Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 12 de 12
Filtrar
Más filtros













Base de datos
Intervalo de año de publicación
1.
Nat Commun ; 15(1): 487, 2024 Jan 12.
Artículo en Inglés | MEDLINE | ID: mdl-38216556

RESUMEN

Periodontal disease is a significant burden for oral health, causing progressive and irreversible damage to the support structure of the tooth. This complex structure, the periodontium, is composed of interconnected soft and mineralised tissues, posing a challenge for regenerative approaches. Materials combining silicon and lithium are widely studied in periodontal regeneration, as they stimulate bone repair via silicic acid release while providing regenerative stimuli through lithium activation of the Wnt/ß-catenin pathway. Yet, existing materials for combined lithium and silicon release have limited control over ion release amounts and kinetics. Porous silicon can provide controlled silicic acid release, inducing osteogenesis to support bone regeneration. Prelithiation, a strategy developed for battery technology, can introduce large, controllable amounts of lithium within porous silicon, but yields a highly reactive material, unsuitable for biomedicine. This work debuts a strategy to lithiate porous silicon nanowires (LipSiNs) which generates a biocompatible and bioresorbable material. LipSiNs incorporate lithium to between 1% and 40% of silicon content, releasing lithium and silicic acid in a tailorable fashion from days to weeks. LipSiNs combine osteogenic, cementogenic and Wnt/ß-catenin stimuli to regenerate bone, cementum and periodontal ligament fibres in a murine periodontal defect.


Asunto(s)
Nanocables , beta Catenina , Animales , Ratones , Silicio/farmacología , Porosidad , Litio/farmacología , Ácido Silícico/farmacología , Cemento Dental
2.
Metallomics ; 15(6)2023 06 01.
Artículo en Inglés | MEDLINE | ID: mdl-37193667

RESUMEN

Exposure to exogenous particles is of increasing concern to human health. Characterizing the concentrations, chemical species, distribution, and involvement of the stimulus with the tissue microanatomy is essential in understanding the associated biological response. However, no single imaging technique can interrogate all these features at once, which confounds and limits correlative analyses. Developments of synchronous imaging strategies, allowing multiple features to be identified simultaneously, are essential to assess spatial relationships between these key features with greater confidence. Here, we present data to first highlight complications of correlative analysis between the tissue microanatomy and elemental composition associated with imaging serial tissue sections. This is achieved by assessing both the cellular and elemental distributions in three-dimensional space using optical microscopy on serial sections and confocal X-ray fluorescence spectroscopy on bulk samples, respectively. We propose a new imaging strategy using lanthanide-tagged antibodies with X-ray fluorescence spectroscopy. Using simulations, a series of lanthanide tags were identified as candidate labels for scenarios where tissue sections are imaged. The feasibility and value of the proposed approach are shown where an exposure of Ti was identified concurrently with CD45 positive cells at sub-cellular resolutions. Significant heterogeneity in the distribution of exogenous particles and cells can be present between immediately adjacent serial sections showing a clear need of synchronous imaging methods. The proposed approach enables elemental compositions to be correlated with the tissue microanatomy in a highly multiplexed and non-destructive manner at high spatial resolutions with the opportunity for subsequent guided analysis.


Asunto(s)
Elementos de la Serie de los Lantanoides , Microscopía , Humanos
3.
Sci Rep ; 11(1): 21449, 2021 11 02.
Artículo en Inglés | MEDLINE | ID: mdl-34728650

RESUMEN

The World Health Organisation has called for a 40% increase in personal protective equipment manufacturing worldwide, recognising that frontline workers need effective protection during the COVID-19 pandemic. Current devices suffer from high fit-failure rates leaving significant proportions of users exposed to risk of viral infection. Driven by non-contact, portable, and widely available 3D scanning technologies, a workflow is presented whereby a user's face is rapidly categorised using relevant facial parameters. Device design is then directed down either a semi-customised or fully-customised route. Semi-customised designs use the extracted eye-to-chin distance to categorise users in to pre-determined size brackets established via a cohort of 200 participants encompassing 87.5% of the cohort. The user's nasal profile is approximated to a Gaussian curve to further refine the selection in to one of three subsets. Flexible silicone provides the facial interface accommodating minor mismatches between true nasal profile and the approximation, maintaining a good seal in this challenging region. Critically, users with outlying facial parameters are flagged for the fully-customised route whereby the silicone interface is mapped to 3D scan data. These two approaches allow for large scale manufacture of a limited number of design variations, currently nine through the semi-customised approach, whilst ensuring effective device fit. Furthermore, labour-intensive fully-customised designs are targeted as those users who will most greatly benefit. By encompassing both approaches, the presented workflow balances manufacturing scale-up feasibility with the diverse range of users to provide well-fitting devices as widely as possible. Novel flow visualisation on a model face is presented alongside qualitative fit-testing of prototype devices to support the workflow methodology.


Asunto(s)
Cara/fisiología , Equipo de Protección Personal , Fotogrametría/métodos , COVID-19/prevención & control , COVID-19/virología , Diseño Asistido por Computadora , Diseño de Equipo , Cara/anatomía & histología , Humanos , Impresión Tridimensional , SARS-CoV-2/aislamiento & purificación
4.
Cancer Res ; 81(13): 3480-3494, 2021 07 01.
Artículo en Inglés | MEDLINE | ID: mdl-34127497

RESUMEN

Succinate dehydrogenase is a key enzyme in the tricarboxylic acid cycle and the electron transport chain. All four subunits of succinate dehydrogenase are tumor suppressor genes predisposing to paraganglioma, but only mutations in the SDHB subunit are associated with increased risk of metastasis. Here we generated an Sdhd knockout chromaffin cell line and compared it with Sdhb-deficient cells. Both cell types exhibited similar SDH loss of function, metabolic adaptation, and succinate accumulation. In contrast, Sdhb-/- cells showed hallmarks of mesenchymal transition associated with increased DNA hypermethylation and a stronger pseudo-hypoxic phenotype compared with Sdhd-/- cells. Loss of SDHB specifically led to increased oxidative stress associated with dysregulated iron and copper homeostasis in the absence of NRF2 activation. High-dose ascorbate exacerbated the increase in mitochondrial reactive oxygen species, leading to cell death in Sdhb-/- cells. These data establish a mechanism linking oxidative stress to iron homeostasis that specifically occurs in Sdhb-deficient cells and may promote metastasis. They also highlight high-dose ascorbate as a promising therapeutic strategy for SDHB-related cancers. SIGNIFICANCE: Loss of different succinate dehydrogenase subunits can lead to different cell and tumor phenotypes, linking stronger 2-OG-dependent dioxygenases inhibition, iron overload, and ROS accumulation following SDHB mutation.


Asunto(s)
Ácido Ascórbico/farmacología , Homeostasis , Hierro/metabolismo , Mutación , Estrés Oxidativo , Succinato Deshidrogenasa/fisiología , Animales , Antioxidantes/farmacología , Dioxigenasas/antagonistas & inhibidores , Femenino , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Mitocondrias/metabolismo , Mitocondrias/patología , Fenotipo , Especies Reactivas de Oxígeno
5.
ACS Appl Mater Interfaces ; 13(22): 25694-25700, 2021 Jun 09.
Artículo en Inglés | MEDLINE | ID: mdl-34048220

RESUMEN

Containing the global severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) pandemic has been an unprecedented challenge due to high horizontal transmissivity and asymptomatic carriage rates. Lateral flow device (LFD) immunoassays were introduced in late 2020 to detect SARS-CoV-2 infection in asymptomatic or presymptomatic individuals rapidly. While LFD technologies have been used for over 60 years, their widespread use as a public health tool during a pandemic is unprecedented. By the end of 2020, data from studies into the efficacy of the LFDs emerged and showed these point-of-care devices to have very high specificity (ability to identify true negatives) but inadequate sensitivity with high false-negative rates. The low sensitivity (<50%) shown in several studies is a critical public health concern, as asymptomatic or presymptomatic carriers may wrongly be assumed to be noninfectious, posing a significant risk of further spread in the community. Here, we show that the direct visual readout of SARS-CoV-2 LFDs is an inadequate approach to discriminate a potentially infective viral concentration in a biosample. We quantified significant immobilized antigen-antibody-labeled conjugate complexes within the LFDs visually scored as negative using high-sensitivity synchrotron X-ray fluorescence imaging. Correlating quantitative X-ray fluorescence measurements and quantitative reverse transcription-polymerase chain reaction (qRT-PCR) determined numbers of viral copies, we identified that negatively scored samples could contain up to 100 PFU (equivalent here to ∼10 000 RNA copies/test). The study demonstrates where the shortcomings arise in many of the current direct-readout SARS-CoV-2 LFDs, namely, being a deficiency in the readout as opposed to the potential level of detection of the test, which is orders of magnitude higher. The present findings are of importance both to public health monitoring during the Coronavirus Disease 2019 (COVID-19) pandemic and to the rapid refinement of these tools for immediate and future applications.


Asunto(s)
COVID-19/diagnóstico , COVID-19/virología , Inmunoensayo/instrumentación , Coronavirus Relacionado al Síndrome Respiratorio Agudo Severo/aislamiento & purificación , Animales , Chlorocebus aethiops , Microscopía Electrónica de Transmisión , Reacción en Cadena en Tiempo Real de la Polimerasa , Estándares de Referencia , Coronavirus Relacionado al Síndrome Respiratorio Agudo Severo/ultraestructura , Sensibilidad y Especificidad , Espectrometría por Rayos X , Células Vero
6.
Anal Chem ; 92(21): 14432-14443, 2020 11 03.
Artículo en Inglés | MEDLINE | ID: mdl-32970419

RESUMEN

Degradation of the implant surface and particle release/formation as an inflammation catalyst mechanism is an emerging concept in dental medicine that may help explain the pathogenesis of peri-implantitis. The aim of the present study was a synchrotron-based characterization of micro- and nanosized implant-related particles in inflamed human tissues around titanium and ceramic dental implants that exhibited signs of peri-implantitis. Size, distribution, and chemical speciation of the exogenous micro- and nanosized particle content were evaluated using synchrotron µ-X-ray fluorescence spectroscopy (XRF), nano-XRF, and µ-X-ray absorption near-edge structure (XANES). Titanium particles, with variable speciation, were detected in all tissue sections associated with titanium implants. Ceramic particles were found in five out of eight tissue samples associated with ceramic implants. Particles ranged in size from micro- to nanoscale. The local density of both titanium and ceramic particles was calculated to be as high as ∼40 million particles/mm3. µ-XANES identified titanium in predominantly two different chemistries, including metallic and titanium dioxide (TiO2). The findings highlight the propensity for particle accumulation in the inflamed tissues around dental implants and will help in guiding toxicological studies to determine the biological significance of such exposures.


Asunto(s)
Cerámica/efectos adversos , Implantes Dentales/efectos adversos , Microesferas , Nanopartículas , Periimplantitis/inducido químicamente , Periimplantitis/metabolismo , Titanio/efectos adversos , Cerámica/química , Cerámica/metabolismo , Humanos , Tamaño de la Partícula , Titanio/química , Titanio/metabolismo
7.
Dent Mater ; 36(3): 343-352, 2020 03.
Artículo en Inglés | MEDLINE | ID: mdl-31924386

RESUMEN

OBJECTIVE: The structure of the polymer phase of dental resin-based-composites is highly sensitive to photo-polymerisation variables. The objective of this study was to understand how different polymer structures, generated with different photo-polymerisation protocols, respond to thermal perturbation. METHODS: Experimental resins were prepared from a series of Bis-GMA/TEGDMA blends (40/60, 50/50 and 60/40 wt.%), with either Camphorquinone/DMAEMA or Lucirin TPO as the photo-initiator system. Resins were photo-polymerised, in a disc geometry, at either relatively 'high' (3000 mW cm-2 for 6 s) or 'low' (300 mW cm-2 for 60 s) irradiances ensuring matched radiant exposures (18 J cm-2). Specimens were heated, from 20-160 °C at a rate of 5 °C min-1, whilst simultaneous synchrotron X-ray scattering measurements were taken at 5 °C increments to determine changes in polymer chain segment extension and medium-range order as a function of temperature. For each unique resin composition (n = 3), differential scanning calorimetry was used to measure glass transition temperatures using the same heating protocol. A paired t-test was used to determine significant differences in the glass transition temperature between irradiance protocols and photo-initiator chemistry at ɑ = 0.05. RESULTS: Resins pre-polymerised through the use of TPO and or high irradiances demonstrated a reduced rate of chain extension indicative of lower thermal expansion and a larger decrease in relative order when heated below the glass transition temperature. Above the transition temperature, differences in the rate of chain extension were negligible, but slower converted systems showed greater relative order. There was no significant difference in the glass transition temperature between different photo-initiator systems or irradiance protocols. SIGNIFICANCE: The evolution of chain extension and medium-range order during heating is dependent on the initial polymer structure which is influenced by photo-polymerisation variables. Less ordered systems, generated at faster rates of reactive group conversion displayed reduced chain extension below the glass transition temperature and maintained lower order throughout heating.


Asunto(s)
Resinas Compuestas , Resinas Sintéticas , Bisfenol A Glicidil Metacrilato , Ensayo de Materiales , Polietilenglicoles , Polimerizacion , Ácidos Polimetacrílicos , Resinas de Plantas , Temperatura
8.
Acta Biomater ; 98: 284-293, 2019 10 15.
Artículo en Inglés | MEDLINE | ID: mdl-31173961

RESUMEN

Biological exposures to micro- and nano-scale exogenous metal particles generated as a consequence of in-service degradation of orthopaedic prosthetics can result in severe adverse tissues reactions. However, individual reactions are highly variable and are not easily predicted, due to in part a lack of understanding of the speciation of the metal-stimuli which dictates cellular interactions and toxicity. Investigating the chemistry of implant derived metallic particles in biological tissue samples is complicated by small feature sizes, low concentrations and often a heterogeneous speciation and distribution. These challenges were addressed by developing a multi-scale two-dimensional X-ray absorption spectroscopic (XAS) mapping approach to discriminate sub-micron changes in particulate chemistry within ex-vivo tissues associated with failed CoCrMo total hip replacements (THRs). As a result, in the context of THRs, we demonstrate much greater variation in Cr chemistry within tissues compared with previous reports. Cr compounds including phosphate, hydroxide, oxide, metal and organic complexes were observed and correlated with Co and Mo distributions. This variability may help explain the lack of agreement between biological responses observed in experimental exposure models and clinical outcomes. The multi-scale 2D XAS mapping approach presents an essential tool in discriminating the chemistry in dilute biological systems where speciation heterogeneity is expected. SIGNIFICANCE: Metal implants are routinely used in healthcare but may fail following degradation in the body. Although specific implants can be identified as 'high-risk', our analysis of failures is limited by a lack of understanding of the chemistry of implant metals within the peri-prosthetic milieu. A new approach to identify the speciation and variability in speciation at sub-micron resolution, of dilute exogenous metals within biological tissues is reported; applied to understanding the failure of metallic (CoCrMo) total-hip-replacements widely used in orthopedic surgery. Much greater variation in Cr chemistry was observed compared with previous reports and included phosphate, hydroxide, oxide, metal and organic complexes. This variability may explain lack of agreement between biological responses observed in experimental exposure models and clinical outcomes.


Asunto(s)
Prótesis de Cadera/efectos adversos , Metales/efectos adversos , Falla de Prótesis , Humanos , Nanopartículas/química , Espectrometría por Rayos X , Espectroscopía de Absorción de Rayos X
9.
Sci Transl Med ; 10(466)2018 11 07.
Artículo en Inglés | MEDLINE | ID: mdl-30404862

RESUMEN

Drusen are lipid-, mineral-, and protein-containing extracellular deposits that accumulate between the basal lamina of the retinal pigment epithelium (RPE) and Bruch's membrane (BrM) of the human eye. They are a defining feature of age-related macular degeneration (AMD), a common sight-threatening disease of older adults. The appearance of heterogeneous internal reflectivity within drusen (HIRD) on optical coherence tomography (OCT) images has been suggested to indicate an increased risk of progression to advanced AMD. Here, in a cohort of patients with AMD and drusen, we show that HIRD indicated an increased risk of developing advanced AMD within 1 year. Using multimodal imaging in an independent cohort, we demonstrate that progression to AMD was associated with increasing degeneration of the RPE overlying HIRD. Morphological analysis of clinically imaged cadaveric human eye samples revealed that HIRD was formed by multilobular nodules. Nanoanalytical methods showed that nodules were composed of hydroxyapatite and that they differed from spherules and BrM plaques, other refractile features also found in the retinas of patients with AMD. These findings suggest that hydroxyapatite nodules may be indicators of progression to advanced AMD and that using multimodal clinical imaging to determine the composition of macular calcifications may help to direct therapeutic strategies and outcome measures in AMD.


Asunto(s)
Calcinosis/complicaciones , Progresión de la Enfermedad , Degeneración Macular/complicaciones , Degeneración Macular/patología , Drusas Retinianas/complicaciones , Anciano de 80 o más Años , Lámina Basal de la Coroides/patología , Lámina Basal de la Coroides/ultraestructura , Calcinosis/diagnóstico por imagen , Femenino , Atrofia Geográfica/complicaciones , Atrofia Geográfica/patología , Humanos , Degeneración Macular/diagnóstico por imagen , Masculino , Imagen Multimodal , Drusas Retinianas/diagnóstico por imagen , Drusas Retinianas/patología , Epitelio Pigmentado de la Retina/patología , Epitelio Pigmentado de la Retina/ultraestructura
10.
J Synchrotron Radiat ; 25(Pt 6): 1719-1726, 2018 Nov 01.
Artículo en Inglés | MEDLINE | ID: mdl-30407182

RESUMEN

Synchrotron radiation X-ray fluorescence microscopy is frequently used to investigate the spatial distribution of elements within a wide range of samples. Interrogation of heterogeneous samples that contain large concentration ranges has the potential to produce image artefacts due to the profile of the X-ray beam. The presence of these artefacts and the distribution of flux within the beam profile can significantly affect qualitative and quantitative analyses. Two distinct correction methods have been generated by referencing the beam profile itself or by employing an adaptive-thresholding procedure. Both methods significantly improve qualitative imaging by removing the artefacts without compromising the low-intensity features. The beam-profile correction method improves quantitative results but requires accurate two-dimensional characterization of the X-ray beam profile.

11.
Adv Healthc Mater ; 7(21): e1800338, 2018 11.
Artículo en Inglés | MEDLINE | ID: mdl-30221474

RESUMEN

Ti-based bulk metallic glasses are under consideration for implants due to their high yield strength and biocompatibility. In this work, in situ synchrotron X-ray diffraction (XRD) is used to investigate the corrosion products formed from corrosion of Ti40 Zr10 Cu34 Pd14 Sn2 bulk metallic glass in artificial corrosion pits in physiological saline (NaCl). It is found that Pd nanoparticles form in the interior of the pits during electrochemical dissolution. At a low pit growth potential, the change in lattice parameter of the Pd nanoparticles is consistent with the formation of palladium hydride. In addition, a salt layer very close to the dissolving interface is found to contain CuCl, PdCl2 , ZrOCl2 ∙8H2 O, Cu, Cu2 O, and several unidentified phases. The formation of Pd nanoparticles (16 ± 10 nm at 0.7 V vs Ag/AgCl) containing small amounts of the other alloying elements is confirmed by transmission electron microscopy. The addition of albumin and/or H2 O2 does not significantly influence the nature of the corrosion products. When considering the biological compatibility of the alloy, the biological reactivity of the corrosion products identified should be explored.


Asunto(s)
Materiales Biocompatibles/química , Titanio/química , Difracción de Rayos X/métodos , Aleaciones/química , Corrosión , Electrólitos , Microscopía Electrónica de Transmisión , Sincrotrones
12.
ACS Biomater Sci Eng ; 3(12): 3425-3432, 2017 Dec 11.
Artículo en Inglés | MEDLINE | ID: mdl-33445381

RESUMEN

In this study, we have developed a series of novel gallium oxide doped bioactive glasses to specifically target osteosarcoma cells while aiding new bone formation. The results show that osteosarcoma (Saos-2) cell death is induced through the addition of gallium oxide. Relative to the gallium-free control glass (0% Ga) glasses containing 1, 2, and 3% Ga decreased Saos-2 cell viability in a dose dependent manner. After 72 h in media preconditioned with 3% Ga Saos-2 cell viability was reduced by over 50%. Corresponding studies undertaken on primary normal human osteoblast cells (NHOst) demonstrated no adverse effects to the gallium containing glasses. Hydroxyapatite formation was observed for all glasses when exposed to simulated body fluid.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA