RESUMEN
While apneas are associated with multiple pathological and fatal conditions, the underlying molecular mechanisms remain elusive. We report that a mutated form of the transcription factor Mafa (Mafa4A) that prevents phosphorylation of the Mafa protein leads to an abnormally high incidence of breath holding apneas and death in newborn Mafa4A/4A mutant mice. This apneic breathing is phenocopied by restricting the mutation to central GABAergic inhibitory neurons and by activation of inhibitory Mafa neurons while reversed by inhibiting GABAergic transmission centrally. We find that Mafa activates the Gad2 promoter in vitro and that this activation is enhanced by the mutation that likely results in increased inhibitory drives onto target neurons. We also find that Mafa inhibitory neurons are absent from respiratory, sensory (primary and secondary) and pontine structures but are present in the vicinity of the hypoglossal motor nucleus including premotor neurons that innervate the geniohyoid muscle, to control upper airway patency. Altogether, our data reveal a role for Mafa phosphorylation in regulation of GABAergic drives and suggest a mechanism whereby reduced premotor drives to upper airway muscles may cause apneic breathing at birth.
Asunto(s)
Apnea , Neuronas Motoras , Animales , Factores de Transcripción Maf de Gran Tamaño , Ratones , Neuronas Motoras/fisiología , Fosforilación , Regiones Promotoras GenéticasRESUMEN
Vocalization in young mice is an innate response to isolation or mechanical stimulation. Neuronal circuits that control vocalization and breathing overlap and rely on motor neurons that innervate laryngeal and expiratory muscles, but the brain center that coordinates these motor neurons has not been identified. Here, we show that the hindbrain nucleus tractus solitarius (NTS) is essential for vocalization in mice. By generating genetically modified newborn mice that specifically lack excitatory NTS neurons, we show that they are both mute and unable to produce the expiratory drive required for vocalization. Furthermore, the muteness of these newborns results in maternal neglect. We also show that neurons of the NTS directly connect to and entrain the activity of spinal (L1) and nucleus ambiguus motor pools located at positions where expiratory and laryngeal motor neurons reside. These motor neurons control expiratory pressure and laryngeal tension, respectively, thereby establishing the essential biomechanical parameters used for vocalization. In summary, our work demonstrates that the NTS is an obligatory component of the neuronal circuitry that transforms breaths into calls.
Asunto(s)
Núcleo Solitario/fisiología , Vocalización Animal/fisiología , Animales , Animales Recién Nacidos , Femenino , Músculos Laríngeos/fisiología , Conducta Materna , Ratones , Neuronas Motoras/fisiología , Embarazo , RespiraciónRESUMEN
Foetal breathing in mice results from prenatal activity of the two coupled hindbrain oscillators considered to be responsible for respiratory rhythm generation after birth: the pre-Bötzinger complex (preBötC) is active shortly before the onset of foetal breathing; the parafacial respiratory group (e-pF in embryo) starts activity one day earlier. Transcription factors have been identified that are essential to specify neural progenitors and lineages forming each of these oscillators during early development of the neural tube: Hoxa1, Egr2 (Krox20), Phox2b, Lbx1 and Atoh1 for the e-pF; Dbx1 and Evx1 for the preBötC which eventually grow contralateral axons requiring expression of Robo3. Inactivation of the genes encoding these factors leads to mis-specification of these neurons and distinct breathing abnormalities: apneic patterns and loss of central chemosensitivity for the e-pF (central congenital hypoventilation syndrome, CCHS, in humans), complete loss of breathing for the preBötC, right-left desynchronized breathing in Robo3 mutants. Mutations affecting development in more rostral (pontine) respiratory territories change the shape of the inspiratory drive without affecting the rhythm. Other (primordial) embryonic oscillators start in the mouse three days before the e-pF, to generate low frequency (LF) rhythms that are probably required for activity-dependent development of neurones at embryonic stages; in the foetus, however, they are actively silenced to avoid detrimental interaction with the on-going respiratory rhythm. Altogether, these observations provide a strong support to the previously proposed hypothesis that the functional organization of the respiratory generator is specified at early stages of development and is dual in nature, comprising two serially non-homologous oscillators.
Asunto(s)
Embrión de Mamíferos/fisiología , Centro Respiratorio/embriología , Animales , RatonesAsunto(s)
Tronco Encefálico/metabolismo , Catecolaminas/metabolismo , Hipoxia/metabolismo , Oxígeno/metabolismo , Animales , Presión Atmosférica , Cuerpo Carotídeo , Subunidad alfa del Factor 1 Inducible por Hipoxia , Masculino , Nervios Periféricos/cirugía , ARN Mensajero/metabolismo , Ratas , Ratas Sprague-Dawley , Factores de Transcripción/biosíntesis , Factores de Transcripción/genética , Tirosina 3-Monooxigenasa/biosíntesis , Tirosina 3-Monooxigenasa/genéticaRESUMEN
The nucleus tractus solitarius (NTS) is a relay nucleus that integrates peripheral chemoreceptor input in response to hypoxia and hence influences the generation of respiratory rhythm. Several studies have shown that administration of progesterone stimulates ventilatory responses to hypoxia. There is some evidence that this steroid hormone can act at the level of the arterial peripheral chemoreceptors, whereas its action in the central nervous system remains unclear. To investigate a possible central involvement during hypoxia, we studied the effect of progesterone on neuronal activities recorded extra- and intracellularly in the NTS using brainstem slices. Central chemosensitivity was tested by comparing synaptic activity and intrinsic electro-responsiveness of 38 neurones during normoxia and hypoxia. In more than two-thirds of neurones recorded, hypoxia elicited a hyperpolarisation, a decrease in the input resistance and a decrease in spontaneous activity. In the remaining neurones (n = 12) hypoxia elicited a depolarisation and an increase in spontaneous activity. In all neurones tested, synaptic potentials evoked by stimulation of the tractus solitarius were decreased by hypoxia. While progesterone (1 microM) had no effect under normoxic conditions, it partially reversed all hypoxic neuronal responses. This effect developed over 2-3 min and reversed within 5 min suggesting a non-genomic mechanism of action. Taken together these results suggest that progesterone interacts with the hypoxia-induced cellular signalling. We conclude that in the NTS, transmission of afferent signals is reduced by hypoxia and restored by progesterone administration. Such a mechanism may contribute to the stimulation of breathing in response to hypoxia observed following progesterone administration in vivo.