Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 27
Filtrar
Más filtros













Base de datos
Intervalo de año de publicación
1.
bioRxiv ; 2024 May 03.
Artículo en Inglés | MEDLINE | ID: mdl-38746372

RESUMEN

The fruit fly Drosophila melanogaster is a model for understanding how hosts and their microbial partners interact as the host adapts to wild environments. These interactions are readily interrogated because of the low taxonomic and numeric complexity of the flies' bacterial communities. Previous work has established that host genotype, the environment, diet, and interspecies microbial interactions can all influence host fitness and microbiota composition, but the specific processes and characters mediating these processes are incompletely understood. Here, we compared the variation in microbiota composition between wild-derived fly populations when flies could choose between the microorganisms in their diets and when flies were reared under environmental perturbation (different humidities). We also compared the colonization of the resident and transient microorganisms. We show that the ability to choose between microorganisms in the diet and the environmental condition of the flies can influence the relative abundance of the microbiota. There were also key differences in the abundances of the resident and transient microbiota. However, the microbiota only differed between populations when the flies were reared at humidities at or above 50% relative humidity. We also show that elevated humidity determined the penetrance of a gradient in host genetic selection on the microbiota that is associated with the latitude the flies were collected from. Finally, we show that the treatment-dependent variation in microbiota composition is associated with variation in host stress survival. Together, these findings emphasize that host genetic selection on the microbiota composition of a model animal host can be patterned with the source geography, and that such variation has the potential to influence their survival in the wild. Importance: The fruit fly Drosophila melanogaster is a model for understanding how hosts and their microbial partners interact as hosts adapt in wild environments. Our understanding of what causes geographic variation in the fruit fly microbiota remains incomplete. Previous work has shown that the D. melanogaster microbiota has relatively low numerical and taxonomic complexity. Variation in the fly microbiota composition can be attributed to environmental characters and host genetic variation, and variation in microbiota composition can be patterned with the source location of the flies. In this work we explored three possible causes of patterned variation in microbiota composition. We show that host feeding choices, the host niche colonized by the bacteria, and a single environmental character can all contribute to variation in microbiota composition. We also show that penetrance of latitudinally-patterned host genetic selection is only observed at elevated humidities. Together, these results identify several factors that influence microbiota composition in wild fly genotypes and emphasize the interplay between environmental and host genetic factors in determining the microbiota composition of these model hosts.

2.
Microbiol Spectr ; 11(3): e0458522, 2023 06 15.
Artículo en Inglés | MEDLINE | ID: mdl-37052495

RESUMEN

In this work, we use Drosophila melanogaster as a model to identify bacterial genes necessary for bacteria to colonize their hosts independent of the bulk flow of diet. Early work on this model system established that dietary replenishment drives the composition of the D. melanogaster gut microbiota, and subsequent research has shown that some bacterial strains can stably colonize, or persist within, the fly independent of dietary replenishment. Here, we reveal transposon insertions in specific bacterial genes that influence the bacterial colonization persistence phenotype by using a gene association approach. We initially established that different bacterial strains persist at various levels, independent of dietary replenishment. We then repeated the analysis with an expanded panel of bacterial strains and performed a metagenome-wide association (MGWA) study to identify distinct bacterial genes that are significantly correlated with the level of colonization by persistent bacterial strains. Based on the MGWA study, we tested if 44 bacterial transposon insertion mutants from 6 gene categories affect bacterial persistence within the flies. We identified that transposon insertions in four flagellar genes, one urea carboxylase gene, one phosphatidylinositol gene, one bacterial secretion gene, and one antimicrobial peptide (AMP) resistance gene each significantly influenced the colonization of D. melanogaster by an Acetobacter fabarum strain. Follow-up experiments revealed that each flagellar mutant was nonmotile, even though the wild-type strain was motile. Taken together, these results reveal that transposon insertions in specific bacterial genes, including motility genes, are necessary for at least one member of the fly microbiota to persistently colonize the fly. IMPORTANCE Despite the growing body of research on the microbiota, the mechanisms by which the microbiota colonizes a host can still be further elucidated. This study identifies bacterial genes that are associated with the colonization persistence phenotype of the microbiota in Drosophila melanogaster, which reveals specific bacterial factors that influence the establishment of the microbiota within its host. The identification of specific genes that affect persistence can help inform how the microbiota colonizes a host. Furthermore, a deeper understanding of the genetic mechanisms of the establishment of the microbiota could aid in the further development of the Drosophila microbiota as a model for microbiome research.


Asunto(s)
Microbioma Gastrointestinal , Microbiota , Animales , Drosophila melanogaster/genética , Drosophila melanogaster/microbiología , Microbiota/genética , Microbioma Gastrointestinal/genética , Metagenoma , Bacterias/genética , Fenotipo
3.
J Clin Invest ; 133(10)2023 05 15.
Artículo en Inglés | MEDLINE | ID: mdl-36976651

RESUMEN

BackgroundLung infections are among the most consequential manifestations of cystic fibrosis (CF) and are associated with reduced lung function and shortened survival. Drugs called CF transmembrane conductance regulator (CFTR) modulators improve activity of dysfunctional CFTR channels, which is the physiological defect causing CF. However, it is unclear how improved CFTR activity affects CF lung infections.MethodsWe performed a prospective, multicenter, observational study to measure the effect of the newest and most effective CFTR modulator, elexacaftor/tezacaftor/ivacaftor (ETI), on CF lung infections. We studied sputum from 236 people with CF during their first 6 months of ETI using bacterial cultures, PCR, and sequencing.ResultsMean sputum densities of Staphylococcus aureus, Pseudomonas aeruginosa, Stenotrophomonas maltophilia, Achromobacter spp., and Burkholderia spp. decreased by 2-3 log10 CFU/mL after 1 month of ETI. However, most participants remained culture positive for the pathogens cultured from their sputum before starting ETI. In those becoming culture negative after ETI, the pathogens present before treatment were often still detectable by PCR months after sputum converted to culture negative. Sequence-based analyses confirmed large reductions in CF pathogen genera, but other bacteria detected in sputum were largely unchanged. ETI treatment increased average sputum bacterial diversity and produced consistent shifts in sputum bacterial composition. However, these changes were caused by ETI-mediated decreases in CF pathogen abundance rather than changes in other bacteria.ConclusionsTreatment with the most effective CFTR modulator currently available produced large and rapid reductions in traditional CF pathogens in sputum, but most participants remain infected with the pathogens present before modulator treatment.Trial RegistrationClinicalTrials.gov NCT04038047.FundingThe Cystic Fibrosis Foundation and the NIH.


Asunto(s)
Fibrosis Quística , Neumonía , Humanos , Fibrosis Quística/tratamiento farmacológico , Fibrosis Quística/genética , Fibrosis Quística/complicaciones , Regulador de Conductancia de Transmembrana de Fibrosis Quística/genética , Esputo/microbiología , Estudios Prospectivos , Bacterias , Benzodioxoles/farmacología , Benzodioxoles/uso terapéutico , Pulmón , Mutación
4.
mBio ; 13(5): e0142422, 2022 10 26.
Artículo en Inglés | MEDLINE | ID: mdl-36121157

RESUMEN

Within-host evolution produces genetic diversity in bacterial strains that cause chronic human infections. However, the lack of facile methods to measure bacterial allelic variation in clinical samples has limited understanding of intrastrain diversity's effects on disease. Here, we report a new method termed genome capture sequencing (GenCap-Seq) in which users inexpensively make hybridization probes from genomic DNA or PCR amplicons to selectively enrich and sequence targeted bacterial DNA from clinical samples containing abundant human or nontarget bacterial DNA. GenCap-Seq enables accurate measurement of allele frequencies over targeted regions and is scalable from specific genes to entire genomes, including the strain-specific accessory genome. The method is effective with samples in which target DNA is rare and inhibitory and DNA-degrading substances are abundant, including human sputum and feces. In proof-of-principle experiments, we used GenCap-Seq to investigate the responses of diversified Pseudomonas aeruginosa populations chronically infecting the lungs of people with cystic fibrosis to in vivo antibiotic exposure, and we found that treatment consistently reduced intrastrain genomic diversity. In addition, analysis of gene-level allele frequency changes suggested that some genes without conventional resistance functions may be important for bacterial fitness during in vivo antibiotic exposure. GenCap-Seq's ability to scalably enrich targeted bacterial DNA from complex samples will enable studies on the effects of intrastrain and intraspecies diversity in human infectious disease. IMPORTANCE Genetic diversity evolves in bacterial strains during human infections and could affect disease manifestations and treatment resistance. However, the extent of diversity present in vivo and its changes over time are difficult to measure by conventional methods. We developed a novel approach, GenCap-Seq, to enrich microbial DNA from complex human samples like sputum and feces for genome-wide measurements of bacterial allelic diversity. The approach is inexpensive, scalable to encompass entire targeted genomes, and works in the presence of abundant untargeted nucleic acids and inhibiting substances. We used GenCap-Seq to investigate in vivo responses of diversified bacterial strains to antibiotic treatment. This method will enable new ideas about the effects of intrastrain diversity on human infections to be tested.


Asunto(s)
Fibrosis Quística , Infecciones por Pseudomonas , Humanos , ADN Bacteriano/genética , Pseudomonas aeruginosa/genética , Fibrosis Quística/microbiología , Genoma Bacteriano , Análisis de Secuencia de ADN , Antibacterianos/farmacología , Variación Genética , Infecciones por Pseudomonas/microbiología
5.
Thorax ; 77(6): 581-588, 2022 06.
Artículo en Inglés | MEDLINE | ID: mdl-34706982

RESUMEN

RATIONALE: Inhaled tobramycin and oral azithromycin are common chronic therapies in people with cystic fibrosis and Pseudomonas aeruginosa airway infection. Some studies have shown that azithromycin can reduce the ability of tobramycin to kill P. aeruginosa. This trial was done to test the effects of combining azithromycin with inhaled tobramycin on clinical and microbiological outcomes in people already using inhaled tobramycin. We theorised that those randomised to placebo (no azithromycin) would have greater improvement in forced expiratory volume in one second (FEV1) and greater reduction in P. aeruginosa sputum in response to tobramycin. METHODS: A 6-week prospective, randomised, placebo-controlled, double-blind trial testing oral azithromycin versus placebo combined with clinically prescribed inhaled tobramycin in individuals with cystic fibrosis and P. aeruginosa airway infection. RESULTS: Over a 6-week period, including 4 weeks of inhaled tobramycin, the relative change in FEV1 did not statistically significantly differ between groups (azithromycin (n=56) minus placebo (n=52) difference: 3.44%; 95% CI: -0.48 to 7.35; p=0.085). Differences in secondary clinical outcomes, including patient-reported symptom scores, weight and need for additional antibiotics, did not significantly differ. Among the 29 azithromycin and 35 placebo participants providing paired sputum samples, the 6-week change in P. aeruginosa density differed in favour of the placebo group (difference: 0.75 log10 CFU/mL; 95% CI: 0.03 to 1.47; p=0.043). CONCLUSIONS: Despite having greater reduction in P. aeruginosa density in participants able to provide sputum samples, participants randomised to placebo with inhaled tobramycin did not experience significantly greater improvements in lung function or other clinical outcomes compared with those randomised to azithromycin with tobramycin.


Asunto(s)
Fibrosis Quística , Infecciones por Pseudomonas , Administración por Inhalación , Antibacterianos/uso terapéutico , Azitromicina , Fibrosis Quística/complicaciones , Fibrosis Quística/tratamiento farmacológico , Volumen Espiratorio Forzado , Humanos , Estudios Prospectivos , Infecciones por Pseudomonas/tratamiento farmacológico , Pseudomonas aeruginosa , Tobramicina
6.
mBio ; 12(6): e0314821, 2021 12 21.
Artículo en Inglés | MEDLINE | ID: mdl-34903059

RESUMEN

Drugs called CFTR modulators improve the physiologic defect underlying cystic fibrosis (CF) and alleviate many disease manifestations. However, studies to date indicate that chronic lung infections that are responsible for most disease-related mortality generally persist. Here, we investigated whether combining the CFTR modulator ivacaftor with an intensive 3.5-month antibiotic course could clear chronic Pseudomonas aeruginosa or Staphylococcus aureus lung infections in subjects with R117H-CFTR, who are highly ivacaftor-responsive. Ivacaftor alone improved CFTR activity, and lung function and inflammation within 48 h, and reduced P. aeruginosa and S. aureus pathogen density by ∼10-fold within a week. Antibiotics produced an additional ∼10-fold reduction in pathogen density, but this reduction was transient in subjects who remained infected. Only 1/5 P. aeruginosa-infected and 1/7 S. aureus-infected subjects became persistently culture-negative after the combined treatment. Subjects appearing to clear infection did not have particularly favorable baseline lung function or inflammation, pathogen density or antibiotic susceptibility, or bronchiectasis scores on CT scans, but they did have remarkably low sweat chloride values before and after ivacaftor. All persistently P. aeruginosa-positive subjects remained infected by their pretreatment strain, whereas subjects persistently S. aureus-positive frequently lost and gained strains. This work suggests chronic CF infections may resist eradication despite marked and rapid modulator-induced improvements in lung infection and inflammation parameters and aggressive antibiotic treatment. IMPORTANCE Recent work shows that people with CF and chronic lung infections generally remain persistently infected after treatment with drugs that target the CF physiological defect (called CFTR modulators). However, changes produced by modulators could increase antibiotic efficacy. We tested the approach of combining modulators and intensive antibiotics in rapid succession and found that while few subjects cleared their infections, combined treatment appeared most effective in subjects with the highest CFTR activity. These findings highlight challenges that remain to improve the health of people with CF.


Asunto(s)
Aminofenoles/administración & dosificación , Antibacterianos/administración & dosificación , Fibrosis Quística/tratamiento farmacológico , Quimioterapia Combinada , Quinolonas/administración & dosificación , Adulto , Estudios de Cohortes , Fibrosis Quística/genética , Fibrosis Quística/metabolismo , Fibrosis Quística/microbiología , Regulador de Conductancia de Transmembrana de Fibrosis Quística/genética , Regulador de Conductancia de Transmembrana de Fibrosis Quística/metabolismo , Femenino , Humanos , Pulmón/microbiología , Masculino , Mutación , Infecciones por Pseudomonas/tratamiento farmacológico , Infecciones por Pseudomonas/genética , Infecciones por Pseudomonas/metabolismo , Infecciones por Pseudomonas/microbiología , Pseudomonas aeruginosa/efectos de los fármacos , Pseudomonas aeruginosa/crecimiento & desarrollo , Infecciones Estafilocócicas/tratamiento farmacológico , Infecciones Estafilocócicas/genética , Infecciones Estafilocócicas/metabolismo , Infecciones Estafilocócicas/microbiología , Staphylococcus aureus/efectos de los fármacos , Staphylococcus aureus/crecimiento & desarrollo
7.
JCI Insight ; 6(24)2021 12 22.
Artículo en Inglés | MEDLINE | ID: mdl-34935640

RESUMEN

A hallmark of chronic bacterial infections is the long-term persistence of 1 or more pathogen species at the compromised site. Repeated detection of the same bacterial species can suggest that a single strain or lineage is continually present. However, infection with multiple strains of a given species, strain acquisition and loss, and changes in strain relative abundance can occur. Detecting strain-level changes and their effects on disease is challenging because most methods require labor-intensive isolate-by-isolate analyses, and thus, only a few cells from large infecting populations can be examined. Here, we present a population-level method for enumerating and measuring the relative abundance of strains called population multi-locus sequence typing (PopMLST). The method exploits PCR amplification of strain-identifying polymorphic loci, next-generation sequencing to measure allelic variants, and informatic methods to determine whether variants arise from sequencing errors or low-abundance strains. These features enable PopMLST to simultaneously interrogate hundreds of bacterial cells that are cultured en masse from patient samples or are present in DNA directly extracted from clinical specimens without ex vivo culture. This method could be used to detect epidemic or super-infecting strains, facilitate understanding of strain dynamics during chronic infections, and enable studies that link strain changes to clinical outcomes.


Asunto(s)
Transmisión de Enfermedad Infecciosa/prevención & control , Técnicas de Genotipaje/métodos , Infecciones/genética , Humanos
8.
Mol Cell Endocrinol ; 518: 111032, 2020 12 01.
Artículo en Inglés | MEDLINE | ID: mdl-32941925

RESUMEN

Thyroid transcription factors (TTFs) - NKX2-1, FOXE1, PAX8 and HHEX - regulate multiple genes involved in thyroid development in mice but little is known about TTF regulation of thyroid-specific genes - thyroglobulin (TG), thyroid peroxidase (TPO), deiodinase type 2 (DIO2), sodium/iodide symporter (NIS) and TSH receptor (TSHR) - in adult, human thyrocytes. Thyrotropin (thyroid-stimulating hormone, TSH) regulation of thyroid-specific gene expression in primary cultures of human thyrocytes is biphasic yielding an inverted U-shaped dose-response curve (IUDRC) with upregulation at low doses and decreases at high doses. Herein we show that NKX2-1, FOXE1 and PAX8 are required for TSH-induced upregulation of the mRNA levels of TG, TPO, DIO2, NIS, and TSHR whereas HHEX has little effect on the levels of these thyroid-specific gene mRNAs. We show that TSH-induced upregulation is mediated by changes in their transcription and not by changes in the degradation of their mRNAs. In contrast to the IUDRC of thyroid-specific genes, TSH effects on the levels of the mRNAs for NKX2-1, FOXE1 and PAX8 exhibit monophasic decreases at high doses of TSH whereas TSH regulation of HHEX mRNA levels exhibits an IUDRC that overlaps the IUDRC of thyroid-specific genes. In contrast to findings during mouse development, TTFs do not have major effects on the levels of other TTF mRNAs in adult, human thyrocytes. Thus, we found similarities and important differences in the regulation of thyroid-specific genes in mouse development and TSH regulation of these genes in adult, human thyrocytes.


Asunto(s)
Diferenciación Celular , Células Epiteliales Tiroideas/efectos de los fármacos , Tirotropina/farmacología , Transcripción Genética/efectos de los fármacos , Adulto , Autoantígenos/genética , Diferenciación Celular/efectos de los fármacos , Diferenciación Celular/genética , Células Cultivadas , Humanos , Yoduro Peroxidasa/genética , Proteínas de Unión a Hierro/genética , Especificidad de Órganos/efectos de los fármacos , Especificidad de Órganos/genética , Factor de Transcripción PAX8/genética , Factor de Transcripción PAX8/fisiología , Cultivo Primario de Células , Estabilidad del ARN/efectos de los fármacos , Estabilidad del ARN/genética , Receptores de Tirotropina/genética , Tiroglobulina/genética , Células Epiteliales Tiroideas/citología , Células Epiteliales Tiroideas/fisiología , Factor Nuclear Tiroideo 1/genética , Factor Nuclear Tiroideo 1/fisiología , Yodotironina Deyodinasa Tipo II
9.
Thyroid ; 30(2): 270-276, 2020 02.
Artículo en Inglés | MEDLINE | ID: mdl-31805824

RESUMEN

Background: Thyrotropin (TSH) and thyroid-stimulating antibodies (TSAbs) activate TSH receptor (TSHR) signaling by binding to its extracellular domain. TSHR signaling has been studied extensively in animal thyrocytes and in engineered cell lines, and differences in signaling have been observed in different cell systems. We, therefore, decided to characterize and compare TSHR signaling mediated by TSH and monoclonal TSAbs in human thyrocytes in primary culture. Methods: We used quantitative reverse transcription-polymerase chain reaction to measure mRNA levels of thyroid-specific genes thyroglobulin (TG), thyroperoxidase (TPO), iodothyronine deiodinase type 2 (DIO2), sodium-iodide symporter (NIS), and TSHR after stimulation by TSH or two monoclonal TSAbs, KSAb1 and M22. We also compared secreted TG protein after TSHR activation by TSH and TSAbs using an enzyme-linked immunosorbent assay. TSHR cell surface expression was determined using fluorescence activated cell sorting (FACS). Results: We found that TSH at low doses increases and at high doses (>1 mU/mL) decreases levels of gene expression for TSHR, TG, TPO, NIS, and DIO2. The biphasic effect of TSH on signaling was not caused by downregulation of cell surface TSHRs. This bell-shaped biphasic dose-response curve has been termed an inverted U-shaped dose-response curve (IUDRC). An IUDRC was also found for TSH-induced regulation of TG secretion. In contrast, KSAb1- and M22-induced regulation of TSHR, TG, TPO, NIS, and DIO2 gene expression, and secreted TG followed a monotonic dose-response curve that plateaus at high doses of activating antibody. Conclusions: Our data demonstrate that the physiological activation of TSHRs by TSH in primary cultures of human thyrocytes is characterized by a regulatory mechanism that may inhibit thyrocyte overstimulation. In contrast, TSAbs do not exhibit biphasic regulation. Although KSAb1 and M22 may not be representative of all TSAbs found in patients with Graves' disease, we suggest that persistent robust stimulation of TSHRs by TSAbs, unrelieved by a decrease at high TSAb levels, fosters chronic stimulation of thyrocytes in Graves' hyperthyroidism.


Asunto(s)
Expresión Génica/efectos de los fármacos , Inmunoglobulinas Estimulantes de la Tiroides/farmacología , Células Epiteliales Tiroideas/efectos de los fármacos , Tirotropina/farmacología , Autoantígenos/genética , Autoantígenos/metabolismo , Células Cultivadas , Humanos , Yoduro Peroxidasa/genética , Yoduro Peroxidasa/metabolismo , Proteínas de Unión a Hierro/genética , Proteínas de Unión a Hierro/metabolismo , Receptores de Tirotropina/genética , Receptores de Tirotropina/metabolismo , Simportadores/genética , Simportadores/metabolismo , Tiroglobulina/genética , Tiroglobulina/metabolismo , Células Epiteliales Tiroideas/metabolismo , Yodotironina Deyodinasa Tipo II
10.
PLoS One ; 14(9): e0221936, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-31498842

RESUMEN

ToxR and TcpP, two winged helix-turn-helix (w-HTH) family transcription factors, co-activate expression of the toxT promoter in Vibrio cholerae. ToxT then directly regulates a number of genes required for virulence. In addition to co-activation of toxT, ToxR can directly activate the ompU promoter and repress the ompT promoter. Based on a previous study suggesting that certain wing residues of ToxR are preferentially involved in toxT co-activation compared to direct ompU activation, we employed alanine-scanning mutagenesis to determine which residues in the wing of ToxR are required for activation of each promoter. All of the ToxR wing residues tested that were critical for transcriptional activation of toxT and/or ompU were also critical for DNA binding. While some ToxR wing mutants had reduced interaction with TcpP, that reduced interaction did not correlate with a specific defect in toxT activation. Rather, such mutants also affected ompU activation and DNA binding. Based on these findings we conclude that the primary role of the wing of ToxR is to bind DNA, along with the DNA recognition helix of ToxR, and this function is required both for direct activation of ompU and co-activation of toxT.


Asunto(s)
Adhesinas Bacterianas/metabolismo , Proteínas Bacterianas/química , Proteínas Bacterianas/metabolismo , Proteínas de Unión al ADN/química , Proteínas de Unión al ADN/metabolismo , ADN/metabolismo , Secuencias Hélice-Giro-Hélice , Factores de Transcripción/química , Factores de Transcripción/metabolismo , Adhesinas Bacterianas/genética , Proteínas Bacterianas/genética , Cromosomas Bacterianos/genética , Modelos Moleculares , Mutación , Unión Proteica , Dominios Proteicos , Factores de Transcripción/genética , Activación Transcripcional
11.
Endocrinology ; 160(6): 1468-1479, 2019 06 01.
Artículo en Inglés | MEDLINE | ID: mdl-31127272

RESUMEN

Endogenously expressed TSH receptors (TSHRs) on orbital fibroblasts of patients with Graves ophthalmopathy (GO) use crosstalk with IGF1 receptors (IGF1R) to synergistically stimulate secretion of hyaluronan (HA), a major component of GO pathology. We previously showed crosstalk occurred upstream of mitogen-activated protein kinase (ERK) phosphorylation. Because other G protein-coupled receptors engage arrestin-ß-1 (ARRB1) and ERK, we tested whether ARRB1 was a necessary component of TSHR/IGF1R crosstalk. HA secretion was stimulated by the TSHR-stimulating monoclonal antibodies M22 and KSAb1, or immunoglobulins from patients with GO (GO-Igs). Treatment with M22, as previously shown, resulted in biphasic dose-response stimulation of HA secretion. The high-potency phase was IGF1R dependent, and the low-potency phase was partly IGF1R independent. KSAb1 produced a monophasic dose-response stimulation of HA secretion, whose potency was lowered >20-fold after IGF1R knockdown. ARRB1 knockdown abolished M22's high-potency phase and lowered KSAb1's potency and efficacy. ARRB1 knockdown inhibited GO-Ig stimulation of HA secretion and of ERK phosphorylation. Last, ARRB1 was shown to be necessary for TSHR/IGF1R proximity. In contrast, ARRB2 knockdowns did not show these effects. Thus, TSHR must neighbor IGF1R for crosstalk in GO fibroblasts to occur, and this depends on ARRB1 acting as a scaffold. Similar scaffolding of TSHR and IGF1R by ARRB1 was found in human osteoblast-like cells and human thyrocytes. These findings support a model of TSHR/IGF1R crosstalk that may be a general mechanism for G-protein-coupled receptor/receptor tyrosine kinase crosstalk dependent on ARRB1.


Asunto(s)
Receptor IGF Tipo 1/metabolismo , Receptores de Tirotropina/metabolismo , Células Epiteliales Tiroideas/metabolismo , beta-Arrestina 1/metabolismo , Animales , Línea Celular , Técnicas de Silenciamiento del Gen , Oftalmopatía de Graves/metabolismo , Humanos , Ratones , Fosforilación , Receptor IGF Tipo 1/genética , Receptores de Tirotropina/genética , Transducción de Señal/fisiología , beta-Arrestina 1/genética
12.
PLoS Pathog ; 15(3): e1007511, 2019 03.
Artículo en Inglés | MEDLINE | ID: mdl-30893371

RESUMEN

While much is known about acute infection pathogenesis, the understanding of chronic infections has lagged. Here we sought to identify the genes and functions that mediate fitness of the pathogen Pseudomonas aeruginosa in chronic wound infections, and to better understand the selective environment in wounds. We found that clinical isolates from chronic human wounds were frequently defective in virulence functions and biofilm formation, and that many virulence and biofilm formation genes were not required for bacterial fitness in experimental mouse wounds. In contrast, genes involved in anaerobic growth, some metabolic and energy pathways, and membrane integrity were critical. Consistent with these findings, the fitness characteristics of some wound impaired-mutants could be represented by anaerobic, oxidative, and membrane-stress conditions ex vivo, and more comprehensively by high-density bacterial growth conditions, in the absence of a host. These data shed light on the bacterial functions needed in chronic wound infections, the nature of stresses applied to bacteria at chronic infection sites, and suggest therapeutic targets that might compromise wound infection pathogenesis.


Asunto(s)
Proliferación Celular/fisiología , Pseudomonas aeruginosa/crecimiento & desarrollo , Cicatrización de Heridas/fisiología , Adulto , Animales , Bacterias/crecimiento & desarrollo , Infecciones Bacterianas/metabolismo , Biopelículas/crecimiento & desarrollo , Modelos Animales de Enfermedad , Femenino , Aptitud Genética , Interacciones Microbiota-Huesped/fisiología , Humanos , Masculino , Ratones , Infecciones por Pseudomonas , Pseudomonas aeruginosa/metabolismo , Pseudomonas aeruginosa/patogenicidad , Virulencia/fisiología , Infección de Heridas/metabolismo , Infección de Heridas/microbiología
13.
Curr Opin Endocr Metab Res ; 2: 29-33, 2018 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-30547142

RESUMEN

Thyroid stimulating hormone and insulin-like growth factor 1 receptors (TSHRs and IGF1Rs, respectively) interact leading to additive or synergistic stimulation of cellular responses. Recent findings provide evidence that the interaction between TSHRs and IGF1Rs is similar to that described for other G protein-coupled receptors and receptor tyrosine kinases. These types of interactions occur at or proximal to the receptors and are designated "receptor cross-talk." Herein, we describe our studies in human thyrocytes, human retro-orbital fibroblasts from Graves' orbitopathy patients and a model cell line that support the concept of TSHR/IGF1R cross-talk. We also discuss how receptor cross-talk is involved in stimulation by a monoclonal TSHR-stimulating antibody and how targeting both receptors may lead to novel treatments of Graves' orbitopathy.

14.
Methods Mol Biol ; 1817: 1-7, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-29959697

RESUMEN

In order to study functions of normal human thyrocytes, we developed a protocol to obtain these cells in primary culture. Thyrocytes are obtained from normal tissue obtained at surgery for removal of thyroid neoplasms. Under sterile conditions, specimens are minced into small pieces, mono-dispersed cells are generated by digestion with collagenase type IV and the cells plated in tissue culture grade dishes in Dulbecco's modified Eagle's medium (DMEM) containing 10% fetal bovine serum (FBS). After 24 h of incubation at 37 °C in a humidified 5% CO2 incubator, the supernatant containing non-adherent cells is removed and the adherent cells are propagated in DMEM with 10% FBS, 100 IU/mL penicillin, and 10 µg/mL streptomycin. Cells proliferate with a doubling time of 72-94 h and retain functional characteristics for 9-12 doublings. We have used them successfully in studies to elucidate the signaling by thyrotropin (TSH) and insulin-like growth factor 1.


Asunto(s)
Técnicas de Cultivo de Célula/métodos , Medios de Cultivo/química , Células Epiteliales Tiroideas/citología , Adhesión Celular , Diferenciación Celular , Proliferación Celular , Células Cultivadas , Humanos , Factor I del Crecimiento Similar a la Insulina/metabolismo , Transducción de Señal , Temperatura , Células Epiteliales Tiroideas/metabolismo , Tirotropina/metabolismo
15.
J Pharmacol Exp Ther ; 364(1): 38-45, 2018 01.
Artículo en Inglés | MEDLINE | ID: mdl-29089368

RESUMEN

Recently, we showed that TSH-enhanced differentiation of a human preosteoblast-like cell model involved a ß-arrestin 1 (ß-Arr 1)-mediated pathway. To study this pathway in more detail, we sought to discover a small molecule ligand that was functionally selective toward human TSH receptor (TSHR) activation of ß-Arr 1. High-throughput screening using a cell line stably expressing mutated TSHRs and mutated ß-Arr 1 (DiscoverX1 cells) led to the discovery of agonists that stimulated translocation of ß-Arr 1 to the TSHR, but did not activate Gs-mediated signaling pathways, i.e., cAMP production. D3-ßArr (NCGC00379308) was selected. In DiscoverX1 cells, D3-ßArr stimulated ß-Arr 1 translocation with a 5.1-fold greater efficacy than TSH and therefore potentiated the effect of TSH in stimulating ß-Arr 1 translocation. In human U2OS-TSHR cells expressing wild-type TSHRs, which is a model of human preosteoblast-like cells, TSH upregulated the osteoblast-specific genes osteopontin (OPN) and alkaline phosphatase (ALPL). D3-ßArr alone had only a weak effect to upregulate these bone markers, but D3-ßArr potentiated TSH-induced upregulation of ALPL and OPN mRNA levels 1.6-fold and 5.5-fold, respectively, at the maximum dose of ligands. Furthermore, the positive allosteric modulator effect of D3-ßArr resulted in an increase of TSH-induced secretion of OPN protein. In summary, we have discovered the first small molecule positive allosteric modulator of TSHR. As D3-ßArr potentiates the effect of TSH to enhance differentiation of a human preosteoblast in an in vitro model, it will allow a novel experimental approach for probing the role of TSH-induced ß-Arr 1 signaling in osteoblast differentiation.


Asunto(s)
Diferenciación Celular/efectos de los fármacos , Descubrimiento de Drogas/métodos , Osteoblastos/efectos de los fármacos , Receptores de Tirotropina/agonistas , Tirotropina/farmacología , Regulación Alostérica/efectos de los fármacos , Regulación Alostérica/fisiología , Animales , Células CHO , Diferenciación Celular/fisiología , Línea Celular Tumoral , Células Cultivadas , Cricetinae , Cricetulus , Ensayos Analíticos de Alto Rendimiento/métodos , Humanos , Osteoblastos/fisiología , Receptores de Tirotropina/fisiología , Células Epiteliales Tiroideas/efectos de los fármacos , Células Epiteliales Tiroideas/metabolismo , Tirotropina/análogos & derivados
16.
Endocrinology ; 158(10): 3676-3683, 2017 10 01.
Artículo en Inglés | MEDLINE | ID: mdl-28938449

RESUMEN

We previously showed that thyrotropin (TSH)/insulinlike growth factor (IGF)-1 receptor cross-talk appears to be involved in Graves' orbitopathy (GO) pathogenesis and upregulation of thyroid-specific genes in human thyrocytes. In orbital fibroblasts from GO patients, coadministration of TSH and IGF-1 induces synergistic increases in hyaluronan secretion. In human thyrocytes, TSH plus IGF-1 synergistically increased expression of the sodium-iodide symporter that appeared to involve ERK1/2 activation. However, the details of ERK1/2 activation were not known, nor was whether ERK1/2 was involved in this synergism in other cell types. Using primary cultures of GO fibroblasts (GOFs) and human thyrocytes, as well as human embryonic kidney (HEK) 293 cells overexpressing TSH receptors (HEK-TSHRs), we show that simultaneous activation of TSHRs and IGF-1 receptors (IGF-1Rs) causes rapid, synergistic phosphorylation/activation of ERK1 and ERK2 in all three cell types. This effect is partially inhibited by pertussis toxin, an inhibitor of TSHR coupling to Gi/Go proteins. In support of a role for Gi/Go proteins in ERK1/2 phosphorylation, we found that knockdown of Gi(1-3) and Go in HEK-TSHRs inhibited ERK1/2 phosphorylation stimulated by TSH and TSH plus IGF-1. These data demonstrate that the synergistic effects of TSH plus IGF-1 occur early in the TSHR signaling cascade and further support the idea that TSHR/IGF-1R cross-talk is an important mechanism for regulation of human GOFs and thyrocytes.


Asunto(s)
Fibroblastos/efectos de los fármacos , Factor I del Crecimiento Similar a la Insulina/farmacología , Sistema de Señalización de MAP Quinasas/efectos de los fármacos , Receptor Cross-Talk , Receptor IGF Tipo 1/metabolismo , Receptores de Tirotropina/metabolismo , Tirotropina/farmacología , Fibroblastos/metabolismo , Oftalmopatía de Graves , Células HEK293 , Humanos , Ácido Hialurónico/metabolismo , Proteína Quinasa 1 Activada por Mitógenos/efectos de los fármacos , Proteína Quinasa 1 Activada por Mitógenos/metabolismo , Proteína Quinasa 3 Activada por Mitógenos/efectos de los fármacos , Proteína Quinasa 3 Activada por Mitógenos/metabolismo , Fosforilación/efectos de los fármacos , Simportadores/efectos de los fármacos , Simportadores/metabolismo , Células Epiteliales Tiroideas/efectos de los fármacos , Células Epiteliales Tiroideas/metabolismo
17.
J Biol Chem ; 292(37): 15434-15444, 2017 09 15.
Artículo en Inglés | MEDLINE | ID: mdl-28743746

RESUMEN

The thyroid gland secretes primarily tetraiodothyronine (T4), and some triiodothyronine (T3). Under normal physiological circumstances, only one-fifth of circulating T3 is directly released by the thyroid, but in states of hyperactivation of thyroid-stimulating hormone receptors (TSHRs), patients develop a syndrome of relative T3 toxicosis. Thyroidal T4 production results from iodination of thyroglobulin (TG) at residues Tyr5 and Tyr130, whereas thyroidal T3 production may originate in several different ways. In this study, the data demonstrate that within the carboxyl-terminal portion of mouse TG, T3 is formed de novo independently of deiodination from T4 We found that upon iodination in vitro, de novo T3 formation in TG was decreased in mice lacking TSHRs. Conversely, de novo T3 that can be formed upon iodination of TG secreted from PCCL3 (rat thyrocyte) cells was augmented from cells previously exposed to increased TSH, a TSHR agonist, a cAMP analog, or a TSHR-stimulating antibody. We present data suggesting that TSH-stimulated TG phosphorylation contributes to enhanced de novo T3 formation. These effects were reversed within a few days after removal of the hyperstimulating conditions. Indeed, direct exposure of PCCL3 cells to human serum from two patients with Graves' disease, but not control sera, led to secretion of TG with an increased intrinsic ability to form T3 upon in vitro iodination. Furthermore, TG secreted from human thyrocyte cultures hyperstimulated with TSH also showed an increased intrinsic ability to form T3 Our data support the hypothesis that TG processing in the secretory pathway of TSHR-hyperstimulated thyrocytes alters the structure of the iodination substrate in a way that enhances de novo T3 formation, contributing to the relative T3 toxicosis of Graves' disease.


Asunto(s)
Procesamiento Proteico-Postraduccional , Receptores de Tirotropina/agonistas , Transducción de Señal , Tiroglobulina/metabolismo , Células Epiteliales Tiroideas/metabolismo , Tirotropina/metabolismo , Triyodotironina/biosíntesis , Animales , Proteínas de Unión al Calcio/agonistas , Proteínas de Unión al Calcio/genética , Proteínas de Unión al Calcio/metabolismo , Quinasa de la Caseína I/genética , Quinasa de la Caseína I/metabolismo , Línea Celular , Células Cultivadas , Proteínas de la Matriz Extracelular/agonistas , Proteínas de la Matriz Extracelular/genética , Proteínas de la Matriz Extracelular/metabolismo , Enfermedad de Graves/sangre , Enfermedad de Graves/metabolismo , Enfermedad de Graves/patología , Halogenación , Humanos , Ratones Endogámicos C57BL , Ratones Noqueados , Fosforilación , Proteínas Serina-Treonina Quinasas/química , Proteínas Serina-Treonina Quinasas/genética , Proteínas Serina-Treonina Quinasas/metabolismo , Ratas , Receptores de Tirotropina/genética , Receptores de Tirotropina/metabolismo , Células Epiteliales Tiroideas/citología , Células Epiteliales Tiroideas/patología , Tirosina/metabolismo , Regulación hacia Arriba
18.
Thyroid ; 26(12): 1794-1803, 2016 12.
Artículo en Inglés | MEDLINE | ID: mdl-27638195

RESUMEN

BACKGROUND: Major regulation of thyroid gland function is mediated by thyrotropin (TSH) activating the TSH receptor (TSHR) and inducing upregulation of genes involved in thyroid hormone synthesis. Evidence suggests that the insulin-like growth factor 1 (IGF-1) receptor (IGF-1R) may play a role in regulating TSHR functional effects. This study examined the potential role of TSHR/IGF-1R crosstalk in primary cultures of human thyrocytes. RESULTS: TSH/IGF-1 co-treatment elicited additive effects on thyroglobulin (TG), thyroperoxidase (TPO), and deiodinase type 2 (DIO2) mRNA levels but synergistic effects on sodium-iodide symporter (NIS) mRNA. Similar cooperativity was seen on the level of TG protein secretion (additive) and NIS protein expression (synergistic). The IGF-1R tyrosine kinase inhibitor linsitinib inhibited TSH-stimulated upregulation of NIS but not TG, indicating that NIS regulation is in part IGF-1R dependent and occurs via receptor crosstalk. Cooperativity was not seen at the level of cAMP/protein kinase A (PKA) signaling, IGF-1R phosphorylation, or Akt activation. However, TSH and IGF-1 synergistically activated ERK1/2. Pharmacological inhibition of ERK1/2 by the MEK1/2 inhibitor U0126 and of Akt by MK-2206 virtually abolished NIS stimulation by TSH and the synergistic effect of IGF-1. CONCLUSION: As linsitinib inhibited upregulation of NIS stimulated by TSH alone, it is concluded that crosstalk between TSHR and IGF-1R, without agonist activation of IGF-1R, plays a role in NIS regulation in human thyrocytes via a mechanism involving ERK1/2 and/or Akt. Fully understanding the nature of this crosstalk has clinical implications for the treatment of thyroid diseases, including thyroid cancer.


Asunto(s)
Receptor IGF Tipo 1/metabolismo , Receptores de Tirotropina/metabolismo , Simportadores/metabolismo , Células Epiteliales Tiroideas/metabolismo , Regulación hacia Arriba/efectos de los fármacos , Células Cultivadas , Humanos , Factor I del Crecimiento Similar a la Insulina/farmacología , Fosforilación/efectos de los fármacos , Proteínas Proto-Oncogénicas c-akt/metabolismo , Transducción de Señal/efectos de los fármacos , Células Epiteliales Tiroideas/citología , Células Epiteliales Tiroideas/efectos de los fármacos , Tirotropina/farmacología
19.
Artículo en Inglés | MEDLINE | ID: mdl-27512388

RESUMEN

We are developing an orally available small-molecule, allosteric TSH receptor (TSHR) agonist for follow-up diagnostics of patients with thyroid cancer. The agonist C2 (NCGC00161870) that we have studied so far is a racemic mixture containing equal amounts of two enantiomers, E1 and E2. As enantiomers of many drugs exhibit different pharmacologic properties, we assessed the properties of E1 and E2. We separated the two enantiomers by chiral chromatography and determined E2 as the (S)-(+) isomer via crystal structure analysis. E1 and E2 were shown to bind differently to a homology model of the transmembrane domain of TSHR in which E2 was calculated to exhibit lower binding energy than E1 and was, therefore, predicted to be more potent than E1. In HEK293 cells expressing human TSHRs, C2, E1, and E2 were equally efficacious in stimulating cAMP production, but their potencies were different. E2 was more potent (EC50 = 18 nM) than C2 (EC50 = 46 nM), which was more potent than E1 (EC50 = 217 nM). In primary cultures of human thyrocytes, C2, E1, and E2 stimulated increases in thyroperoxidase mRNA of 92-, 55-, and 137-fold and in sodium-iodide symporter mRNA of 20-, 4-, and 121-fold above basal levels, respectively. In mice, C2 stimulated an increase in radioactive iodine uptake of 1.5-fold and E2 of 2.8-fold above basal level, whereas E1 did not have an effect. C2 stimulated an increase in serum T4 of 2.4-fold, E1 of 1.9-fold, and E2 of 5.6-fold above basal levels, and a 5-day oral dosing regimen of E2 increased serum T4 levels comparable to recombinant human TSH (rhTSH, Thyrogen(®)). Thus, E2 is more effective than either C2 or E1 in stimulating thyroid function and as efficacious as rhTSH in vivo. E2 represents the next step toward developing an oral drug for patients with thyroid cancer.

20.
Artículo en Inglés | MEDLINE | ID: mdl-28082948

RESUMEN

Although TSH has been suggested to be a proliferative agent for thyrocytes, the effect of TSH on human thyroid cells remains controversial. In particular, most of the reported studies relied primarily on changes in DNA synthesis but have not included measurement of the number of cells. We argue that only a direct count of cell number, demonstrating classical exponential expansion, serves as a valid measurement of proliferation. Thus, although some data support TSH as a proliferative agent, most do not provide conclusive evidence. To generate conclusive evidence with regard to a proliferative effect of TSH in human thyrocytes, we performed various experiments using primary cultures of human thyrocytes. In contrast to previous reports, TSH [±insulin-like growth factor 1 (IGF-1)] did not induce proliferation of thyrocytes under a variety of different conditions. However, TSH/IGF-1 cotreatment did upregulate thyroid-specific gene expression including thyroglobulin (TG) and TSHR in a manner consistent with cellular differentiation. Evidence for a proliferative effect of TSH has been used to inform the American Thyroid Association's guidelines for the management of thyroid cancer patients, which include TSH suppression. While these recommendations are admittedly based on low- to moderate-quality evidence, TSH suppression is still widely used. We present data that question the consensus view that TSH promotes proliferation of human thyrocytes (upon which the American Thyroid Association's guidelines are based) and suggest that additional studies, including randomized controlled trials, are warranted to address this important clinical question.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA