Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Más filtros













Base de datos
Intervalo de año de publicación
1.
F S Sci ; 2023 Dec 07.
Artículo en Inglés | MEDLINE | ID: mdl-38065301

RESUMEN

OBJECTIVE: To perform a comprehensive assessment of protamine (P) isoforms and modifications in human sperm with the aim of identifying how P modifications and isoforms are altered in men with reduced sperm motility and low sperm count. DESIGN: Cross-sectional. SETTING: Academic medical center. PATIENTS: A total of 18 men with prior reported pregnancy and normozoospermia (normal sperm), 14 men from couples with infertility and asthenozoospermia (reduced sperm motility), and 24 men from couples with infertility and oligoasthenoteratozoospermia (low sperm count and motility and abnormal sperm morphology). INTERVENTION(S): Not applicable. MAIN OUTCOME MEASURE(S): Proteomic assessment using both top-down and bottom-up liquid chromatography mass spectrometry (MS) analysis. RESULTS: A total of 13 posttranslational modifications were identified on P1 and P2 using bottom-up MS, including both phosphorylation and methylation. Top-down MS revealed an unmodified and phosphorylated isoform of P1 and the 3 major isoforms of P2, HP2, HP3, and HP4. Protamine 1 phosphorylation was overall higher in men with male factor infertility compared with those with normal semen analysis (40.5% vs. 32.6). There was no difference in P posttranslational modifications or isoforms of P2 in men with normal vs. abnormal fertility. CONCLUSION: Human protamines bear a number of posttranslational modifications, with alterations in P1 phosphorylation noted in the setting of male factor infertility.

2.
Nat Struct Mol Biol ; 30(8): 1077-1091, 2023 08.
Artículo en Inglés | MEDLINE | ID: mdl-37460896

RESUMEN

Conventional dogma presumes that protamine-mediated DNA compaction in sperm is achieved by electrostatic interactions between DNA and the arginine-rich core of protamines. Phylogenetic analysis reveals several non-arginine residues conserved within, but not across species. The significance of these residues and their post-translational modifications are poorly understood. Here, we investigated the role of K49, a rodent-specific lysine residue in protamine 1 (P1) that is acetylated early in spermiogenesis and retained in sperm. In sperm, alanine substitution (P1(K49A)) decreases sperm motility and male fertility-defects that are not rescued by arginine substitution (P1(K49R)). In zygotes, P1(K49A) leads to premature male pronuclear decompaction, altered DNA replication, and embryonic arrest. In vitro, P1(K49A) decreases protamine-DNA binding and alters DNA compaction and decompaction kinetics. Hence, a single amino acid substitution outside the P1 arginine core is sufficient to profoundly alter protein function and developmental outcomes, suggesting that protamine non-arginine residues are essential for reproductive fitness.


Asunto(s)
Aminoácidos , Aptitud Genética , Animales , Masculino , Ratones , Aminoácidos/metabolismo , Arginina/metabolismo , Cromatina/metabolismo , ADN/genética , ADN/metabolismo , Filogenia , Protaminas/química , Protaminas/genética , Protaminas/metabolismo , Semen/metabolismo , Motilidad Espermática , Espermatozoides
3.
Front Endocrinol (Lausanne) ; 13: 895502, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35813619

RESUMEN

Male fertility throughout life hinges on the successful production of motile sperm, a developmental process that involves three coordinated transitions: mitosis, meiosis, and spermiogenesis. Germ cells undergo both mitosis and meiosis to generate haploid round spermatids, in which histones bound to the male genome are replaced with small nuclear proteins known as protamines. During this transformation, the chromatin undergoes extensive remodeling to become highly compacted in the sperm head. Despite its central role in spermiogenesis and fertility, we lack a comprehensive understanding of the molecular mechanisms underlying the remodeling process, including which remodelers/chaperones are involved, and whether intermediate chromatin proteins function as discrete steps, or unite simultaneously to drive successful exchange. Furthermore, it remains largely unknown whether more nuanced interactions instructed by protamine post-translational modifications affect chromatin dynamics or gene expression in the early embryo. Here, we bring together past and more recent work to explore these topics and suggest future studies that will elevate our understanding of the molecular basis of the histone-to-protamine exchange and the underlying etiology of idiopathic male infertility.


Asunto(s)
Histonas , Protaminas , Cromatina/metabolismo , Histonas/genética , Humanos , Masculino , Protaminas/genética , Protaminas/metabolismo , Semen , Espermatozoides/metabolismo
4.
Nat Commun ; 12(1): 3876, 2021 06 23.
Artículo en Inglés | MEDLINE | ID: mdl-34162856

RESUMEN

Testicular development and function rely on interactions between somatic cells and the germline, but similar to other organs, regenerative capacity declines in aging and disease. Whether the adult testis maintains a reserve progenitor population remains uncertain. Here, we characterize a recently identified mouse testis interstitial population expressing the transcription factor Tcf21. We found that TCF21lin cells are bipotential somatic progenitors present in fetal testis and ovary, maintain adult testis homeostasis during aging, and act as potential reserve somatic progenitors following injury. In vitro, TCF21lin cells are multipotent mesenchymal progenitors which form multiple somatic lineages including Leydig and myoid cells. Additionally, TCF21+ cells resemble resident fibroblast populations reported in other organs having roles in tissue homeostasis, fibrosis, and regeneration. Our findings reveal that the testis, like other organs, maintains multipotent mesenchymal progenitors that can be potentially leveraged in development of future therapies for hypoandrogenism and/or infertility.


Asunto(s)
Factores de Transcripción con Motivo Hélice-Asa-Hélice Básico/genética , Diferenciación Celular/genética , Homeostasis/genética , Células Madre Mesenquimatosas/metabolismo , Regeneración/genética , Testículo/metabolismo , Animales , Factores de Transcripción con Motivo Hélice-Asa-Hélice Básico/metabolismo , Linaje de la Célula/genética , Células Cultivadas , Femenino , Perfilación de la Expresión Génica/métodos , Células Intersticiales del Testículo/citología , Células Intersticiales del Testículo/metabolismo , Masculino , Células Madre Mesenquimatosas/citología , Ratones Endogámicos C57BL , Ratones Transgénicos , Análisis de la Célula Individual/métodos , Testículo/citología
5.
Dev Cell ; 46(5): 651-667.e10, 2018 09 10.
Artículo en Inglés | MEDLINE | ID: mdl-30146481

RESUMEN

Spermatogenesis requires intricate interactions between the germline and somatic cells. Within a given cross section of a seminiferous tubule, multiple germ and somatic cell types co-occur. This cellular heterogeneity has made it difficult to profile distinct cell types at different stages of development. To address this challenge, we collected single-cell RNA sequencing data from ∼35,000 cells from the adult mouse testis and identified all known germ and somatic cells, as well as two unexpected somatic cell types. Our analysis revealed a continuous developmental trajectory of germ cells from spermatogonia to spermatids and identified candidate transcriptional regulators at several transition points during differentiation. Focused analyses delineated four subtypes of spermatogonia and nine subtypes of Sertoli cells; the latter linked to histologically defined developmental stages over the seminiferous epithelial cycle. Overall, this high-resolution cellular atlas represents a community resource and foundation of knowledge to study germ cell development and in vivo gametogenesis.


Asunto(s)
Regulación del Desarrollo de la Expresión Génica , Secuenciación de Nucleótidos de Alto Rendimiento/métodos , Células de Sertoli/citología , Análisis de la Célula Individual/métodos , Espermatogénesis , Testículo/citología , Animales , Diferenciación Celular , Células Cultivadas , Perfilación de la Expresión Génica , Masculino , Ratones , Células de Sertoli/metabolismo , Testículo/metabolismo
6.
J Biol Chem ; 293(36): 13805-13814, 2018 09 07.
Artículo en Inglés | MEDLINE | ID: mdl-28912274

RESUMEN

Polycomb repressive complex 2 (PRC2) methylates lysine 27 in histone H3, a modification associated with epigenetic gene silencing. This complex plays a fundamental role in regulating cellular differentiation and development, and PRC2 overexpression and mutations have been implicated in numerous cancers. In this Minireview, we examine recent studies elucidating the first crystal structures of the PRC2 core complex, yielding seminal insights into its catalytic mechanism, substrate specificity, allosteric regulation, and inhibition by a class of small molecules that are currently undergoing cancer clinical trials. We conclude by exploring unresolved questions and future directions for inquiry regarding PRC2 structure and function.


Asunto(s)
Complejo Represivo Polycomb 2/antagonistas & inhibidores , Complejo Represivo Polycomb 2/química , Animales , Cristalografía por Rayos X , Silenciador del Gen , Humanos , Metilación , Neoplasias/tratamiento farmacológico , Complejo Represivo Polycomb 2/efectos de los fármacos , Conformación Proteica
7.
J Biol Inorg Chem ; 20(3): 585-94, 2015 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-25827593

RESUMEN

Previous crystallographic and mutagenesis studies have implicated the role of a position-conserved hairpin loop in the metallo-ß-lactamases in substrate binding and catalysis. In an effort to probe the motion of that loop during catalysis, rapid-freeze-quench double electron-electron resonance (RFQ-DEER) spectroscopy was used to interrogate metallo-ß-lactamase CcrA, which had a spin label at position 49 on the loop and spin labels (at positions 82, 126, or 233) 20-35 Å away from residue 49, during catalysis. At 10 ms after mixing, the DEER spectra show distance increases of 7, 10, and 13 Å between the spin label at position 49 and the spin labels at positions 82, 126, and 233, respectively. In contrast to previous hypotheses, these data suggest that the loop moves nearly 10 Å away from the metal center during catalysis and that the loop does not clamp down on the substrate during catalysis. This study demonstrates that loop motion during catalysis can be interrogated on the millisecond time scale.


Asunto(s)
Proteínas Bacterianas/química , Proteínas Bacterianas/metabolismo , Modelos Moleculares , Análisis Espectral , beta-Lactamasas/química , beta-Lactamasas/metabolismo , Proteínas Bacterianas/genética , Catálisis , Conformación Molecular , Simulación de Dinámica Molecular , beta-Lactamasas/genética
8.
Biochemistry ; 53(46): 7321-31, 2014 Nov 25.
Artículo en Inglés | MEDLINE | ID: mdl-25356958

RESUMEN

This study examines metal binding to metallo-ß-lactamase VIM-2, demonstrating the first successful preparation of a Co(II)-substituted VIM-2 analogue. Spectroscopic studies of the half- and fully metal loaded enzymes show that both Zn(II) and Co(II) bind cooperatively, where the major species present, regardless of stoichiometry, are apo- and di-Zn (or di-Co) enzymes. We determined the di-Zn VIM-2 structure to a resolution of 1.55 Å, and this structure supports results from spectroscopic studies. Kinetics, both steady-state and pre-steady-state, show that VIM-2 utilizes a mechanism that proceeds through a very short-lived anionic intermediate when chromacef is used as the substrate. Comparison with other B1 enzymes shows that those that bind Zn(II) cooperatively are better poised to protonate the intermediate on its formation, compared to those that bind Zn(II) non-cooperatively, which uniformly build up substantial amounts of the intermediate.


Asunto(s)
Pseudomonas aeruginosa/enzimología , beta-Lactamasas/química , Sitios de Unión , Clonación Molecular , Cristalografía por Rayos X , Escherichia coli/genética , Modelos Moleculares , Pseudomonas aeruginosa/química , Pseudomonas aeruginosa/genética , Pseudomonas aeruginosa/metabolismo , Análisis Espectral , Regulación hacia Arriba , Zinc/metabolismo , beta-Lactamasas/genética , beta-Lactamasas/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA