycles.


Asunto(s)
Dióxido de Carbono/metabolismo , Ecosistema , Calentamiento Global , Estaciones del Año , Dióxido de Carbono/farmacología , Clima , Poaceae/efectos de los fármacos , Reproducción , Suelo/química , Factores de Tiempo , Agua/análisis , Agua/metabolismo , Agua/farmacología , Wyoming
9.
Oecologia ; 175(2): 699-711, 2014 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-24643718

RESUMEN

Future ecosystem properties of grasslands will be driven largely by belowground biomass responses to climate change, which are challenging to understand due to experimental and technical constraints. We used a multi-faceted approach to explore single and combined impacts of elevated CO2 and warming on root carbon (C) and nitrogen (N) dynamics in a temperate, semiarid, native grassland at the Prairie Heating and CO2 Enrichment experiment. To investigate the indirect, moisture mediated effects of elevated CO2, we included an irrigation treatment. We assessed root standing mass, morphology, residence time and seasonal appearance/disappearance of community-aggregated roots, as well as mass and N losses during decomposition of two dominant grass species (a C3 and a C4). In contrast to what is common in mesic grasslands, greater root standing mass under elevated CO2 resulted from increased production, unmatched by disappearance. Elevated CO2 plus warming produced roots that were longer, thinner and had greater surface area, which, together with greater standing biomass, could potentially alter root function and dynamics. Decomposition increased under environmental conditions generated by elevated CO2, but not those generated by warming, likely due to soil desiccation with warming. Elevated CO2, particularly under warming, slowed N release from C4-but not C3-roots, and consequently could indirectly affect N availability through treatment effects on species composition. Elevated CO2 and warming effects on root morphology and decomposition could offset increased C inputs from greater root biomass, thereby limiting future net C accrual in this semiarid grassland.


Asunto(s)
Dióxido de Carbono , Cambio Climático , Raíces de Plantas/crecimiento & desarrollo , Poaceae/fisiología , Biomasa , Carbono , Ecosistema , Nitrógeno , Suelo
10.
New Phytol ; 200(4): 1156-65, 2013 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-24033081

RESUMEN

As global changes reorganize plant communities, invasive plants may benefit. We hypothesized that elevated CO2 and warming would strongly influence invasive species success in a semi-arid grassland, as a result of both direct and water-mediated indirect effects. To test this hypothesis, we transplanted the invasive forb Linaria dalmatica into mixed-grass prairie treated with free-air CO2 enrichment and infrared warming, and followed survival, growth, and reproduction over 4 yr. We also measured leaf gas exchange and carbon isotopic composition in L. dalmatica and the dominant native C3 grass Pascopyrum smithii. CO2 enrichment increased L. dalmatica biomass 13-fold, seed production 32-fold, and clonal expansion seven-fold, while warming had little effect on L. dalmatica biomass or reproduction. Elevated CO2 decreased stomatal conductance in P. smithii, contributing to higher soil water, but not in L. dalmatica. Elevated CO2 also strongly increased L. dalmatica photosynthesis (87% versus 23% in P. smithii), as a result of both enhanced carbon supply and increased soil water. More broadly, rapid growth and less conservative water use may allow invasive species to take advantage of both carbon fertilization and water savings under elevated CO2 . Water-limited ecosystems may therefore be particularly vulnerable to invasion as CO2 increases.


Asunto(s)
Dióxido de Carbono/farmacología , Carbono/farmacología , Calor , Especies Introducidas , Linaria/fisiología , Poaceae/fisiología , Agua/química , Isótopos de Carbono , Fertilizantes , Linaria/anatomía & histología , Linaria/efectos de los fármacos , Fotosíntesis/efectos de los fármacos , Estomas de Plantas/efectos de los fármacos , Estomas de Plantas/fisiología , Poaceae/efectos de los fármacos , Suelo/química
11.
PLoS One ; 8(8): e71921, 2013.
Artículo en Inglés | MEDLINE | ID: mdl-23977180

RESUMEN

The flux of carbon dioxide (CO2) between terrestrial ecosystems and the atmosphere may ameliorate or exacerbate climate change, depending on the relative responses of ecosystem photosynthesis and respiration to warming temperatures, rising atmospheric CO2, and altered precipitation. The combined effect of these global change factors is especially uncertain because of their potential for interactions and indirectly mediated conditions such as soil moisture. Here, we present observations of CO2 fluxes from a multi-factor experiment in semi-arid grassland that suggests a potentially strong climate - carbon cycle feedback under combined elevated [CO2] and warming. Elevated [CO2] alone, and in combination with warming, enhanced ecosystem respiration to a greater extent than photosynthesis, resulting in net C loss over four years. The effect of warming was to reduce respiration especially during years of below-average precipitation, by partially offsetting the effect of elevated [CO2] on soil moisture and C cycling. Carbon losses were explained partly by stimulated decomposition of soil organic matter with elevated [CO2]. The climate - carbon cycle feedback observed in this semiarid grassland was mediated by soil water content, which was reduced by warming and increased by elevated [CO2]. Ecosystem models should incorporate direct and indirect effects of climate change on soil water content in order to accurately predict terrestrial feedbacks and long-term storage of C in soil.


Asunto(s)
Dióxido de Carbono/metabolismo , Poaceae/metabolismo , Atmósfera , Dióxido de Carbono/química , Ecosistema , Calentamiento Global , Efecto Invernadero , Humedad , Lluvia , Suelo , Wyoming
12.
Front Microbiol ; 4: 216, 2013.
Artículo en Inglés | MEDLINE | ID: mdl-23908649

RESUMEN

Rhizosphere priming is the change in decomposition of soil organic matter (SOM) caused by root activity. Rhizosphere priming plays a crucial role in soil carbon (C) dynamics and their response to global climate change. Rhizosphere priming may be affected by soil nutrient availability, but rhizosphere priming itself can also affect nutrient supply to plants. These interactive effects may be of particular relevance in understanding the sustained increase in plant growth and nutrient supply in response to a rise in atmospheric CO2 concentration. We examined how these interactions were affected by elevated CO2 in two similar semiarid grassland field studies. We found that an increase in rhizosphere priming enhanced the release of nitrogen (N) through decomposition of a larger fraction of SOM in one study, but not in the other. We postulate that rhizosphere priming may enhance N supply to plants in systems that are N limited, but that rhizosphere priming may not occur in systems that are phosphorus (P) limited. Under P limitation, rhizodeposition may be used for mobilization of P, rather than for decomposition of SOM. Therefore, with increasing atmospheric CO2 concentrations, rhizosphere priming may play a larger role in affecting C sequestration in N poor than in P poor soils.

13.
Glob Chang Biol ; 19(6): 1816-26, 2013 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-23505264

RESUMEN

Atmospheric concentrations of methane (CH4 ) and nitrous oxide (N2 O) have increased over the last 150 years because of human activity. Soils are important sources and sinks of both potent greenhouse gases where their production and consumption are largely regulated by biological processes. Climate change could alter these processes thereby affecting both rate and direction of their exchange with the atmosphere. We examined how a rise in atmospheric CO2 and temperature affected CH4 and N2 O fluxes in a well-drained upland soil (volumetric water content ranging between 6% and 23%) in a semiarid grassland during five growing seasons. We hypothesized that responses of CH4 and N2 O fluxes to elevated CO2 and warming would be driven primarily by treatment effects on soil moisture. Previously we showed that elevated CO2 increased and warming decreased soil moisture in this grassland. We therefore expected that elevated CO2 and warming would have opposing effects on CH4 and N2 O fluxes. Methane was taken up throughout the growing season in all 5 years. A bell-shaped relationship was observed with soil moisture with highest CH4 uptake at intermediate soil moisture. Both N2 O emission and uptake occurred at our site with some years showing cumulative N2 O emission and other years showing cumulative N2 O uptake. Nitrous oxide exchange switched from net uptake to net emission with increasing soil moisture. In contrast to our hypothesis, both elevated CO2 and warming reduced the sink of CH4 and N2 O expressed in CO2 equivalents (across 5 years by 7% and 11% for elevated CO2 and warming respectively) suggesting that soil moisture changes were not solely responsible for this reduction. We conclude that in a future climate this semiarid grassland may become a smaller sink for atmospheric CH4 and N2 O expressed in CO2 -equivalents.


Asunto(s)
Cambio Climático , Ecosistema , Metano/metabolismo , Óxidos de Nitrógeno/metabolismo , Poaceae
14.
Nature ; 494(7437): 349-52, 2013 Feb 21.
Artículo en Inglés | MEDLINE | ID: mdl-23334410

RESUMEN

Climate change is predicted to increase both drought frequency and duration, and when coupled with substantial warming, will establish a new hydroclimatological model for many regions. Large-scale, warm droughts have recently occurred in North America, Africa, Europe, Amazonia and Australia, resulting in major effects on terrestrial ecosystems, carbon balance and food security. Here we compare the functional response of above-ground net primary production to contrasting hydroclimatic periods in the late twentieth century (1975-1998), and drier, warmer conditions in the early twenty-first century (2000-2009) in the Northern and Southern Hemispheres. We find a common ecosystem water-use efficiency (WUE(e): above-ground net primary production/evapotranspiration) across biomes ranging from grassland to forest that indicates an intrinsic system sensitivity to water availability across rainfall regimes, regardless of hydroclimatic conditions. We found higher WUE(e) in drier years that increased significantly with drought to a maximum WUE(e) across all biomes; and a minimum native state in wetter years that was common across hydroclimatic periods. This indicates biome-scale resilience to the interannual variability associated with the early twenty-first century drought--that is, the capacity to tolerate low, annual precipitation and to respond to subsequent periods of favourable water balance. These findings provide a conceptual model of ecosystem properties at the decadal scale applicable to the widespread altered hydroclimatic conditions that are predicted for later this century. Understanding the hydroclimatic threshold that will break down ecosystem resilience and alter maximum WUE(e) may allow us to predict land-surface consequences as large regions become more arid, starting with water-limited, low-productivity grasslands.


Asunto(s)
Cambio Climático/estadística & datos numéricos , Sequías/estadística & datos numéricos , Ecosistema , Plantas/metabolismo , Agua/metabolismo , Cambio Climático/historia , Sequías/historia , Historia del Siglo XX , Historia del Siglo XXI , Poaceae/metabolismo , Lluvia , Árboles/metabolismo , Ciclo Hidrológico
15.
New Phytol ; 197(2): 532-543, 2013 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-23171384

RESUMEN

In semiarid western North American riparian ecosystems, increased drought and lower streamflows under climate change may reduce plant growth and recruitment, and favor drought-tolerant exotic species over mesic native species. We tested whether elevated atmospheric CO2 might ameliorate these effects by improving plant water-use efficiency. We examined the effects of CO2 and water availability on seedlings of two native (Populus deltoides spp. monilifera, Salix exigua) and three exotic (Elaeagnus angustifolia, Tamarix spp., Ulmus pumila) western North American riparian species in a CO2-controlled glasshouse, using 1-m-deep pots with different water-table decline rates. Low water availability reduced seedling biomass by 70-97%, and hindered the native species more than the exotics. Elevated CO2 increased biomass by 15%, with similar effects on natives and exotics. Elevated CO2 increased intrinsic water-use efficiency (Δ¹³C(leaf) ), but did not increase biomass more in drier treatments than wetter treatments. The moderate positive effects of elevated CO2 on riparian seedlings are unlikely to counteract the large negative effects of increased aridity projected under climate change. Our results suggest that increased aridity will reduce riparian seedling growth despite elevated CO2, and will reduce growth more for native Salix and Populus than for drought-tolerant exotic species.


Asunto(s)
Dióxido de Carbono/farmacología , Cambio Climático , Ecosistema , Análisis de Varianza , Biomasa , Carbono/metabolismo , Isótopos de Carbono , Deshidratación , Humedad , Nitrógeno/metabolismo , Raíces de Plantas/efectos de los fármacos , Raíces de Plantas/crecimiento & desarrollo , Brotes de la Planta/efectos de los fármacos , Brotes de la Planta/crecimiento & desarrollo , Plantones/efectos de los fármacos , Plantones/crecimiento & desarrollo , Suelo/química , Árboles/anatomía & histología , Árboles/crecimiento & desarrollo , Árboles/fisiología , Agua/química
16.
New Phytol ; 196(3): 807-815, 2012 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-23005343

RESUMEN

Nitrogen (N) and phosphorus (P) are essential nutrients for primary producers and decomposers in terrestrial ecosystems. Although climate change affects terrestrial N cycling with important feedbacks to plant productivity and carbon sequestration, the impacts of climate change on the relative availability of N with respect to P remain highly uncertain. In a semiarid grassland in Wyoming, USA, we studied the effects of atmospheric CO(2) enrichment (to 600 ppmv) and warming (1.5/3.0°C above ambient temperature during the day/night) on plant, microbial and available soil pools of N and P. Elevated CO(2) increased P availability to plants and microbes relative to that of N, whereas warming reduced P availability relative to N. Across years and treatments, plant N : P ratios varied between 5 and 18 and were inversely related to soil moisture. Our results indicate that soil moisture is important in controlling P supply from inorganic sources, causing reduced P relative to N availability during dry periods. Both wetter soil conditions under elevated CO(2) and drier conditions with warming can further alter N : P. Although warming may alleviate N constraints under elevated CO(2) , warming and drought can exacerbate P constraints on plant growth and microbial activity in this semiarid grassland.


Asunto(s)
Cambio Climático , Nitrógeno/metabolismo , Fósforo/metabolismo , Poaceae/metabolismo , Microbiología del Suelo , Suelo/análisis , Biomasa , Carbono/metabolismo , Dióxido de Carbono/metabolismo , Ecosistema , Calor , Compuestos de Amonio Cuaternario/metabolismo , Agua/metabolismo , Wyoming
17.
Glob Chang Biol ; 18(9): 2681-93, 2012 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-24501048

RESUMEN

In recent years, increased awareness of the potential interactions between rising atmospheric CO2 concentrations ([ CO2 ]) and temperature has illustrated the importance of multifactorial ecosystem manipulation experiments for validating Earth System models. To address the urgent need for increased understanding of responses in multifactorial experiments, this article synthesizes how ecosystem productivity and soil processes respond to combined warming and [ CO2 ] manipulation, and compares it with those obtained in single factor [ CO2 ] and temperature manipulation experiments. Across all combined elevated [ CO2 ] and warming experiments, biomass production and soil respiration were typically enhanced. Responses to the combined treatment were more similar to those in the [ CO2 ]-only treatment than to those in the warming-only treatment. In contrast to warming-only experiments, both the combined and the [ CO2 ]-only treatments elicited larger stimulation of fine root biomass than of aboveground biomass, consistently stimulated soil respiration, and decreased foliar nitrogen (N) concentration. Nonetheless, mineral N availability declined less in the combined treatment than in the [ CO2 ]-only treatment, possibly due to the warming-induced acceleration of decomposition, implying that progressive nitrogen limitation (PNL) may not occur as commonly as anticipated from single factor [ CO2 ] treatment studies. Responses of total plant biomass, especially of aboveground biomass, revealed antagonistic interactions between elevated [ CO2 ] and warming, i.e. the response to the combined treatment was usually less-than-additive. This implies that productivity projections might be overestimated when models are parameterized based on single factor responses. Our results highlight the need for more (and especially more long-term) multifactor manipulation experiments. Because single factor CO2 responses often dominated over warming responses in the combined treatments, our results also suggest that projected responses to future global warming in Earth System models should not be parameterized using single factor warming experiments.

18.
Nature ; 476(7359): 202-5, 2011 Aug 03.
Artículo en Inglés | MEDLINE | ID: mdl-21814202

RESUMEN

Global warming is predicted to induce desiccation in many world regions through increases in evaporative demand. Rising CO(2) may counter that trend by improving plant water-use efficiency. However, it is not clear how important this CO(2)-enhanced water use efficiency might be in offsetting warming-induced desiccation because higher CO(2) also leads to higher plant biomass, and therefore greater transpirational surface. Furthermore, although warming is predicted to favour warm-season, C(4) grasses, rising CO(2) should favour C(3), or cool-season plants. Here we show in a semi-arid grassland that elevated CO(2) can completely reverse the desiccating effects of moderate warming. Although enrichment of air to 600 p.p.m.v. CO(2) increased soil water content (SWC), 1.5/3.0 °C day/night warming resulted in desiccation, such that combined CO(2) enrichment and warming had no effect on SWC relative to control plots. As predicted, elevated CO(2) favoured C(3) grasses and enhanced stand productivity, whereas warming favoured C(4) grasses. Combined warming and CO(2) enrichment stimulated above-ground growth of C(4) grasses in 2 of 3 years when soil moisture most limited plant productivity. The results indicate that in a warmer, CO(2)-enriched world, both SWC and productivity in semi-arid grasslands may be higher than previously expected.


Asunto(s)
Dióxido de Carbono/farmacología , Desecación , Ecosistema , Calentamiento Global , Fotosíntesis/efectos de los fármacos , Poaceae/efectos de los fármacos , Poaceae/crecimiento & desarrollo , Atmósfera/química , Biomasa , Dióxido de Carbono/metabolismo , Clima Desértico , Fotosíntesis/fisiología , Estomas de Plantas/metabolismo , Transpiración de Plantas , Poaceae/metabolismo , Estaciones del Año , Suelo/química , Volatilización , Agua/análisis , Wyoming
19.
Oecologia ; 165(3): 755-70, 2011 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-21113625

RESUMEN

Carbon allocation and N acquisition by plants following defoliation may be linked through plant-microbe interactions in the rhizosphere. Plant C allocation patterns and rhizosphere interactions can also be affected by rising atmospheric CO(2) concentrations, which in turn could influence plant and microbial responses to defoliation. We studied two widespread perennial grasses native to rangelands of western North America to test whether (1) defoliation-induced enhancement of rhizodeposition would stimulate rhizosphere N availability and plant N uptake, and (2) defoliation-induced enhancement of rhizodeposition, and associated effects on soil N availability, would increase under elevated CO(2). Both species were grown at ambient (400 µL L(-1)) and elevated (780 µL L(-1)) atmospheric [CO(2)] under water-limiting conditions. Plant, soil and microbial responses were measured 1 and 8 days after a defoliation treatment. Contrary to our hypotheses, we found that defoliation and elevated CO(2) both reduced carbon inputs to the rhizosphere of Bouteloua gracilis (C(4)) and Pascopyrum smithii (C(3)). However, both species also increased N allocation to shoots of defoliated versus non-defoliated plants 8 days after treatment. This response was greatest for P. smithii, and was associated with negative defoliation effects on root biomass and N content and reduced allocation of post-defoliation assimilate to roots. In contrast, B. gracilis increased allocation of post-defoliation assimilate to roots, and did not exhibit defoliation-induced reductions in root biomass or N content. Our findings highlight key differences between these species in how post-defoliation C allocation to roots versus shoots is linked to shoot N yield, but indicate that defoliation-induced enhancement of shoot N concentration and N yield is not mediated by increased C allocation to the rhizosphere.


Asunto(s)
Dióxido de Carbono/análisis , Carbono/metabolismo , Nitrógeno/metabolismo , Poaceae/metabolismo , Rizosfera , Dióxido de Carbono/metabolismo , Cambio Climático , América del Norte , Fotosíntesis , Poaceae/fisiología , Agua/metabolismo
20.
New Phytol ; 187(2): 426-437, 2010 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-20487311

RESUMEN

SUMMARY: *Simulation models indicate that the nitrogen (N) cycle plays a key role in how other ecosystem processes such as plant productivity and carbon (C) sequestration respond to elevated CO(2) and warming. However, combined effects of elevated CO(2) and warming on N cycling have rarely been tested in the field. *Here, we studied N cycling under ambient and elevated CO(2) concentrations (600 micromol mol(-1)), and ambient and elevated temperature (1.5 : 3.0 degrees C warmer day:night) in a full factorial semiarid grassland field experiment in Wyoming, USA. We measured soil inorganic N, plant and microbial N pool sizes and NO(3)(-) uptake (using a (15)N tracer). *Soil inorganic N significantly decreased under elevated CO(2), probably because of increased microbial N immobilization, while soil inorganic N and plant N pool sizes significantly increased with warming, probably because of increased N supply. We observed no CO(2 )x warming interaction effects on soil inorganic N, N pool sizes or NO(3)(-) uptake in plants and microbes. *Our results indicate a more closed N cycle under elevated CO(2) and a more open N cycle with warming, which could affect long-term N retention, plant productivity, and C sequestration in this semiarid grassland.


Asunto(s)
Dióxido de Carbono/farmacología , Clima Desértico , Calentamiento Global , Nitrógeno/metabolismo , Poaceae/efectos de los fármacos , Poaceae/metabolismo , Bacterias/efectos de los fármacos , Bacterias/crecimiento & desarrollo , Biomasa , Marcaje Isotópico , Isótopos de Nitrógeno , Raíces de Plantas/efectos de los fármacos , Raíces de Plantas/metabolismo , Brotes de la Planta/efectos de los fármacos , Brotes de la Planta/metabolismo , Suelo/análisis , Temperatura , Agua/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...