Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 39
Filtrar
Más filtros













Base de datos
Intervalo de año de publicación
1.
Nat Commun ; 15(1): 3028, 2024 Apr 16.
Artículo en Inglés | MEDLINE | ID: mdl-38627402

RESUMEN

Mixed-stack complexes which comprise columns of alternating donors and acceptors are organic conductors with typically poor electrical conductivity because they are either in a neutral or highly ionic state. This indicates that conductive carriers are insufficient or are mainly localized. In this study, mixed-stack complexes that uniquely exist at the neutral-ionic boundary were synthesized by combining donors (bis(3,4-ethylenedichalcogenothiophene)) and acceptors (fluorinated tetracyanoquinodimethanes) with similar energy levels and orbital symmetry between the highest occupied molecular orbital of the donor and the lowest unoccupied molecular orbital of the acceptor. Surprisingly, the orbitals were highly hybridized in the single-crystal complexes, enhancing the room-temperature conductivity (10-4-0.1 S cm-1) of mixed-stack complexes. Specifically, the maximum conductivity was the highest reported for single-crystal mixed-stack complexes under ambient pressures. The unique electronic structures at the neutral-ionic boundary exhibited structural perturbations between their electron-itinerant and localized states, causing abrupt temperature-dependent changes in their electrical, optical, dielectric, and magnetic properties.

2.
Faraday Discuss ; 250(0): 348-360, 2024 Mar 11.
Artículo en Inglés | MEDLINE | ID: mdl-37961785

RESUMEN

Conductive polymers with highly conjugated systems, such as the doped poly(3,4-ethylenedioxythiophene) (PEDOT) family, are commonly used in organic electronics. However, their structural inhomogeneity with various chain lengths makes it difficult to control their conductivities and structural details. On the other hand, low-molecular-weight materials have well-defined structures but relatively narrow conjugate areas with a limited range of Coulomb repulsion between carriers (Ueff), which hamper the flexible control of conductivities. To bridge this gap, we developed oligomer-based conductors, which are intermediate materials between polymers and low-molecular-weight materials. Using a library of single-crystal charge-transfer salts of oligo(3,4-ethylenedioxythiophene) (oligoEDOT) analogs that model the doped PEDOT family, we have investigated the structure-determining factors affecting their conductivities, such as counter anion variations, lengths of oligomer donor, and band fillings. Through the screening study, we developed oligoEDOT analogs with tunable room temperature conductivities by several orders of magnitude, including a metallic state above room temperature. In this study, we consistently evaluated the electronic structural insights by first-principles calculations and revealed that Ueff is the dominant factor that determines the relationship between the structures and conductivities. The unique features of oligoEDOT conductor systems with widely variable Ueff can differentiate these systems from strongly electron-correlated systems.

3.
J Am Chem Soc ; 145(28): 15152-15161, 2023 Jul 19.
Artículo en Inglés | MEDLINE | ID: mdl-37395785

RESUMEN

Modern organic conductors are typically low-molecular-weight or polymer-based materials. Low-molecular-weight materials can be characterized using crystallographic information, allowing structure-conductivity relationships to be established and conduction mechanisms to be understood. However, controlling their conductive properties through molecular structural modulation is often challenging because of their relatively narrow conjugate areas. In contrast, polymer-based materials have highly π-conjugated structures with wide molecular-weight distributions, and their structural inhomogeneity makes characterizing their structures difficult. Thus, we focused on the less-explored intermediate, i.e., single-molecular-weight oligomers that model doped poly(3,4-ethylenedioxythiophene) (PEDOT). The dimer and trimer models provided clear structures; however, the short oligomers led to much lower conductivities (<10-3 S cm-1) than that of doped PEDOT. Herein, we elongated the oligomer to a tetramer through geometrical tuning based on a mixed sequence. The "P-S-S-P" sequence (S: 3,4-ethylenedithiothiophene; P: 3,4-(2',2'-dimethypropylenedioxy)thiophene) with twisted S-S enhanced the solubility and chemical stability. The subsequent oxidation process planarized the oligomer and expanded the conjugate area. Interestingly, the sequence involving sterically bulky outer P units allowed the doped oligomer to form a pitched π-stack in the single-crystal form. This enabled the inclusion of excess counter anions, which modulated the band filling. The combined effects of conjugate area expansion and band-filling modulation significantly increased the room-temperature conductivity to 36 S cm-1. This is the highest value reported for a single-crystalline oligomer conductor. Furthermore, a metallic state was observed above room temperature in a single-crystalline oligoEDOT for the first time. This unique mixed-sequence strategy for oligomer-based conductors enabled the precise control of conductive properties.

4.
J Phys Chem Lett ; 14(14): 3461-3467, 2023 Apr 13.
Artículo en Inglés | MEDLINE | ID: mdl-37010941

RESUMEN

Organic semiconductors are well-known to exhibit high charge carrier mobility based on their spread of the π-orbital. In particular, the π-orbital overlap between neighboring molecules significantly affects their charge carrier mobility. This study elucidated the direct effect of subtle differences in the π-orbital overlap on charge carrier mobility, by precisely controlling only molecular arrangements without any chemical modifications. We synthesized disulfonic acid composed of a [1]benzothieno[3,2-b][1]benzothiophene (BTBT) moiety, and prepared organic salts with four butylamine isomers. Regardless of the type of butylamine combined, electronic states of the constituent BTBT derivative were identical, and all BTBT arrangements were edge-to-face herringbone-type. However, depending on the difference of steric hindrance, center-to-center distances and dihedral angles between neighboring BTBT moieties slightly varied. Despite a similar arrangement, the photoconductivity of four organic salts differed by a factor of approximately two. Additionally, theoretical charge carrier mobilities from their crystal structures exhibited a strong correlation with their photoconductivity.

5.
J Am Chem Soc ; 145(4): 2127-2134, 2023 Feb 01.
Artículo en Inglés | MEDLINE | ID: mdl-36511803

RESUMEN

Air-stable single-component ambipolar organic semiconductors that conduct both holes and electrons are highly desired but have been rarely realized. Neutral nickel bis(dithiolene) complexes are promising candidates that fulfill the stringent electronic requirements of shallow HOMO levels and deep LUMO levels, which can reduce the carrier injection barrier to overcome the work function of gold electrodes and ensure air stability. However, most nickel bis(dithiolene) analogs that have been characterized as ambipolar semiconductors have twisted molecular structures that hinder the effective intermolecular interactions required for carrier conduction. To address this issue, we synthesized planar alkoxy-substituted nickel bis(dithiolene) analogs that facilitate dense packing with effective intermolecular interactions. Remarkably, changing the methoxy substituents to ethoxy or propoxy groups led to a dramatic change in the packing mode, from one-dimensional to herringbone-like, while maintaining effective intermolecular interactions. These materials overcome the usual trade-off between crystallinity and solubility; they are highly crystalline, even in their film forms, and are highly soluble in organic solvents. They are therefore readily solution-processable to form semiconducting layers with well-defined and well-ordered structures in field-effect transistors. Devices based on these compounds exhibited efficient ambipolar characteristics, even after several months of exposure to air, achieving high carrier mobilities of up to 10-2 cm2 V-1 s-1 and large on/off ratios of up to 105, which are the top-class performances achieved for a single-component ambipolar semiconductor material driven in air.

6.
Angew Chem Int Ed Engl ; 61(49): e202212872, 2022 Dec 05.
Artículo en Inglés | MEDLINE | ID: mdl-36250811

RESUMEN

Utilizing molecular motion is essential for the use of anhydrous superprotonic molecular proton conductors (σ beyond 10-4  S cm-1 ) as electrolytes in hydrogen fuel cells. However, molecular motion contributing to the improvement of intrinsic proton conduction has been limited and little clarified in relation to the proton conduction mechanism, limiting the development of material design guidelines. Here, a salt with a three-dimensional (3D) hydrogen-bonded (H-bonded) phosphate network with imidazolium cations installed inside was studied, whose components are known to exhibit molecular motions that contribute to proton conduction. Despite its anisotropic H-bonded network, the salt exhibits isotropic anhydrous superprotonic conductivity exceeding 10-3  S cm-1 at ≈351 K, which is the first example for organic molecular crystal. Variable-temperature X-ray structural analysis and solid-state 2 H NMR measurements revealed significant 3D molecular motion of imidazolium cations, which accelerate proton conduction via the 3D H-bonded phosphate network.

7.
Phys Chem Chem Phys ; 24(16): 9130-9134, 2022 Apr 20.
Artículo en Inglés | MEDLINE | ID: mdl-35388378

RESUMEN

The conjugation length is a unique structural factor for oligomer-based π-conjugated conductors as it modulates their electronic structures. Herein, we demonstrated the conjugation length effects on conductivity by comparing a dimer and trimer of single-crystalline oligo(3,4-ethylenedioxythiophene) radical cation salts. The dimer showed a uniform-stacked columnar structure, while the trimer showed stacked columns of the π-dimerized donor and weaker intracolumnar interactions. Nevertheless, the trimer exhibited higher conductivity, suggesting a considerable decrease in the on-site Coulomb repulsion energy of the conjugation-expanded system.

8.
Chem Commun (Camb) ; 58(38): 5668-5682, 2022 May 10.
Artículo en Inglés | MEDLINE | ID: mdl-35420071

RESUMEN

Proton-electron-coupled reactions, specifically proton-coupled electron transfer (PCET), in biological and chemical processes have been extensively investigated for use in a wide variety of applications, including energy conversion and storage. However, the exploration of the functionalities of the conductivity, magnetism, and dielectrics by proton-electron coupling in molecular materials is challenging. Dynamic and static proton-electron-coupled functionalities are to be expected. This feature article highlights the recent progress in the development of functionalities of dynamic proton-electron coupling in molecular materials. Herein, single-unit conductivity by self-doping, quantum spin liquid state coupled with quantum fluctuation of protons, switching of conductivity and magnetism triggered by the disorder-order transition of deuterons, and their external responses under pressure and in the presence of an electric field are introduced. In addition, as for the functionalities of proton-d/π-electron coupling in metal dithiolene complexes, magnetic switching with multiple PCET and vapochromism induced by electron transfer through hydrogen-bond (H-bond) formation is introduced experimentally and theoretically. We also outlined the basic and applied issues and potential challenges for development of proton-electron-coupled molecular materials, functionalities, and devices.

9.
J Phys Chem Lett ; 12(22): 5390-5394, 2021 Jun 10.
Artículo en Inglés | MEDLINE | ID: mdl-34080418

RESUMEN

Anhydrous organic crystalline materials incorporating imidazolium hydrogen succinate (Im-Suc), which exhibit high proton conduction even at temperatures above 100 °C, are attractive for elucidating proton conduction mechanisms toward the development of solid electrolytes for fuel cells. Herein, quantum chemical calculations were used to investigate the proton conduction mechanism in terms of hydrogen-bonding (H-bonding) changes and restricted molecular rotation in Im-Suc. The local H-bond structures for proton conduction were characterized by vibrational frequency analysis and compared with corresponding experimental data. The calculated potential energy surface involving proton transfer (PT) and imidazole (Im) rotational motion showed that PT between Im and succinic acid was a rate-limiting step for proton transport in Im-Suc and that proton conduction proceeded via the successive coupling of PT and Im rotational motion based on a Grotthuss-type mechanism. These findings provide molecular-level insights into proton conduction mechanisms for Im-based (or -incorporated) H-bonding organic proton conductors.

10.
Chemistry ; 27(22): 6597, 2021 Apr 16.
Artículo en Inglés | MEDLINE | ID: mdl-33656193

RESUMEN

Invited for the cover of this issue is the group of Tomoko Fujino and Hatsumi Mori at the University of Tokyo. The image depicts the structural information of doped PEDOT uncovered by the single-crystalline EDOT dimer model. Read the full text of the article at .10.1002/chem.202005333.

11.
Chemistry ; 27(22): 6696-6700, 2021 Apr 16.
Artículo en Inglés | MEDLINE | ID: mdl-33427364

RESUMEN

Although doped poly(3,4-ethylenedioxythiophene) (PEDOT) is extensively used in electronic devices, their molecular-weight distributions and inadequately defined structures have hindered the elucidation of their underlying conduction mechanism. In this study, we introduce the simplest discrete oligomer models: EDOT dimer radical cation salts. Single-crystal structural analyses revealed their one-dimensional (1D) columnar structures, in which the donors were uniformly stacked. Band calculations identified 1D metallic band structures with a strong intracolumnar orbital interaction (band width W≈1 eV), implying the origin of the high conductivity of doped PEDOT. Interestingly, the salts exhibited semiconducting behavior reminiscent of genuine Mott states as a result of electron-electron repulsion (U) dominant over W. This study realized basic models with tunable W and U to understand the conduction mechanism of doped PEDOT through structural modification in oligomers, including the conjugation length.

12.
ACS Appl Mater Interfaces ; 13(1): 989-998, 2021 Jan 13.
Artículo en Inglés | MEDLINE | ID: mdl-33332081

RESUMEN

Anthracene, a simple planar building block for organic semiconductors, shows strong intermolecular interactions and exhibits strong blue fluorescence. Thus, its derivatives have a great potential to integrate considerable charge carrier mobility and strong emission within a molecule. Here, we systematically studied the influence of alkyl chain length on the crystal structures, thermal properties, photophysical characteristics, electrochemical behaviors, and mobilities for a series of 2,6-di(4-alkyl-phenyl)anthracenes (Cn-Ph-Ants, where n represents the alkyl chain length). Among them, Cn-Ph-Ants (n = 0, 1, 2, and 3) display similar layered herringbone (LHB) packing motifs, which facilitate two-dimensional charge transport and thereby enables high-performance organic field-effect transistors (OFETs). All Cn-Ph-Ants exhibit similar work functions and show strong blue fluorescence with photoluminescence quantum yields (PLQY) of approximately 40% in toluene. In addition, the absolute powder PLQYs of C0-, C2-, C3-, C4-, and C6-Ph-Ants are 24.6, 8.2, 5.7, 10.9, and 8.6%, respectively. Note that the alkyl chain length shows a significant effect on the charge mobilities of Cn-Ph-Ants. Our newly synthesized C1-, C3-, and C4-Ph-Ants show hole mobilities of up to 2.40, 1.34, and 1.00 cm2 V-1 s-1, respectively, with mobilities of 3.40, 1.57, and 0.82 cm2 V-1 s-1 for C0-, C2-, and C6-Ph-Ants, indicating an increasing tendency of mobility with shorter alkyl chain length. This feature is related to the microstructures of the thin films, which reveal the enhanced film order, crystallinity, and grain size with a decrease in the alkyl chain length. Moreover, we theoretically analyze the intermolecular transfer integrals of HOMOs, which increase at T-shaped contacts as the alkyl chain length decreases, which improves the intermolecular charge transport properties, leading to the increases in mobility. Interestingly, the anisotropy of the transfer integral tends to decrease upon substitution with longer alkyl chains, suggesting that alkyl chain adjustments may facilitate isotropic charge transport property in 2,6-alkylated anthracenes.

13.
Dalton Trans ; 48(21): 7367-7377, 2019 Jun 07.
Artículo en Inglés | MEDLINE | ID: mdl-30949641

RESUMEN

Benzothienobenzothiophene (BTBT) and derivatives have received increasing attention as organic field-effect transistor materials and molecular conductors. This report presents the first synthesis of metal complexes involving a BTBT moiety, which was achieved by complexation of 2,2'-bipyridyl complexes of Pt(ii) and Pd(ii) with dihydroxy-substituted BTBT (1) as a new π-extended catecholato ligand (tBu2Bpy = 4,4'-di-tert-butyl-2,2'-dipyridyl). The resulting complexes M(tBu2Bpy)(O2BTBT) (M = Pt (3Pt) and Pd (3Pd)) were characterized by UV-vis spectroscopy, density functional theory (DFT) calculations, and cyclic voltammetry. The electron donating ability of BTBT was substantially enhanced upon including two oxygen substituents followed by metal coordination. This enabled chemical oxidation of 3Pt and 3Pd with a mild chemical oxidant (ferrocenium hexafluorophosphate) and formation of the one-electron-oxidized state. While 3Pt and 3Pd exhibited an absorption band originating from a catecholate → Bpy ligand-to-ligand charge transfer transition typical of this class of catecholato complexes, the radical cations exhibited a unique π-π* intramolecular charge transfer (ICT) transition absorption in which the π and π* orbitals were the newly incorporated benzothienothiophene-based donor and semiquinonato-based acceptor, respectively. The BTBT+ skeleton was electronically divided into two sites by the present chemical modification. The ICT properties of the complexes were found to be modulated by varying the metal ions. These findings offer a new approach to molecular design for (semi)conducting materials using optical properties.

14.
RSC Adv ; 9(32): 18353-18358, 2019 Jun 10.
Artículo en Inglés | MEDLINE | ID: mdl-35515234

RESUMEN

Purely organic crystals, κ-X3(Cat-EDT-TTF)2 [X = H or D, Cat-EDT-TTF = catechol-fused tetrathiafulvalene], are a new type of molecular conductor with hydrogen dynamics. In this work, hydrostatic pressure effects on these materials were investigated in terms of the electrical resistivity and crystal structure. The results indicate that the pressure induces and promotes hydrogen (deuterium) localization in the hydrogen bond, in contrast to the case of the conventional hydrogen-bonded materials (where pressure prevents hydrogen localization), and consequently leads to a significant change in the electrical conducting properties (i.e., the occurrence of a semiconductor-insulator transition). Therefore, we have successfully found a new type of pressure-induced phase transition where the cooperation of the hydrogen dynamics and π-electron interactions plays a crucial role.

15.
Langmuir ; 34(5): 2189-2197, 2018 02 06.
Artículo en Inglés | MEDLINE | ID: mdl-29359939

RESUMEN

Hydrogen-bonding heterogeneous bilayers on substrates have been studied as a base for new functions of molecular adlayers by means of atomic force microscopy (AFM), X-ray photoelectron spectroscopy (XPS), infrared reflection absorption spectroscopy (IRAS), and density functional theory (DFT) calculations. Here, we report the formation of the catechol-fused bis(methylthio)tetrathiafulvalene (H2Cat-BMT-TTF) adlayer hydrogen bonding with an imidazole-terminated alkanethiolate self-assembled monolayer (Im-SAM) on Au(111). The heterogeneous bilayer is realized by sequential two-step immersions in solutions for the individual Im-SAM and H2Cat-BMT-TTF adlayer formations. In the measurements by AFM, a grained H2Cat-BMT-TTF adlayer on Im-SAM is revealed. The coverage and the chemical states of H2Cat-BMT-TTF on Im-SAM are specified by XPS. On the vibrational spectrum measured by IRAS, the strong hydrogen bonds between H2Cat-BMT-TTF and Im-SAM are characterized by the remarkably red-shifted OH stretching mode at 3140 cm-1, which is much lower than that for hydrogen-bonding water (typically ∼3300 cm-1). The OH stretching mode frequency and the adsorption strength for the H2Cat-BMT-TTF molecule hydrogen bonding with imidazole groups are quantitatively examined on the basis of DFT calculations.

16.
Chem Commun (Camb) ; 53(24): 3426-3429, 2017 Mar 25.
Artículo en Inglés | MEDLINE | ID: mdl-28239694

RESUMEN

A dihydroxy-substituted benzothienobenzothiophene, BTBT(OH)2, was synthesized, and its charge-transfer (CT) salt, ß-[BTBT(OH)2]2ClO4, was successfully obtained. Thanks to the introduced hydroxy groups, a hydrogen-bonded chain structure connecting the BTBT molecules and counter anions was formed in the CT salt, which effectively increases the dimensionality of the electronic structure and consequently leads to a stable metallic state.

17.
Phys Chem Chem Phys ; 18(43): 29673-29680, 2016 Nov 02.
Artículo en Inglés | MEDLINE | ID: mdl-27774529

RESUMEN

κ-H3(Cat-EDT-TTF)2 (H-TTF) is a hydrogen-bonded π-electron system which was found to reveal C2/c symmetry at 50-293 K, while its isotopologue, κ-D3(Cat-EDT-TTF)2 (D-TTF), showed the phase transition at 185 K from C2/c to P1[combining macron]. To elucidate the origin of such a difference, we calculated the potential energy curves (PECs) for the hydrogen transfer along the H-bonds in these conductors. We found that both the π-stacking and the hydrogen nuclear quantum effect drastically affected the hydrogen transfer energy. By taking account of both effects, we obtained a symmetric single-well effective PEC for H-TTF, which indicated that the hydrogen was always located at the center of the H-bond. By contrast, the effective PEC of D-TTF was a low-barrier double-well, indicating that the position of the H-bonded deuterium would change according to the temperature. We concluded that the π-stacking and the nuclear quantum effect were the key factors for the appearance of phase transition only in D-TTF.

18.
Beilstein J Org Chem ; 11: 1561-9, 2015.
Artículo en Inglés | MEDLINE | ID: mdl-26664576

RESUMEN

Chiral molecular crystals built up by chiral molecules without inversion centers have attracted much interest owing to their versatile functionalities related to optical, magnetic, and electrical properties. However, there is a difficulty in chiral crystal growth due to the lack of symmetry. Therefore, we made the molecular design to introduce intermolecular hydrogen bonds in chiral crystals. Racemic and enantiopure bis(ethylenedithio)tetrathiafulvalene (BEDT-TTF) derivatives possessing hydroxymethyl groups as the source of hydrogen bonds were designed. The novel racemic trans-vic-(hydroxymethyl)(methyl)-BEDT-TTF 1, and racemic and enantiopure trans-vic-bis(hydroxymethyl)-BEDT-TTF 2 were synthesized. Moreover, the preparations, crystal structure analyses, and electrical resistivity measurements of the novel achiral charge transfer salt θ(21)-[(S,S)-2]3[(R,R)-2]3(ClO4)2 and the chiral salt α'-[(R,R)-2]ClO4(H2O) were carried out. In the former θ(21)-[(S,S)-2]3[(R,R)-2]3(ClO4)2, there are two sets of three crystallographically independent donor molecules [(S,S)-2]2[(R,R)-2] in a unit cell, where the two sets are related by an inversion center. The latter α'-[(R,R)-2]ClO4(H2O) is the chiral salt with included solvent H2O, which is not isostructural with the reported chiral salt α'-[(S,S)-2]ClO4 without H2O, but has a similar donor arrangement. According to the molecular design by introduction of hydroxy groups and a ClO4 (-) anion, many intermediate-strength intermolecular hydrogen bonds (2.6-3.0 Å) were observed in these crystals between electron donor molecules, anions, and included H2O solvent, which improve the crystallinity and facilitate the extraction of physical properties. Both salts are semiconductors with relatively low resistivities at room temperature and activation energies of 1.2 ohm cm with E a = 86 meV for θ(21)-[(S,S)-2]3[(R,R)-2]3(ClO4)2 and 0.6 ohm cm with E a = 140 meV for α'-[(R,R)-2]2ClO4(H2O), respectively. The variety of donor arrangements, θ(21) and two kinds of α'-types, and their electrical conductivities of charge transfer complexes based upon the racemic and enantiopure (S,S)-2, and (R,R)-2 donors originates not only from the chirality, but also the introduced intermolecular hydrogen bonds involving the hydroxymethyl groups, perchlorate anion, and the included solvent H2O.

19.
Chemistry ; 21(42): 15020-8, 2015 Oct 12.
Artículo en Inglés | MEDLINE | ID: mdl-26311352

RESUMEN

New important aspects of the hydrogen-bond (H-bond)-dynamics-based switching of electrical conductivity and magnetism in an H-bonded, purely organic conductor crystal have been discovered by modulating its tetrathiafulvalene (TTF)-based molecular π-electron system by means of partial sulfur/selenium substitution. The prepared selenium analogue also showed a similar type of phase transition, induced by H-bonded deuterium transfer followed by electron transfer between the H-bonded TTF skeletons, and the resulting switching of the physical properties; however, subtle but critical differences due to sulfur/selenium substitution were detected in the electronic structure, phase transition nature, and switching function. A molecular-level discussion based on the crystal structures shows that this chemical modification of the TTF skeleton influences not only its own π-electronic structure and π-π interactions within the conducting layer, but also the H-bond dynamics between the TTF π skeletons in the neighboring layers, which enables modulation of the interplay between the H-bond and π electrons to cause such differences.

20.
Chem Commun (Camb) ; 50(98): 15557-60, 2014 Dec 21.
Artículo en Inglés | MEDLINE | ID: mdl-25356679

RESUMEN

Solid-solid phase interconversion was observed in an organic conductor based on a hydrogen-bonded (H-bonded) TTF (tetrathiafulvalene) molecular unit, in which the π-stacked molecular arrangement and physical properties were dynamically changed with unexpected transformation of the H-bond unit between the planar and bent forms.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA