Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 13 de 13
Filtrar
Más filtros













Base de datos
Intervalo de año de publicación
1.
Neuroscience ; 463: 70-85, 2021 05 21.
Artículo en Inglés | MEDLINE | ID: mdl-33722673

RESUMEN

The mitogen-activated protein kinases (MAPK) are major signaling components of intracellular pathways required for memory consolidation. Mitogen- and stress-activated protein kinases 1 and 2 (MSK1 and MSK2) mediate signal transduction downstream of MAPK. MSKs are activated by Extracellular-signal Regulated Kinase 1/2 (ERK1/2) and p38 MAPK. In turn, they can activate cyclic AMP-response-element-binding protein (CREB), thereby modulating the expression of immediate early genes crucial for the formation of long-term memories. While MSK1 has been previously implicated in certain forms of learning and memory, little is known concerning MSK2. Our goal was to explore the respective contribution of MSK1 and MSK2 in hippocampal synaptic transmission and plasticity and hippocampal-dependent recognition memory. In Msk1- and Msk2-knockout mice, we evaluated object and object-place recognition memory, basal synaptic transmission, paired-pulse facilitation (PPF) and inhibition (PPI), and the capacity to induce and sustain long-term potentiation (LTP) in vivo. We also assessed the level of two proteins downstream in the MAPK/ERK1/2 pathway crucial for long-term memory, CREB and the immediate early gene (IEG) Early growth response 1 (EGR1). Loss of Msk1, but not of Msk2, affected excitatory synaptic transmission at perforant path-to-dentate granule cell synapses, altered short-term presynaptic plasticity, impaired selectively long-term spatial recognition memory, and decreased basal levels of CREB and its activated form. LTP in vivo and LTP-induced CREB phosphorylation and EGR1 expression were unchanged after Msk1 or Msk2 deletion. Our findings demonstrate a dissimilar contribution of MSKs proteins in cognitive processes and suggest that Msk1 loss-of-function only has a deleterious impact on neuronal activity and hippocampal-dependent memory consolidation.


Asunto(s)
Memoria , Proteína Quinasa 11 Activada por Mitógenos , Proteína Quinasa 8 Activada por Mitógenos , Transmisión Sináptica , Animales , Hipocampo/metabolismo , Potenciación a Largo Plazo , Ratones , Proteínas Quinasas S6 Ribosómicas 90-kDa/metabolismo , Proteínas Quinasas p38 Activadas por Mitógenos
2.
Nat Med ; 24(5): 591-597, 2018 05.
Artículo en Inglés | MEDLINE | ID: mdl-29736027

RESUMEN

Depression, a devastating psychiatric disorder, is a leading cause of disability worldwide. Current antidepressants address specific symptoms of the disease, but there is vast room for improvement 1 . In this respect, new compounds that act beyond classical antidepressants to target signal transduction pathways governing synaptic plasticity and cellular resilience are highly warranted2-4. The extracellular signal-regulated kinase (ERK) pathway is implicated in mood regulation5-7, but its pleiotropic functions and lack of target specificity prohibit optimal drug development. Here, we identified the transcription factor ELK-1, an ERK downstream partner 8 , as a specific signaling module in the pathophysiology and treatment of depression that can be targeted independently of ERK. ELK1 mRNA was upregulated in postmortem hippocampal tissues from depressed suicides; in blood samples from depressed individuals, failure to reduce ELK1 expression was associated with resistance to treatment. In mice, hippocampal ELK-1 overexpression per se produced depressive behaviors; conversely, the selective inhibition of ELK-1 activation prevented depression-like molecular, plasticity and behavioral states induced by stress. Our work stresses the importance of target selectivity for a successful approach for signal-transduction-based antidepressants, singles out ELK-1 as a depression-relevant transducer downstream of ERK and brings proof-of-concept evidence for the druggability of ELK-1.


Asunto(s)
Antidepresivos/farmacología , Transducción de Señal/efectos de los fármacos , Proteína Elk-1 con Dominio ets/metabolismo , Adulto , Animales , Conducta Animal , Depresión/sangre , Depresión/genética , Depresión/fisiopatología , Femenino , Hipocampo/metabolismo , Humanos , Masculino , Ratones , Persona de Mediana Edad , Plasticidad Neuronal , ARN Mensajero/genética , ARN Mensajero/metabolismo , Estrés Psicológico/complicaciones , Proteína Elk-1 con Dominio ets/sangre , Proteína Elk-1 con Dominio ets/genética
3.
Philos Trans R Soc Lond B Biol Sci ; 369(1633): 20130159, 2014 Jan 05.
Artículo en Inglés | MEDLINE | ID: mdl-24298160

RESUMEN

It is well established that Zif268/Egr1, a member of the Egr family of transcription factors, is critical for the consolidation of several forms of memory; however, it is as yet uncertain whether increasing expression of Zif268 in neurons can facilitate memory formation. Here, we used an inducible transgenic mouse model to specifically induce Zif268 overexpression in forebrain neurons and examined the effect on recognition memory and hippocampal synaptic transmission and plasticity. We found that Zif268 overexpression during the establishment of memory for objects did not change the ability to form a long-term memory of objects, but enhanced the capacity to form a long-term memory of the spatial location of objects. This enhancement was paralleled by increased long-term potentiation in the dentate gyrus of the hippocampus and by increased activity-dependent expression of Zif268 and selected Zif268 target genes. These results provide novel evidence that transcriptional mechanisms engaging Zif268 contribute to determining the strength of newly encoded memories.


Asunto(s)
Giro Dentado/fisiología , Proteína 1 de la Respuesta de Crecimiento Precoz/metabolismo , Regulación de la Expresión Génica/fisiología , Potenciación a Largo Plazo/fisiología , Memoria/fisiología , Percepción Espacial/fisiología , Análisis de Varianza , Animales , Giro Dentado/citología , Proteína 1 de la Respuesta de Crecimiento Precoz/genética , Ratones , Ratones Transgénicos , Transmisión Sináptica/fisiología
4.
Neurobiol Dis ; 58: 156-68, 2013 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-23742761

RESUMEN

The Coffin-Lowry syndrome (CLS) is a syndromic form of intellectual disability caused by loss-of-function of the RSK2 serine/threonine kinase encoded by the rsk2 gene. Rsk2 knockout mice, a murine model of CLS, exhibit spatial learning and memory impairments, yet the underlying neural mechanisms are unknown. In the current study, we examined the performance of Rsk2 knockout mice in cued, trace and contextual fear memory paradigms and identified selective deficits in the consolidation and reconsolidation of hippocampal-dependent fear memories as task difficulty and hippocampal demand increase. Electrophysiological, biochemical and electron microscopy analyses were carried out in the dentate gyrus of the hippocampus to explore potential alterations in neuronal functions and structure. In vivo and in vitro electrophysiology revealed impaired synaptic transmission, decreased network excitability and reduced AMPA and NMDA conductance in Rsk2 knockout mice. In the absence of RSK2, standard measures of short-term and long-term potentiation (LTP) were normal, however LTP-induced CREB phosphorylation and expression of the transcription factors EGR1/ZIF268 were reduced and that of the scaffolding protein SHANK3 was blocked, indicating impaired activity-dependent gene regulation. At the structural level, the density of perforated and non-perforated synapses and of multiple spine boutons was not altered, however, a clear enlargement of spine neck width and post-synaptic densities indicates altered synapse ultrastructure. These findings show that RSK2 loss-of-function is associated in the dentate gyrus with multi-level alterations that encompass modifications of glutamate receptor channel properties, synaptic transmission, plasticity-associated gene expression and spine morphology, providing novel insights into the mechanisms contributing to cognitive impairments in CLS.


Asunto(s)
Síndrome de Coffin-Lowry/complicaciones , Síndrome de Coffin-Lowry/genética , Giro Dentado/patología , Miedo , Trastornos de la Memoria/etiología , Mutación/genética , Proteínas Quinasas S6 Ribosómicas 90-kDa/genética , Transmisión Sináptica/genética , Animales , Condicionamiento Psicológico/fisiología , Señales (Psicología) , Giro Dentado/ultraestructura , Modelos Animales de Enfermedad , Estimulación Eléctrica , Potenciales Postsinápticos Excitadores/genética , Reacción Cataléptica de Congelación/fisiología , Técnicas In Vitro , Ratones , Ratones Endogámicos C57BL , Ratones Transgénicos , Microscopía Electrónica de Transmisión , N-Metilaspartato/metabolismo , Proteínas del Tejido Nervioso/metabolismo , Sinapsis/metabolismo , Sinapsis/ultraestructura , Transmisión Sináptica/fisiología , Ácido alfa-Amino-3-hidroxi-5-metil-4-isoxazol Propiónico/metabolismo
5.
Biol Aujourdhui ; 204(1): 3-8, 2010.
Artículo en Francés | MEDLINE | ID: mdl-20950569

RESUMEN

Animal models provide a simplified representation of biological systems impossible to study directly in the human being. Regarding genetic pathologies, mouse models are the most studied since they enable to reproduce in animals the mutation of the gene or genes responsible for the disease and to study the phenotypic consequences. Down syndrome is a genetic disorder arising from the presence of a third copy of the human chromosome 21 (Hsa21) and is characterized by different degrees of phenotypic alterations including morphological, cardiac, muscular, cerebral, motor and intellectual changes. This high phenotypic heterogeneity involves genetic and environmental effects, which are impossible to dissect out in human beings. Various models in mice have been developed in order to identify the genetic and neurobiological mechanisms responsible for Down syndrome. The Tc1 mouse is the most complete genetic animal model currently available to study Down syndrome, since it carries an almost complete Hsa 21. The behavioural and electrophysiological studies of this model reveal a great similarity between the animal phenotype and the Down syndrome symptomatology, consequently this model represents a powerful genetic tool with a potential to unravel the mechanisms underlying the deficiencies array characteristic of this human condition. In the long term, Tc1 mice will contribute to the development and the screening of new therapeutics, with the goal of improving all the impairments reported in Down syndrome.


Asunto(s)
Cromosomas Humanos Par 21/genética , Síndrome de Down/genética , Animales , Trastornos del Conocimiento/genética , Modelos Animales de Enfermedad , Síndrome de Down/patología , Humanos , Ratones , Plasticidad Neuronal/genética , Fenotipo , Reproducibilidad de los Resultados
6.
Psychopharmacology (Berl) ; 208(1): 57-66, 2010 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-19937000

RESUMEN

INTRODUCTION: Locomotor sensitization, defined as the progressive and enduring enhancement of the motor stimulant effects elicited by repeated exposure to drugs of abuse, is the consequence of drug-induced cellular neuroadaptations that likely contribute to addictive behavior. Neuroadaptations within the dopaminergic system have been shown to be involved both in the induction phase and in the long-term expression phase of sensitization upon drug readministration after withdrawal. MATERIALS AND METHODS: Mice lacking the dopamine transporter (DAT-KO) were used to test the effect of constitutive hyperdopaminergia on the durability of behavioral sensitization to both cocaine and ethanol. The effect of the DAT mutation was simultaneously tested on two inbred genetic backgrounds, C57Bl/6 and DBA/2, chosen for their contrasting addiction-related phenotypes, as well as on the hybrid F(1) offspring of a cross between C57Bl/6 and DBA/2 congenic strains. RESULTS AND DISCUSSION: In spite of the absence of the DAT, mutant mice were able to develop long-term expression of sensitization to cocaine. Compared to their wild-type littermates, DAT-KO mice exhibited a markedly increased acute ethanol-evoked locomotor activity and developed stronger behavioral sensitization to ethanol during both induction and long-term expression phases. Interestingly, this increased ethanol-induced sensitization was potentiated by the DBA/2 genetic background. CONCLUSION: These findings, showing that DAT deletion facilitates sensitization, suggest a cross-sensitization-like effect between genetic- and pharmacological-induced hyperdopaminergia.


Asunto(s)
Conducta Animal/efectos de los fármacos , Cocaína/farmacología , Proteínas de Transporte de Dopamina a través de la Membrana Plasmática/genética , Etanol/farmacología , Animales , Cocaína/administración & dosificación , Esquema de Medicación , Etanol/administración & dosificación , Femenino , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Endogámicos DBA , Ratones Noqueados , Actividad Motora/efectos de los fármacos , Fenotipo
7.
Hum Mol Genet ; 18(8): 1449-63, 2009 Apr 15.
Artículo en Inglés | MEDLINE | ID: mdl-19181682

RESUMEN

Down syndrome (DS) is a genetic disorder arising from the presence of a third copy of human chromosome 21 (Hsa21). Recently, O'Doherty et al. [An aneuploid mouse strain carrying human chromosome 21 with Down syndrome phenotypes. Science 309 (2005) 2033-2037] generated a trans-species aneuploid mouse line (Tc1) that carries an almost complete Hsa21. The Tc1 mouse is the most complete animal model for DS currently available. Tc1 mice show many features that relate to human DS, including alterations in memory, synaptic plasticity, cerebellar neuronal number, heart development and mandible size. Because motor deficits are one of the most frequently occurring features of DS, we have undertaken a detailed analysis of motor behaviour in cerebellum-dependent learning tasks that require high motor coordination and balance. In addition, basic electrophysiological properties of cerebellar circuitry and synaptic plasticity have been investigated. Our results reveal that, compared with controls, Tc1 mice exhibit a higher spontaneous locomotor activity, a reduced ability to habituate to their environments, a different gait and major deficits on several measures of motor coordination and balance in the rota rod and static rod tests. Moreover, cerebellar long-term depression is essentially normal in Tc1 mice, with only a slight difference in time course. Our observations provide further evidence that support the validity of the Tc1 mouse as a model for DS, which will help us to provide insights into the causal factors responsible for motor deficits observed in persons with DS.


Asunto(s)
Síndrome de Down/fisiopatología , Desempeño Psicomotor , Animales , Cerebelo/fisiología , Síndrome de Down/genética , Femenino , Marcha , Depresión Sináptica a Largo Plazo , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Endogámicos , Fuerza Muscular , Plasticidad Neuronal
8.
Learn Mem ; 15(7): 492-500, 2008 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-18626093

RESUMEN

Down syndrome (DS) is a genetic disorder arising from the presence of a third copy of the human chromosome 21 (Hsa21). Recently, O'Doherty and colleagues in an earlier study generated a new genetic mouse model of DS (Tc1) that carries an almost complete Hsa21. Since DS is the most common genetic cause of mental retardation, we have undertaken a detailed analysis of cognitive function and synaptic plasticity in Tc1 mice. Here we show that Tc1 mice have impaired spatial working memory (WM) but spared long-term spatial reference memory (RM) in the Morris watermaze. Similarly, Tc1 mice are selectively impaired in short-term memory (STM) but have intact long-term memory (LTM) in the novel object recognition task. The pattern of impaired STM and normal LTM is paralleled by a corresponding phenotype in long-term potentiation (LTP). Freely-moving Tc1 mice exhibit reduced LTP 1 h after induction but normal maintenance over days in the dentate gyrus of the hippocampal formation. Biochemical analysis revealed a reduction in membrane surface expression of the AMPAR (alpha-amino-3-hydroxy-5-methyl-4-propionic acid receptor) subunit GluR1 in the hippocampus of Tc1 mice, suggesting a potential mechanism for the impairment in early LTP. Our observations also provide further evidence that STM and LTM for hippocampus-dependent tasks are subserved by parallel processing streams.


Asunto(s)
Síndrome de Down , Trastornos de la Memoria/fisiopatología , Memoria a Corto Plazo/fisiología , Plasticidad Neuronal/fisiología , Análisis de Varianza , Animales , Cromosomas Humanos Par 21 , Aprendizaje Discriminativo/fisiología , Modelos Animales de Enfermedad , Síndrome de Down/genética , Síndrome de Down/patología , Síndrome de Down/fisiopatología , Electrofisiología , Conducta Exploratoria/fisiología , Hipocampo/fisiopatología , Hipocampo/efectos de la radiación , Humanos , Técnicas In Vitro , Potenciación a Largo Plazo/genética , Potenciación a Largo Plazo/fisiología , Aprendizaje por Laberinto/fisiología , Trastornos de la Memoria/genética , Ratones , Ratones Endogámicos C57BL , Ratones Mutantes , Patrones de Reconocimiento Fisiológico/fisiología , Receptores AMPA/genética , Receptores AMPA/metabolismo , Conducta Espacial/fisiología , Trisomía
9.
J Neurosci ; 27(35): 9439-50, 2007 Aug 29.
Artículo en Inglés | MEDLINE | ID: mdl-17728457

RESUMEN

Loss of oligophrenin1 (OPHN1) function in human causes X-linked mental retardation associated with cerebellar hypoplasia and, in some cases, with lateral ventricle enlargement. In vitro studies showed that ophn1 regulates dendritic spine through the control of Rho GTPases, but its in vivo function remains unknown. We generated a mouse model of ophn1 deficiency and showed that it mimics the ventricles enlargement without affecting the cerebellum morphoanatomy. The ophn1 knock-out mice exhibit behavioral defects in spatial memory together with impairment in social behavior, lateralization, and hyperactivity. Long-term potentiation and mGluR-dependent long-term depression are normal in the CA1 hippocampal area of ophn1 mutant, whereas paired-pulse facilitation is reduced. This altered short-term plasticity that reflects changes in the release of neurotransmitters from the presynaptic processes is associated with normal synaptic density together with a reduction in mature dendritic spines. In culture, inactivation of ophn1 function increases the density and proportion of immature spines. Using a conditional model of loss of ophn1 function, we confirmed this immaturity defect and showed that ophn1 is required at all the stages of the development. These studies show that, depending of the context, ophn1 controls the maturation of dendritic spines either by maintaining the density of mature spines or by limiting the extension of new filopodia. Altogether, these observations indicate that cognitive impairment related to OPHN1 loss of function is associated with both presynaptic and postsynaptic alterations.


Asunto(s)
Ventrículos Cerebrales/patología , Proteínas del Citoesqueleto/fisiología , Espinas Dendríticas/patología , Proteínas Activadoras de GTPasa/fisiología , Trastornos de la Memoria , Neuronas/patología , Proteínas Nucleares/fisiología , Conducta Espacial/fisiología , Análisis de Varianza , Animales , Conducta Animal , Células Cultivadas , Proteínas del Citoesqueleto/deficiencia , Espinas Dendríticas/ultraestructura , Conducta Exploratoria/fisiología , Femenino , GTP Fosfohidrolasas/metabolismo , Proteínas Activadoras de GTPasa/deficiencia , Hipocampo/citología , Masculino , Aprendizaje por Laberinto/fisiología , Trastornos de la Memoria/genética , Trastornos de la Memoria/patología , Trastornos de la Memoria/fisiopatología , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Microscopía Electrónica de Transmisión/métodos , Neuronas/ultraestructura , Proteínas Nucleares/deficiencia , Fragmentos de Péptidos/metabolismo , Tinción con Nitrato de Plata/métodos , Trastorno de la Conducta Social/genética , Proteína de Unión al GTP rac1/metabolismo
10.
Neuropsychopharmacology ; 32(10): 2108-16, 2007 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-17342172

RESUMEN

Dopamine-mediated neurotransmission has been implicated in the modulation of synaptic plasticity and in the mechanisms underlying learning and memory. In the present study, we tested different forms of activity-dependent neuronal and behavioral plasticity in knockout mice for the dopamine transporter (DAT-KO), which constitute a unique genetic model of constitutive hyperdopaminergia. We report that DAT-KO mice exhibit slightly increased long-term potentiation and severely decreased long-term depression at hippocampal CA3-CA1 excitatory synapses. Mutant mice also show impaired adaptation to environmental changes in the Morris watermaze. Both the electrophysiological and behavioral phenotypes are reversed by the dopamine antagonist haloperidol, suggesting that hyperdopaminergia is involved in these deficits. These findings support the modulation by dopamine of synaptic plasticity and cognitive flexibility. The behavioral deficits seen in DAT-KO mice are reminiscent of the deficits in executive functions observed in dopamine-related neuropsychiatric disorders, suggesting that the study of DAT-KO mice can contribute to the understanding of the molecular basis of these disorders.


Asunto(s)
Encefalopatías Metabólicas/fisiopatología , Trastornos del Conocimiento/fisiopatología , Dopamina/metabolismo , Hipocampo/fisiopatología , Potenciación a Largo Plazo/genética , Trastornos Neurocognitivos/fisiopatología , Animales , Encefalopatías Metabólicas/genética , Encefalopatías Metabólicas/metabolismo , Trastornos del Conocimiento/genética , Trastornos del Conocimiento/metabolismo , Modelos Animales de Enfermedad , Antagonistas de Dopamina/farmacología , Proteínas de Transporte de Dopamina a través de la Membrana Plasmática/genética , Inhibidores de Captación de Dopamina/farmacología , Femenino , Haloperidol/farmacología , Hipocampo/metabolismo , Masculino , Aprendizaje por Laberinto/efectos de los fármacos , Aprendizaje por Laberinto/fisiología , Trastornos de la Memoria/genética , Trastornos de la Memoria/metabolismo , Trastornos de la Memoria/fisiopatología , Metilfenidato/farmacología , Ratones , Ratones Endogámicos C57BL , Ratones Endogámicos DBA , Ratones Noqueados , Trastornos Neurocognitivos/genética , Trastornos Neurocognitivos/metabolismo , Esquizofrenia/genética , Esquizofrenia/metabolismo , Esquizofrenia/fisiopatología
11.
Biol Psychiatry ; 58(10): 805-11, 2005 Nov 15.
Artículo en Inglés | MEDLINE | ID: mdl-16040005

RESUMEN

BACKGROUND: Anatomic and functional brain lateralization underlies hemisphere specialization for cognitive and motor control, and deviations from the normal patterns of asymmetry appear to be related to behavioral deficits. Studies on n-3 polyunsaturated fatty acid (PUFA) deficiency and behavioral impairments led us to postulate that a chronic lack of n-3 PUFA can lead to changes in lateralized behavior by affecting structural or neurochemical patterns of asymmetry in motor-related brain structures. METHODS: We compared the effects of a chronic n-3 PUFA deficient diet with a balanced diet on membrane phospholipid fatty acids composition and immunolabeling of choline acetyltransferase (ChAt), as a marker of cholinergic neurons, in left and right striatum of rats. Lateral motor behavior was assessed by rotation and paw preference. RESULTS: Control rats had an asymmetric PUFA distribution with a right behavioral preference, whereas ChAt density was symmetrical. In deficient rats, the cholinergic neuron density was 30% lower on the right side, associated with a loss of PUFA asymmetry and behavior laterality. They present higher rotation behavior, and significantly more of them failed the handedness test. CONCLUSION: These results indicate that a lack of n-3 PUFA is linked with a lateral behavior deficit, possibly leading to cognitive disturbances.


Asunto(s)
Conducta Animal/fisiología , Cuerpo Estriado/fisiología , Ácidos Grasos Omega-3/metabolismo , Ácidos Grasos Omega-3/fisiología , Ácidos Grasos Insaturados/deficiencia , Lateralidad Funcional/fisiología , Acetilcolina/metabolismo , Acetilcolina/fisiología , Animales , Colina O-Acetiltransferasa/metabolismo , Trastornos del Conocimiento/etiología , Cuerpo Estriado/enzimología , Cuerpo Estriado/metabolismo , Grasas de la Dieta/metabolismo , Modelos Animales de Enfermedad , Ácidos Grasos Insaturados/metabolismo , Femenino , Humanos , Inmunohistoquímica , Proteínas de Transporte de Membrana/metabolismo , Actividad Motora/fisiología , Corteza Motora/enzimología , Corteza Motora/metabolismo , Corteza Motora/fisiología , Neuronas/enzimología , Neuronas/metabolismo , Neuronas/fisiología , Ratas , Ratas Wistar
12.
Neuropsychopharmacology ; 30(3): 575-81, 2005 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-15354185

RESUMEN

According to the dopamine (DA) hypothesis of schizophrenia and the strong evidence for decreased cerebral lateralization in schizophrenic patients, we postulated that hyperactivity of the dopaminergic system could be associated with a reduced behavioral lateralization in mice. Mice lacking the dopamine transporter (DAT) gene were used as a genetic model of persistent hyperdopaminergia. The DAT null mutation was transferred on C57BL/6JOrl (B6) and DBA/2JOrl (D2) inbred backgrounds for more than 10 generations of backcrossing to derive three DAT strains, B6, D2, and B6xD2(F1). Adult mutant mice of the three DAT strains and their littermates were tested for paw preference using Collins' protocol. Our results demonstrated that, whatever the genetic background, persistent hyperdopaminergia directly impairs the degree of lateralization without affecting the direction. Our results support the degree of lateralization as a good candidate phenotype to further improve genetic analysis of cerebral lateralization in normal and pathological conditions.


Asunto(s)
Dopamina/metabolismo , Glicoproteínas de Membrana/genética , Proteínas de Transporte de Membrana/genética , Trastornos Mentales/fisiopatología , Proteínas del Tejido Nervioso/genética , Animales , Cocaína/farmacología , Proteínas de Transporte de Dopamina a través de la Membrana Plasmática , Lateralidad Funcional , Glicoproteínas de Membrana/deficiencia , Proteínas de Transporte de Membrana/deficiencia , Ratones , Ratones Endogámicos C57BL , Ratones Endogámicos DBA , Ratones Noqueados , Proteínas del Tejido Nervioso/deficiencia , Tiempo de Reacción , Factores de Tiempo
13.
Eur J Neurosci ; 20(1): 120-6, 2004 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-15245485

RESUMEN

The dopamine transporter (DAT) plays a critical role in calibrating the duration and intensity of dopamine (DA) neurotransmission. Mice in which the DAT gene has been genetically deleted exhibit constitutively high levels of extrasynaptic DA and spontaneous hyperactivity. Numerous studies have characterized the adaptive molecular, physiological, and behavioural consequences of abnormal DA neurotransmission in these mice. In order to determine the genetic background contribution to these phenotypes, the DAT mutation was transferred on C57BL/6JOrl (B6) or DBA/2JOrl (D2) inbred backgrounds for more than ten generations of back-crossing to derive three B6-, D2-, and B6xD2(F(1))-DAT strains. We observed that the genetic background dramatically affects phenotypes previously reported on DAT knockout (KO) mice. Depending on the genetic background, it was possible to restore survival, growth rate and ability to lactate. Interactions with the genetic background were found to modulate both quantitative and qualitative patterns of novelty-driven spontaneous hyperactivity. The paradoxical calming effect of cocaine was observed for all DAT-KO mice. However, the genetic background influenced individual threshold responses to both locomotor and rewarding effects of cocaine. These findings reveal the extent of phenotypic variation associated with the DAT mutation. They also provide concrete arguments against the assumption that the normal function of a gene can be inferred directly from its mutant phenotype.


Asunto(s)
Glicoproteínas de Membrana/fisiología , Proteínas de Transporte de Membrana/fisiología , Mutación , Proteínas del Tejido Nervioso/fisiología , Fenotipo , Análisis de Varianza , Animales , Animales Recién Nacidos , Conducta Animal , Tasa de Natalidad , Cocaína/farmacología , Condicionamiento Operante/efectos de los fármacos , Condicionamiento Operante/fisiología , Dopamina/metabolismo , Proteínas de Transporte de Dopamina a través de la Membrana Plasmática , Inhibidores de Captación de Dopamina/farmacología , Relación Dosis-Respuesta a Droga , Conducta Exploratoria/fisiología , Femenino , Expresión Génica , Variación Genética , Masculino , Conducta Materna/fisiología , Glicoproteínas de Membrana/genética , Proteínas de Transporte de Membrana/genética , Ratones , Ratones Endogámicos , Ratones Noqueados , Ratones Mutantes , Actividad Motora/fisiología , Proteínas del Tejido Nervioso/genética , Especificidad de la Especie
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA