Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Opt Express ; 30(26): 46020-46030, 2022 Dec 19.
Artículo en Inglés | MEDLINE | ID: mdl-36558566

RESUMEN

The precise measurement of a target depth has applications in biophysics and nanophysics, and non-linear optical methods are sensitive to intensity changes on very small length scales. By exploiting the high sensitivity of an autocorrelator's dependency on path length, we propose a technique that achieves ≈30 nm depth precision for each pixel in 30 seconds. Our method images up-converted pulses from a non-linear crystal using a sCMOS (scientific Complementary Metal-Oxide-Semiconductor) camera and converts the intensity recorded by each pixel to a delay. By utilising statistical estimation theory and using the data from a set of 32×32 pixels, the standard error (SE) of the detected delay falls below 1 nm after 30 seconds of measurement. Numerical simulations show that this result is extremely close to what can be achieved with a shot-noise-limited source and is consistent with the precision that can be achieved with a sCMOS camera.

2.
Opt Express ; 29(14): 22504-22516, 2021 Jul 05.
Artículo en Inglés | MEDLINE | ID: mdl-34266012

RESUMEN

Light-in-flight (LIF) imaging is the measurement and reconstruction of light's path as it moves and interacts with objects. It is well known that relativistic effects can result in apparent velocities that differ significantly from the speed of light. However, less well known is that Rayleigh scattering and the effects of imaging optics can lead to observed intensities changing by several orders of magnitude along light's path. We develop a model that enables us to correct for all of these effects, thus we can accurately invert the observed data and reconstruct the true intensity-corrected optical path of a laser pulse as it travels in air. We demonstrate the validity of our model by observing the photon arrival time and intensity distribution obtained from single-photon avalanche detector (SPAD) array data for a laser pulse propagating towards and away from the camera. We can then reconstruct the true intensity-corrected path of the light in four dimensions (three spatial dimensions and time).

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...