Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Más filtros













Base de datos
Intervalo de año de publicación
1.
Nat Commun ; 15(1): 3477, 2024 Apr 24.
Artículo en Inglés | MEDLINE | ID: mdl-38658529

RESUMEN

Streptococcus dysgalactiae subspecies equisimilis (SDSE) and Streptococcus pyogenes share skin and throat niches with extensive genomic homology and horizontal gene transfer (HGT) possibly underlying shared disease phenotypes. It is unknown if cross-species transmission interaction occurs. Here, we conduct a genomic analysis of a longitudinal household survey in remote Australian First Nations communities for patterns of cross-species transmission interaction and HGT. Collected from 4547 person-consultations, we analyse 294 SDSE and 315 S. pyogenes genomes. We find SDSE and S. pyogenes transmission intersects extensively among households and show that patterns of co-occurrence and transmission links are consistent with independent transmission without inter-species interference. We identify at least one of three near-identical cross-species mobile genetic elements (MGEs) carrying antimicrobial resistance or streptodornase virulence genes in 55 (19%) SDSE and 23 (7%) S. pyogenes isolates. These findings demonstrate co-circulation of both pathogens and HGT in communities with a high burden of streptococcal disease, supporting a need to integrate SDSE and S. pyogenes surveillance and control efforts.


Asunto(s)
Transferencia de Gen Horizontal , Secuencias Repetitivas Esparcidas , Infecciones Estreptocócicas , Streptococcus pyogenes , Streptococcus , Streptococcus pyogenes/genética , Streptococcus pyogenes/aislamiento & purificación , Streptococcus pyogenes/clasificación , Infecciones Estreptocócicas/transmisión , Infecciones Estreptocócicas/microbiología , Humanos , Streptococcus/genética , Streptococcus/aislamiento & purificación , Secuencias Repetitivas Esparcidas/genética , Australia , Genoma Bacteriano/genética , Femenino , Masculino , Niño , Composición Familiar , Adulto , Preescolar , Adolescente , Estudios Longitudinales , Farmacorresistencia Bacteriana/genética , Adulto Joven
2.
Nat Commun ; 15(1): 2286, 2024 Mar 13.
Artículo en Inglés | MEDLINE | ID: mdl-38480728

RESUMEN

Streptococcus dysgalactiae subsp. equisimilis (SDSE) is an emerging cause of human infection with invasive disease incidence and clinical manifestations comparable to the closely related species, Streptococcus pyogenes. Through systematic genomic analyses of 501 disseminated SDSE strains, we demonstrate extensive overlap between the genomes of SDSE and S. pyogenes. More than 75% of core genes are shared between the two species with one third demonstrating evidence of cross-species recombination. Twenty-five percent of mobile genetic element (MGE) clusters and 16 of 55 SDSE MGE insertion regions were shared across species. Assessing potential cross-protection from leading S. pyogenes vaccine candidates on SDSE, 12/34 preclinical vaccine antigen genes were shown to be present in >99% of isolates of both species. Relevant to possible vaccine evasion, six vaccine candidate genes demonstrated evidence of inter-species recombination. These findings demonstrate previously unappreciated levels of genomic overlap between these closely related pathogens with implications for streptococcal pathobiology, disease surveillance and prevention.


Asunto(s)
Infecciones Estreptocócicas , Streptococcus , Vacunas , Humanos , Streptococcus pyogenes/genética , Flujo Génico
3.
Lancet Microbe ; 4(7): e524-e533, 2023 07.
Artículo en Inglés | MEDLINE | ID: mdl-37211022

RESUMEN

BACKGROUND: Streptococcus pyogenes, or group A Streptococcus (GAS), infections contribute to a high burden of disease in Aboriginal Australians, causing skin infections and immune sequelae such as rheumatic heart disease. Controlling skin infections in these populations has proven difficult, with transmission dynamics being poorly understood. We aimed to identify the relative contributions of impetigo and asymptomatic throat carriage to GAS transmission. METHODS: In this genomic analysis, we retrospectively applied whole genome sequencing to GAS isolates that were collected as part of an impetigo surveillance longitudinal household survey conducted in three remote Aboriginal communities in the Northern Territory of Australia between Aug 6, 2003, and June 22, 2005. We included GAS isolates from all throats and impetigo lesions of people living in two of the previously studied communities. We classified isolates into genomic lineages based on pairwise shared core genomes of more than 99% with five or fewer single nucleotide polymorphisms. We used a household network analysis of epidemiologically and genomically linked lineages to quantify the transmission of GAS within and between households. FINDINGS: We included 320 GAS isolates in our analysis: 203 (63%) from asymptomatic throat swabs and 117 (37%) from impetigo lesions. Among 64 genomic lineages (encompassing 39 emm types) we identified 264 transmission links (involving 93% of isolates), for which the probable source was asymptomatic throat carriage in 166 (63%) and impetigo lesions in 98 (37%). Links originating from impetigo cases were more frequent between households than within households. Households were infected with GAS for a mean of 57 days (SD 39 days), and once cleared, reinfected 62 days (SD 40 days) later. Increased household size and community presence of GAS and scabies were associated with slower clearance of GAS. INTERPRETATION: In communities with high prevalence of endemic GAS-associated skin infection, asymptomatic throat carriage is a GAS reservoir. Public health interventions such as vaccination or community infection control programmes aimed at interrupting transmission of GAS might need to include consideration of asymptomatic throat carriage. FUNDING: Australian National Health and Medical Research Council.


Asunto(s)
Impétigo , Enfermedades Cutáneas Infecciosas , Infecciones Estreptocócicas , Humanos , Impétigo/epidemiología , Streptococcus pyogenes/genética , Estudios Retrospectivos , Faringe , Northern Territory/epidemiología , Infecciones Estreptocócicas/epidemiología , Genómica
4.
Microbiol Spectr ; 11(1): e0417622, 2023 02 14.
Artículo en Inglés | MEDLINE | ID: mdl-36602387

RESUMEN

Vibrio alginolyticus causes vibriosis of marine vertebrates, invertebrates, and humans, and while there have been several reports of multidrug resistance in V. alginolyticus, carbapenem resistance is rare. V. alginolyticus strain AUSMDU00064140 was isolated in Melbourne, Australia, from imported prawns. Routine genomic surveillance detected the presence of a full-length blaNDM-1 gene, subsequently shown to be collocated with additional acquired antimicrobial resistance genes on a resistance cassette on the largest chromosome, flanked by mobilization gene annotations. Comparisons to a previously described V. alginolyticus plasmid, pC1349, revealed differing gene content and arrangements between the resistance cassettes. Phylogenetic analysis was performed against a local and global data set (n = 109), demonstrating that AUSMDU00064140 was distinct and did not cluster with any other strains. Despite the presence of the complete blaNDM-1 gene and positive phenotypic assays for carbapenemase production, carbapenem MICs were low (meropenem MIC ≤0.5 mg/liter). However, it is still possible that this gene may be transferred to another species in the environment or a host, causing phenotypic carbapenem resistance and presenting a risk of great public health concern. IMPORTANCE Carbapenems are last-line antimicrobials, vital for use in human medicine. Antimicrobial resistance determinants such as blaNDM (New Delhi metallo-ß-lactamase producing) genes conferring resistance to the carbapenem class of antimicrobials, are typically found in Enterobacterales (first described in 2009 from a Klebsiella pneumoniae isolate). Our study shows that Vibrio alginolyticus isolated from cooked prawn is able to harbor antimicrobial resistance (AMR) genes of public health concern, specifically a chromosomally located blaNDM-1 gene, and there is the potential for transmission of resistance genes. This may be linked with antimicrobial use in low- and middle-income settings, which has typically been high, unregulated, or not reported. Many countries, including Thailand, have implemented national strategic plans to incorporate the World Health Organization (WHO)'s Global Action Plan (2015) recommendations of a global One Health approach, including increased resources for surveillance of antimicrobial usage and AMR; however, efficient antimicrobial surveillance systems incorporating genomic and phenotypic testing of isolates are still lacking in many jurisdictions.


Asunto(s)
Antibacterianos , Vibrio alginolyticus , Animales , Humanos , Antibacterianos/farmacología , Vibrio alginolyticus/genética , Vibrio alginolyticus/metabolismo , Filogenia , Farmacorresistencia Bacteriana Múltiple/genética , beta-Lactamasas/genética , beta-Lactamasas/metabolismo , Carbapenémicos , Plásmidos/genética , Klebsiella pneumoniae/genética , Pruebas de Sensibilidad Microbiana
5.
mSphere ; 5(2)2020 04 29.
Artículo en Inglés | MEDLINE | ID: mdl-32350098

RESUMEN

A recent clinical report has linked Streptococcus pyogenes ß-lactam antibiotic resistance to mutation in the penicillin binding protein (PBP) PBP2x. To determine whether this is an isolated case or reflects a broader prevalence of mutations that might confer reduced ß-lactam susceptibility, we investigated the relative frequency of PBP sequence variation within a global database of 9,667 S. pyogenes isolates. We found that mutations in S. pyogenes PBPs (PBP2x, PBP1a, PBP1b, and PBP2a) occur infrequently across this global database, with fewer than 3 amino acid changes differing between >99% of the global population. Only 4 of the 9,667 strains contained mutations near transpeptidase active sites of PBP2x or PBP1a. The reported PBP2x T553K substitution was not identified. These findings are in contrast to those of 2,520 S. pneumococcus sequences where PBP mutations are relatively frequent and are often located in key ß-lactam binding pockets. These data, combined with the general lack of penicillin resistance reported in S. pyogenes worldwide, suggests that extensive, unknown constraints restrict S. pyogenes PBP sequence plasticity. Our findings imply that while heavy antibiotic pressure may select for mutations in the PBPs, there is currently no evidence of such mutations becoming fixed in the S. pyogenes population or that mutations are being sequentially acquired in the PBPs.IMPORTANCE ß-Lactam antibiotics are the first-line therapeutic option for Streptococcus pyogenes infections. Despite the global high prevalence of S. pyogenes infections and widespread use of ß-lactams worldwide, reports of resistance to ß-lactam antibiotics, such as penicillin, have been incredibly rare. Recently, ß-lactam resistance, as defined by clinical breakpoints, was detected in two clinical S. pyogenes isolates with accompanying mutations in the active site of the penicillin binding protein PBP2x, raising concerns that ß-lactam resistance will become more widespread. We screened a global database of S. pyogenes genome sequences to investigate the frequency of PBP mutations, identifying that PBP mutations are uncommon relative to those of Streptococcus pneumoniae These findings support clinical observations that ß-lactam resistance is rare in S. pyogenes and suggest that there are considerable constraints on S. pyogenes PBP sequence variation.


Asunto(s)
Proteínas Bacterianas/genética , Variación Genética , Mutación , Proteínas de Unión a las Penicilinas/genética , Streptococcus pyogenes/genética , Antibacterianos/farmacología , Pruebas de Sensibilidad Microbiana , Streptococcus pyogenes/efectos de los fármacos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA