Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 100
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Artículo en Inglés | MEDLINE | ID: mdl-38992276

RESUMEN

Starch degradation in malted barley produces yeast-fermentable sugars. In this study, we compared the amylolytic enzymes and composition of the malt starch hydrolysates of two barley cultivars, Hokudai 1 (the first cultivar established in Japan) and Kitanohoshi (the currently used cultivar for beer production). Hokudai 1 malt contained lower activity of amylolytic enzymes than Kitanohoshi malt, although these cultivars contained α-amylase AMY2 and ß-amylase Bmy1 as the predominant enzymes. Malt starch hydrolysates of Hokudai 1 contained more limit dextrin and less yeast-fermentable sugars than that of Kitanohoshi. In mixed malt saccharification, a high Hokudai 1 malt ratio increased the limit dextrin levels and decreased the maltotriose and maltose levels. Even though Kitanohoshi malt contained more amylolytic enzymes than Hokudai 1 malt, addition of Kitanohoshi extract containing the amylolytic enzymes did not enhance malt starch degradation of Hokudai 1. Hokudai 1 malt starch was less degradable than Kitanohoshi malt starch.

2.
J Biol Chem ; 299(11): 105294, 2023 11.
Artículo en Inglés | MEDLINE | ID: mdl-37774972

RESUMEN

The glycoside hydrolase family 55 (GH55) includes inverting exo-ß-1,3-glucosidases and endo-ß-1,3-glucanases, acting on laminarin, which is a ß1-3/1-6-glucan consisting of a ß1-3/1-6-linked main chain and ß1-6-linked branches. Despite their different modes of action toward laminarin, endo-ß-1,3-glucanases share with exo-ß-1,3-glucosidases conserved residues that form the dead-end structure of subsite -1. Here, we investigated the mechanism of endo-type action on laminarin by GH55 endo-ß-1,3-glucanase MnLam55A, identified from Microdochium nivale. MnLam55A, like other endo-ß-1,3-glucanases, degraded internal ß-d-glucosidic linkages of laminarin, producing more reducing sugars than the sum of d-glucose and gentiooligosaccharides detected. ß1-3-Glucans lacking ß1-6-linkages in the main chain were not hydrolyzed. NMR analysis of the initial degradation of laminarin revealed that MnLam55A preferentially cleaved the nonreducing terminal ß1-3-linkage of the laminarioligosaccharide moiety at the reducing end side of the main chain ß1-6-linkage. MnLam55A liberates d-glucose from laminaritriose and longer laminarioligosaccharides, but kcat/Km values to laminarioligosaccharides (≤4.21 s-1 mM-1) were much lower than to laminarin (5920 s-1 mM-1). These results indicate that ß-glucan binding to the minus subsites of MnLam55A, including exclusive binding of the gentiobiosyl moiety to subsites -1 and -2, is required for high hydrolytic activity. A crystal structure of MnLam55A, determined at 2.4 Å resolution, showed that MnLam55A adopts an overall structure and catalytic site similar to those of exo-ß-1,3-glucosidases. However, MnLam55A possesses an extended substrate-binding cleft that is expected to form the minus subsites. Sequence comparison suggested that other endo-type enzymes share the extended cleft. The specific hydrolysis of internal linkages in laminarin is presumably common to GH55 endo-ß-1,3-glucanases.


Asunto(s)
Glicósido Hidrolasas , beta-Glucanos , Glucanos/metabolismo , Glucosa , Glucosidasas/metabolismo , Glicósido Hidrolasas/metabolismo , Especificidad por Sustrato
3.
J Appl Glycosci (1999) ; 70(2): 43-52, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37599861

RESUMEN

ß-Galactosidase (EC 3.2.1.23) hydrolyzes ß-D-galactosidic linkages at the non-reducing end of substrates to produce ß-D-galactose. Lacticaseibacillus casei is one of the most widely utilized probiotic species of lactobacilli. It possesses a putative ß-galactosidase belonging to glycoside hydrolase family 35 (GH35). This enzyme is encoded by the gene included in the gene cluster for utilization of lacto-N-biose I (LNB; Galß1-3GlcNAc) and galacto-N-biose (GNB; Galß1-3GalNAc) via the phosphoenolpyruvate: sugar phosphotransferase system. The GH35 protein (GnbG) from L. casei BL23 is predicted to be 6-phospho-ß-galactosidase (EC 3.2.1.85). However, its 6-phospho-ß-galactosidase activity has not yet been examined, whereas its hydrolytic activity against LNB and GNB has been demonstrated. In this study, L. casei JCM1134 LBCZ_0230, homologous to GnbG, was characterized enzymatically and structurally. A recombinant LBCZ_0230, produced in Escherichia coli, exhibited high hydrolytic activity toward o-nitrophenyl ß-D-galactopyranoside, p-nitrophenyl ß-D-galactopyranoside, LNB, and GNB, but not toward o-nitrophenyl 6-phospho-ß-D-galactopyranoside. Crystal structure analysis indicates that the structure of subsite -1 of LBCZ_0230 is very similar to that of Streptococcus pneumoniae ß-galactosidase BgaC and not suitable for binding to 6-phospho-ß-D-galactopyranoside. These biochemical and structural analyses indicate that LBCZ_0230 is a ß-galactosidase. According to the prediction of LNB's binding mode, aromatic residues, Trp190, Trp240, Trp243, Phe244, and Tyr458, form hydrophobic interactions with N-acetyl-D-glucosamine residue of LNB at subsite +1.

4.
Carbohydr Polym ; 319: 121185, 2023 Nov 01.
Artículo en Inglés | MEDLINE | ID: mdl-37567719

RESUMEN

Isomaltomegalosaccharides with α-(1 â†’ 4) and α-(1 â†’ 6)-segments solubilize water-insoluble ligands since the former complexes with the ligand and the latter solubilizes the complex. Previously, we enzymatically synthesized isomaltomegalosaccharide with a single α-(1 â†’ 4)-segment at the reducing end (S-IMS) by dextran dextrinase (DDase), but the chain length [average degree of polymerization (DP) ≤ 9] was insufficient for strong encapsulation. We hypothesized that the conjugation of longer α-(1 â†’ 4)-segment afforded the promising function although DDase is incapable to do so. In this study, the cyclodextrin glucanotransferase-catalyzed coupling reaction of α-cyclodextrin to S-IMS synthesized a new α-(1 â†’ 4)-segment at the nonreducing end (N-4S) of S-IMS to form D-IMS [IMS harboring double α-(1 â†’ 4)-segments]. The length of N-4S was modulated by the ratio between α-cyclodextrin and S-IMS, generating N-4Ss with DPs of 7-50. Based on phase-solubility analysis, D-IMS-28.3/13/3 bearing amylose-like helical N-4S with DP of 28.3 displayed a water-soluble complex with aromatic drugs and curcumin. Small-angle X-ray scattering revealed the chain adapted to rigid in solution in which the radius of gyration was estimated to 2.4 nm. Furthermore, D-IMS with short N-4S solubilized flavonoids of less-soluble multifunctional substances. In our research, enzyme-generated functional biomaterials from DDase were developed to maximize the hydrophobic binding efficacy towards water-insoluble bioactive compounds.

5.
Biosci Biotechnol Biochem ; 87(10): 1111-1121, 2023 Sep 21.
Artículo en Inglés | MEDLINE | ID: mdl-37407435

RESUMEN

ß1-3/1-6 Glucans, known for their diverse structures, comprise a ß1-3-linked main chain and ß1-6-linked short branches. Laminarin, a ß1-3/1-6 glucan extracted from brown seaweed, for instance, includes ß1-6 linkages even in the main chain. The diverse structures provide various beneficial functions for the glucan. To investigate the relationship between structure and functionality, and to enable the characterization of ß1-3/1-6 glucan-metabolizing enzymes, oligosaccharides containing the exact structures of ß1-3/1-6 glucans are required. We synthesized the monomeric units for the synthesis of ß1-3/1-6 mixed-linked glucooligosaccharides. 2-(Trimethylsilyl)ethyl 2-O-benzoyl-4,6-O-benzylidene-ß-d-glucopyranoside served as an acceptor in the formation of ß1-3 linkages. Phenyl 2-O-benzoyl-4,6-O-benzylidene-3-O-(tert-butyldiphenylsilyl)-1-thio-ß-d-glucopyranoside and phenyl 2,3-di-O-benzoyl-4,6-di-O-levulinyl-1-thio-ß-d-glucopyranoside acted as donors, synthesizing acceptors suitable for the formation of ß1-3- and ß1-6-linkages, respectively. These were used to synthesize a derivative of Glcß1-6Glcß1-3Glcß1-3Glc, demonstrating that the proposed route can be applied to synthesize the main chain of ß-glucan, with the inclusion of both ß1-3 and ß1-6 linkages.


Asunto(s)
Glucósidos , beta-Glucanos , Secuencia de Carbohidratos , Oligosacáridos/química , Glucanos
6.
Biosci Biotechnol Biochem ; 87(10): 1169-1182, 2023 Sep 21.
Artículo en Inglés | MEDLINE | ID: mdl-37491698

RESUMEN

Inulin, ß-(2→1)-fructan, is a beneficial polysaccharide used as a functional food ingredient. Microbial inulosucrases (ISs), catalyzing ß-(2→1)-transfructosylation, produce ß-(2→1)-fructan from sucrose. In this study, we identified a new IS (NdIS) from the soil isolate, Neobacillus drentensis 57N. Sequence analysis revealed that, like other Bacillaceae ISs, NdIS consists of a glycoside hydrolase family 68 domain and shares most of the 1-kestose-binding residues of the archaeal IS, InuHj. Native and recombinant NdIS were characterized. NdIS is a homotetramer. It does not require calcium for activity. High performance liquid chromatography and 13C-nuclear magnetic resonance indicated that NdIS catalyzed the hydrolysis and ß-(2→1)-transfructosylation of sucrose to synthesize ß-(2→1)-fructan with chain lengths of 42 or more residues. The rate dependence on sucrose concentration followed hydrolysis-transglycosylation kinetics, and a 50% transglycosylation ratio was obtained at 344 m m sucrose. These results suggest that transfructosylation from sucrose to ß-(2→1)-fructan occurs predominantly to elongate the fructan chain because sucrose is an unfavorable acceptor.


Asunto(s)
Fructanos , Sacarosa , Fructanos/química , Sacarosa/química , Hidrólisis , Inulina
7.
Acta Crystallogr D Struct Biol ; 79(Pt 7): 585-595, 2023 Jul 01.
Artículo en Inglés | MEDLINE | ID: mdl-37314406

RESUMEN

Mannose 2-epimerase (ME), a member of the acylglucosamine 2-epimerase (AGE) superfamily that catalyzes epimerization of D-mannose and D-glucose, has recently been characterized to have potential for D-mannose production. However, the substrate-recognition and catalytic mechanism of ME remains unknown. In this study, structures of Runella slithyformis ME (RsME) and its D254A mutant [RsME(D254A)] were determined in their apo forms and as intermediate-analog complexes [RsME-D-glucitol and RsME(D254A)-D-glucitol]. RsME possesses the (α/α)6-barrel of the AGE superfamily members but has a unique pocket-covering long loop (loopα7-α8). The RsME-D-glucitol structure showed that loopα7-α8 moves towards D-glucitol and closes the active pocket. Trp251 and Asp254 in loopα7-α8 are only conserved in MEs and interact with D-glucitol. Kinetic analyses of the mutants confirmed the importance of these residues for RsME activity. Moreover, the structures of RsME(D254A) and RsME(D254A)-D-glucitol revealed that Asp254 is vital for binding the ligand in a correct conformation and for active-pocket closure. Docking calculations and structural comparison with other 2-epimerases show that the longer loopα7-α8 in RsME causes steric hindrance upon binding to disaccharides. A detailed substrate-recognition and catalytic mechanism for monosaccharide-specific epimerization in RsME has been proposed.


Asunto(s)
Manosa , Racemasas y Epimerasas , Manosa/metabolismo , Especificidad por Sustrato , Carbohidrato Epimerasas/química
8.
Biosci Biotechnol Biochem ; 87(7): 707-716, 2023 Jun 23.
Artículo en Inglés | MEDLINE | ID: mdl-37055368

RESUMEN

Glycoside hydrolase family 3 (GH3) ß-glucosidase exists in many filamentous fungi. In phytopathogenic fungi, it is involved in fungal growth and pathogenicity. Microdochium nivale is a severe phytopathogenic fungus of grasses and cereals and is the causal agent of pink snow mold, but its ß-glucosidase has not been identified. In this study, a GH3 ß-glucosidase of M. nivale (MnBG3A) was identified and characterized. Among various p-nitrophenyl ß-glycosides, MnBG3A showed activity on d-glucoside (pNP-Glc) and slight activity on d-xyloside. In the pNP-Glc hydrolysis, substrate inhibition occurred (Kis = 1.6 m m), and d-glucose caused competitive inhibition (Ki = 0.5 m m). MnBG3A acted on ß-glucobioses with ß1-3, -6, -4, and -2 linkages, in descending order of kcat/Km. In contrast, the regioselectivity for newly formed products was limited to ß1-6 linkage. MnBG3A has similar features to those of ß-glucosidases from Aspergillus spp., but higher sensitivity to inhibitory effects.


Asunto(s)
Glicósido Hidrolasas , beta-Glucosidasa , beta-Glucosidasa/genética , beta-Glucosidasa/metabolismo , Glicósidos/química , Hongos/metabolismo , Especificidad por Sustrato , Cinética
9.
Molecules ; 28(7)2023 Mar 30.
Artículo en Inglés | MEDLINE | ID: mdl-37049872

RESUMEN

α-Glucosidase catalyzes the hydrolysis of α-d-glucosides and transglucosylation. Bacillus sp. AHU2216 α-glucosidase (BspAG13_31A), belonging to the glycoside hydrolase family 13 subfamily 31, specifically cleaves α-(1→4)-glucosidic linkages and shows high disaccharide specificity. We showed previously that the maltose moiety of maltotriose (G3) and maltotetraose (G4), covering subsites +1 and +2 of BspAG13_31A, adopts a less stable conformation than the global minimum energy conformation. This unstable d-glucosyl conformation likely arises from steric hindrance by Asn258 on ß→α loop 5 of the catalytic (ß/α)8-barrel. In this study, Asn258 mutants of BspAG13_31A were enzymatically and structurally analyzed. N258G/P mutations significantly enhanced trisaccharide specificity. The N258P mutation also enhanced the activity toward sucrose and produced erlose from sucrose through transglucosylation. N258G showed a higher specificity to transglucosylation with p-nitrophenyl α-d-glucopyranoside and maltose than the wild type. E256Q/N258G and E258Q/N258P structures in complex with G3 revealed that the maltose moiety of G3 bound at subsites +1 and +2 adopted a relaxed conformation, whereas a less stable conformation was taken in E256Q. This structural difference suggests that stabilizing the G3 conformation enhances trisaccharide specificity. The E256Q/N258G-G3 complex formed an additional hydrogen bond between Met229 and the d-glucose residue of G3 in subsite +2, and this interaction may enhance transglucosylation.


Asunto(s)
Bacillus , alfa-Glucosidasas , alfa-Glucosidasas/metabolismo , Bacillus/genética , Bacillus/metabolismo , Maltosa/metabolismo , Especificidad por Sustrato , Trisacáridos , Mutagénesis Sitio-Dirigida , Sacarosa
10.
Sci Rep ; 12(1): 259, 2022 01 07.
Artículo en Inglés | MEDLINE | ID: mdl-34997180

RESUMEN

Glycoside phosphorylases (GPs), which catalyze the reversible phosphorolysis of glycosides, are promising enzymes for the efficient production of glycosides. Various GPs with new catalytic activities are discovered from uncharacterized proteins phylogenetically distant from known enzymes in the past decade. In this study, we characterized Paenibacillus borealis PBOR_28850 protein, belonging to glycoside hydrolase family 94. Screening of acceptor substrates for reverse phosphorolysis, in which α-D-glucose 1-phosphate was used as the donor substrate, revealed that the recombinant PBOR_28850 produced in Escherichia coli specifically utilized D-galactose as an acceptor and produced solabiose (ß-D-Glcp-(1 → 3)-D-Gal). This indicates that PBOR_28850 is a new GP, solabiose phosphorylase. PBOR_28850 catalyzed the phosphorolysis and synthesis of solabiose through a sequential bi-bi mechanism involving the formation of a ternary complex. The production of solabiose from lactose and sucrose has been established. Lactose was hydrolyzed to D-galactose and D-glucose by ß-galactosidase. Phosphorolysis of sucrose and synthesis of solabiose were then coupled by adding sucrose, sucrose phosphorylase, and PBOR_28850 to the reaction mixture. Using 210 mmol lactose and 280 mmol sucrose, 207 mmol of solabiose was produced. Yeast treatment degraded the remaining monosaccharides and sucrose without reducing solabiose. Solabiose with a purity of 93.7% was obtained without any chromatographic procedures.


Asunto(s)
Proteínas Bacterianas/metabolismo , Disacáridos/biosíntesis , Lactosa/metabolismo , Paenibacillus/enzimología , Fosforilasas/metabolismo , Sacarosa/metabolismo , Proteínas Bacterianas/genética , Sitios de Unión , Catálisis , Dominio Catalítico , Hidrólisis , Cinética , Paenibacillus/genética , Fosforilasas/genética , Especificidad por Sustrato
11.
Appl Microbiol Biotechnol ; 106(2): 689-698, 2022 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-35024917

RESUMEN

Dextran dextrinase (DDase) catalyzes formation of the polysaccharide dextran from maltodextrin. During the synthesis of dextran, DDase also generates the beneficial material isomaltomegalosaccharide (IMS). The term megalosaccharide is used for a saccharide having DP = 10-100 or 10-200 (DP, degree of polymerization). IMS is a chimeric glucosaccharide comprising α-(1 → 6)- and α-(1 → 4)-linked portions at the nonreducing and reducing ends, respectively, in which the α-(1 → 4)-glucosyl portion originates from maltodextrin of the substrate. In this study, IMS was produced by a practical approach using extracellular DDase (DDext) or cell surface DDase (DDsur) of Gluconobacter oxydans ATCC 11894. DDsur was the original form, so we prepared DDext via secretion from intact cells by incubating with 0.5% G6/G7 (maltohexaose/maltoheptaose); this was followed by generation of IMS from various concentrations of G6/G7 substrate at different temperatures for 96 h. However, IMS synthesis by DDext was limited by insufficient formation of α-(1 → 6)-glucosidic linkages, suggesting that DDase also catalyzes elongation of α-(1 → 4)-glucosyl chain. For production of IMS using DDsur, intact cells bearing DDsur were directly incubated with 20% G6/G7 at 45 °C by optimizing conditions such as cell concentration and agitation efficiency, which resulted in generation of IMS (average DP = 14.7) with 61% α-(1 → 6)-glucosyl content in 51% yield. Increases in substrate concentration and agitation efficiency were found to decrease dextran formation and increase IMS production, which improved the reaction conditions for DDext. Under modified conditions (20% G6/G7, agitation speed of 100 rpm at 45 °C), DDext produced IMS (average DP = 14.5) with 65% α-(1 → 6)-glucosyl content in a good yield of 87%. KEY POINTS: • Beneficial IMS was produced using thermostabilized DDase. • Optimum conditions for reduced dextran formation were successfully determined. • A practical approach was established to provide IMS with a great yield of 87%.


Asunto(s)
Gluconobacter oxydans , Membrana Celular , Gluconobacter oxydans/genética , Glucósidos , Glucosiltransferasas
12.
Biosci Biotechnol Biochem ; 86(2): 231-245, 2022 Jan 24.
Artículo en Inglés | MEDLINE | ID: mdl-34965581

RESUMEN

Plants possess many glycoside hydrolase family 1 (GH1) ß-glucosidases, which physiologically function in cell wall metabolism and activation of bioactive substances, but most remain uncharacterized. One GH1 isoenzyme AtBGlu42 in Arabidopsis thaliana has been identified to hydrolyze scopolin using the gene deficient plants, but no enzymatic properties were obtained. Its sequence similarity to another functionally characterized enzyme Os1BGlu4 in rice suggests that AtBGlu42 also acts on oligosaccharides. Here, we show that the recombinant AtBGlu42 possesses high kcat/Km not only on scopolin, but also on various ß-glucosides, cellooligosaccharides, and laminarioligosaccharides. Of the cellooligosaccharides, cellotriose was the most preferred. The crystal structure, determined at 1.7 Å resolution, suggests that Arg342 gives unfavorable binding to cellooligosaccharides at subsite +3. The mutants R342Y and R342A showed the highest preference on cellotetraose or cellopentaose with increased affinities at subsite +3, indicating that the residues at this position have an important role for chain length specificity.


Asunto(s)
beta-Glucosidasa
13.
Plants (Basel) ; 10(9)2021 Sep 10.
Artículo en Inglés | MEDLINE | ID: mdl-34579409

RESUMEN

Salicylic acid (SA) is a phytohormone that regulates a variety of physiological and developmental processes, including disease resistance. SA is a key signaling component in the immune response of many plant species. However, the mechanism underlying SA-mediated immunity is obscure in rice (Oryza sativa). Prior analysis revealed a correlation between basal SA level and blast resistance in a range of rice varieties. This suggested that resistance might be improved by increasing basal SA level. Here, we identified a novel UDP-glucosyltransferase gene, UGT74J1, which is expressed ubiquitously throughout plant development. Mutants of UGT74J1 generated by genome editing accumulated high levels of SA under non-stressed conditions, indicating that UGT74J1 is a key enzyme for SA homeostasis in rice. Microarray analysis revealed that the ugt74j1 mutants constitutively overexpressed a set of pathogenesis-related (PR) genes. An inoculation assay demonstrated that these mutants had increased resistance against rice blast, but they also exhibited stunted growth phenotypes. To our knowledge, this is the first report of a rice mutant displaying SA overaccumulation.

14.
Carbohydr Res ; 488: 107902, 2020 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-31911362

RESUMEN

Trehalose 6-phosphate (Tre6P) is an important intermediate for trehalose biosynthesis. Recent researches have revealed that Tre6P is an endogenous signaling molecule that regulates plant development and stress responses. The necessity of Tre6P in physiological studies is expected to be increasing. To achieve the cost-effective production of Tre6P, a novel approach is required. In this study, we utilized trehalose 6-phosphate phosphorylase (TrePP) from Lactococcus lactis to produce Tre6P. In the reverse phosphorolysis by the TrePP, 91.9 mM Tre6P was produced from 100 mM ß-glucose 1-phosphate (ß-Glc1P) and 100 mM glucose 6-phosphate (Glc6P). The one-pot reaction of TrePP and maltose phosphorylase (MP) enabled production of 65 mM Tre6P from 100 mM maltose, 100 mM Glc6P, and 20 mM inorganic phosphate. Addition of ß-phosphoglucomutase to this reaction produced Glc6P from ß-Glc1P and thus reduced requirement of Glc6P as a starting material. Within the range of 20-469 mM inorganic phosphate tested, the 54 mM concentration yielded the highest amount of Tre6P (33 mM). Addition of yeast increased the yield because of its glucose consumption. Finally, from 100 mmol maltose and 60 mmol inorganic phosphate, we successfully achieved production of 37.5 mmol Tre6P in a one-pot reaction (100 mL), and 9.4 g Tre6P dipotassium salt was obtained.


Asunto(s)
Glucosiltransferasas/metabolismo , Lactococcus lactis/enzimología , Fosfatos de Azúcar/biosíntesis , Trehalosa/análogos & derivados , Levaduras/crecimiento & desarrollo , Proteínas Bacterianas/genética , Proteínas Bacterianas/metabolismo , Metabolismo de los Hidratos de Carbono , Clonación Molecular , Glucosa-6-Fosfatasa/metabolismo , Glucofosfatos/metabolismo , Glucosiltransferasas/genética , Lactococcus lactis/genética , Fosfatos/metabolismo , Trehalosa/biosíntesis , Levaduras/genética
15.
Biosci Biotechnol Biochem ; 83(11): 2097-2109, 2019 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-31262243

RESUMEN

Maltose phosphorylase (MP), a glycoside hydrolase family 65 enzyme, reversibly phosphorolyzes maltose. In this study, we characterized Bacillus sp. AHU2001 MP (MalE) that was produced in Escherichia coli. The enzyme exhibited phosphorolytic activity to maltose, but not to other α-linked glucobioses and maltotriose. The optimum pH and temperature of MalE for maltose-phosphorolysis were 8.1 and 45°C, respectively. MalE was stable at a pH range of 4.5-10.4 and at ≤40°C. The phosphorolysis of maltose by MalE obeyed the sequential Bi-Bi mechanism. In reverse phosphorolysis, MalE utilized d-glucose, 1,5-anhydro-d-glucitol, methyl α-d-glucoside, 2-deoxy-d-glucose, d-mannose, d-glucosamine, N-acetyl-d-glucosamine, kojibiose, 3-deoxy-d-glucose, d-allose, 6-deoxy-d-glucose, d-xylose, d-lyxose, l-fucose, and l-sorbose as acceptors. The kcat(app)/Km(app) value for d-glucosamine and 6-deoxy-d-glucose was comparable to that for d-glucose, and that for other acceptors was 0.23-12% of that for d-glucose. MalE synthesized α-(1→3)-glucosides through reverse phosphorolysis with 2-deoxy-d-glucose and l-sorbose, and synthesized α-(1→4)-glucosides in the reaction with other tested acceptors.


Asunto(s)
Bacillus/enzimología , Glucosiltransferasas/metabolismo , Oligosacáridos/síntesis química , Técnicas de Química Sintética , Concentración de Iones de Hidrógeno , Fosforilación , Especificidad por Sustrato , Temperatura
16.
Appl Microbiol Biotechnol ; 103(16): 6559-6570, 2019 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-31201453

RESUMEN

Carbohydrate epimerases and isomerases are essential for the metabolism and synthesis of carbohydrates. In this study, Runella slithyformis Runsl_4512 and Dyadobacter fermentans Dfer_5652 were characterized from a cluster of uncharacterized proteins of the acylglucosamine 2-epimerase (AGE) superfamily. These proteins catalyzed the intramolecular conversion of D-mannose to D-glucose, whereas they did not act on ß-(1 → 4)-mannobiose, N-acetyl-D-glucosamine, and D-fructose, which are substrates of known AGE superfamily members. The kcat/Km values of Runsl_4512 and Dfer_5652 for D-mannose epimerization were 3.89 and 3.51 min-1 mM-1, respectively. Monitoring the Runsl_4512 reaction through 1H-NMR showed the formation of ß-D-glucose and ß-D-mannose from D-mannose and D-glucose, respectively. In the reaction with ß-D-glucose, ß-D-mannose was produced at the initial stage of the reaction, but not in the reaction with α-D-glucose. These results indicate that Runsl_4512 catalyzed the 2-epimerization of the ß-anomer substrate with a net retention of the anomeric configuration. Since 2H was obviously detected at the 2-C position of D-mannose and D-glucose in the equilibrated reaction mixture produced by Runsl_4512 in 2H2O, this enzyme abstracts 2-H from the substrate and adds another proton to the intermediate. This mechanism is in accordance with the mechanism proposed for the reactions of other epimerases of the AGE superfamily, that is, AGE and cellobiose 2-epimerase. Upon reaction with 500 g/L D-glucose at 50 °C and pH 8.0, Runsl_4512 and Dfer_5652 produced D-mannose with a 24.4 and 22.8% yield, respectively. These D-mannose yields are higher than those of other enzyme systems, and ME acts as an efficient biocatalyst for producing D-mannose.


Asunto(s)
Carbohidrato Epimerasas/metabolismo , Cytophagaceae/enzimología , Manosa/metabolismo , Glucosa/metabolismo , Concentración de Iones de Hidrógeno , Cinética , Especificidad por Sustrato , Temperatura
17.
Plant Physiol Biochem ; 135: 263-271, 2019 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-30590260

RESUMEN

Rice blast caused by Magnaporthe oryzae is one of the most destructive diseases of rice (Oryza sativa) worldwide. Here, we report the identification and functional characterization of a novel ethylene response factor (ERF) gene, OsERF83, which was expressed in rice leaves in response to rice blast fungus infection. OsERF83 expression was also induced by treatments with methyl jasmonate, ethephon, and salicylic acid, indicating that multiple phytohormones could be involved in the regulation of OsERF83 expression under biotic stress. Subcellular localization and transactivation analyses demonstrated that OsERF83 is a nucleus-localized transcriptional activator. A gel-shift assay using recombinant OsERF83 protein indicated that, like other ERFs, it binds to the GCC box. Transgenic rice plants overexpressing OsERF83 exhibited significantly suppressed lesion formation after rice blast infection, indicating that OsERF83 positively regulates disease resistance in rice. Genes encoding several classes of pathogenesis-related (PR) proteins, including PR1, PR2, PR3, PR5, and PR10, were upregulated in the OsERF83ox plants. Taken together, our findings show that OsERF83 is a novel ERF transcription factor that confers blast resistance by regulating the expression of defense-related genes in rice.


Asunto(s)
Resistencia a la Enfermedad , Magnaporthe , Oryza/metabolismo , Enfermedades de las Plantas/microbiología , Proteínas de Plantas/fisiología , Transactivadores/fisiología , Ensayo de Cambio de Movilidad Electroforética , Etilenos/metabolismo , Oryza/genética , Oryza/inmunología , Oryza/fisiología , Filogenia , Enfermedades de las Plantas/inmunología , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Plantas Modificadas Genéticamente , Reacción en Cadena en Tiempo Real de la Polimerasa , Proteínas Recombinantes , Transactivadores/genética , Transactivadores/metabolismo
18.
Appl Environ Microbiol ; 84(17)2018 09 01.
Artículo en Inglés | MEDLINE | ID: mdl-29934330

RESUMEN

Bifidobacteria are a major component of the intestinal microbiota in humans, particularly breast-fed infants. Therefore, elucidation of the mechanisms by which these bacteria colonize the intestine is desired. One approach is transposon mutagenesis, a technique currently attracting much attention because, in combination with next-generation sequencing, it enables exhaustive identification of genes that contribute to microbial fitness. We now describe a transposon mutagenesis system for Bifidobacterium longum subsp. longum 105-A (JCM 31944) based on ISBlo11, a native IS3 family insertion sequence. To build this system, xylose-inducible or constitutive bifidobacterial promoters were tested to drive the expression of full-length or a truncated form at the N terminus of the ISBlo11 transposase. An artificial transposon plasmid, pBFS12, in which ISBlo11 terminal inverted repeats are separated by a 3-bp spacer, was also constructed to mimic the transposition intermediate of IS3 elements. The introduction of this plasmid into a strain expressing transposase resulted in the insertion of the plasmid with an efficiency of >103 CFU/µg DNA. The plasmid targets random 3- to 4-bp sequences, but with a preference for noncoding regions. This mutagenesis system also worked at least in B. longum NCC2705. Characterization of a transposon insertion mutant revealed that a putative α-glucosidase mediates palatinose and trehalose assimilation, demonstrating the suitability of transposon mutagenesis for loss-of-function analysis. We anticipate that this approach will accelerate functional genomic studies of B. longum subsp. longumIMPORTANCE Several hundred species of bacteria colonize the mammalian intestine. However, the genes that enable such bacteria to colonize and thrive in the intestine remain largely unexplored. Transposon mutagenesis, combined with next-generation sequencing, is a promising tool to comprehensively identify these genes but has so far been applied only to a small number of intestinal bacterial species. In this study, a transposon mutagenesis system was established for Bifidobacterium longum subsp. longum, a representative health-promoting Bifidobacterium species. The system enables the identification of genes that promote colonization and survival in the intestine and should help illuminate the physiology of this species.


Asunto(s)
Bifidobacterium longum/genética , Elementos Transponibles de ADN/genética , Microbioma Gastrointestinal/genética , Mutagénesis/genética , Plásmidos/genética , Genoma Bacteriano/genética , Humanos , Intestinos/microbiología , Isomaltosa/análogos & derivados , Isomaltosa/metabolismo , Análisis de Secuencia de ADN , Transposasas/genética , Trehalosa/metabolismo , alfa-Glucosidasas/genética
19.
FEBS Lett ; 592(13): 2268-2281, 2018 07.
Artículo en Inglés | MEDLINE | ID: mdl-29870070

RESUMEN

α-Glucosidase hydrolyzes α-glucosides and transfers α-glucosyl residues to an acceptor through transglucosylation. In this study, GH13_31 α-glucosidase BspAG13_31A with high transglucosylation activity is reported in Bacillus sp. AHU2216 and biochemically and structurally characterized. This enzyme is specific to α-(1→4)-glucosidic linkage as substrates and transglucosylation products. Maltose is the most preferred substrate. Crystal structures of BspAG13_31A wild-type for the substrate-free form and inactive acid/base mutant E256Q in complexes with maltooligosaccharides were solved at 1.6-2.5 Å resolution. BspAG13_31A has a catalytic domain folded by an (ß/α)8 -barrel. In subsite +1, Ala200 and His203 on ß→α loop 4 and Asn258 on ß→α loop 5 are involved in the recognition of maltooligosaccharides. Structural basis for specificity of GH13_31 enzymes to α-(1→4)-glucosidic linkage is first described.


Asunto(s)
Bacillus/enzimología , Glucósidos/metabolismo , alfa-Glucosidasas/química , alfa-Glucosidasas/metabolismo , Secuencia de Aminoácidos , Bacillus/genética , Metabolismo de los Hidratos de Carbono/genética , Secuencia de Carbohidratos/fisiología , Dominio Catalítico/genética , Glucósidos/química , Glicosilación , Hidrólisis , Cinética , Modelos Moleculares , Mutagénesis Sitio-Dirigida , Relación Estructura-Actividad , Especificidad por Sustrato/genética , alfa-Glucosidasas/genética
20.
Biochimie ; 144: 63-73, 2018 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-29107017

RESUMEN

d-Mannose isomerase (MI) reversibly isomerizes d-mannose to d-fructose, and is attractive for producing d-mannose from inexpensive d-fructose. It belongs to the N-acylglucosamine 2-epimerase (AGE) superfamily along with AGE, cellobiose 2-epimerase (CE), and aldose-ketose isomerase (AKI). In this study, Marinomonas mediterranea Marme_2490, showing low sequence identity with any known enzymes, was found to isomerize d-mannose as its primary substrate. Marme_2490 also isomerized d-lyxose and 4-OH d-mannose derivatives (d-talose and 4-O-monosaccharyl-d-mannose). Its activity for d-lyxose is known in other d-mannose isomerizing enzymes, such as MI and AKI, but we identified, for the first time, its activity for 4-OH d-mannose derivatives. Marme_2490 did not isomerize d-glucose, as known MIs do not, while AKI isomerizes both d-mannose and d-glucose. Thus, Marme_2490 was concluded to be an MI. The initial and equilibrium reaction products were analyzed by NMR to illuminate mechanistic information regarding the Marme_2490 reaction. The analysis of the initial reaction product revealed that ß-d-mannose was formed. In the analysis of the equilibrated reaction products in D2O, signals of 2-H of d-mannose and 1-H of d-fructose were clearly detected. This indicates that these protons are not substituted with deuterium from D2O and Marme_2490 catalyzes the intramolecular proton transfer between 1-C and 2-C. The crystal structure of Marme_2490 in a ligand-free form was determined and found that Marme_2490 is formed by an (α/α)6-barrel, which is commonly observed in AGE superfamily enzymes. Despite diverse reaction specificities, the orientations of residues involved in catalysis and substrate binding by Marme_2490 were similar to those in both AKI (Salmonella enterica AKI) and epimerase (Rhodothermus marinus CE). The Marme_2490 structure suggested that the α7→α8 and α11→α12 loops of the catalytic domain participated in the formation of an open substrate-binding site to provide sufficient space to bind 4-OH d-mannose derivatives.


Asunto(s)
Isomerasas Aldosa-Cetosa/química , Isomerasas Aldosa-Cetosa/metabolismo , Marinomonas/enzimología , Disacáridos/química , Disacáridos/metabolismo , Evolución Molecular , Concentración de Iones de Hidrógeno , Isomerismo , Cinética , Filogenia , Especificidad por Sustrato , Temperatura
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...