Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 25
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
J Infect Dis ; 229(6): 1702-1710, 2024 Jun 14.
Artículo en Inglés | MEDLINE | ID: mdl-38213276

RESUMEN

Definitive data demonstrating the utility of coronavirus disease 2019 (COVID-19) convalescent plasma (CCP) for treating immunocompromised patients remains elusive. To better understand the mechanism of action of CCP, we studied viral replication and disease progression in severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2)-infected hamsters treated with CCP obtained from recovered COVID-19 patients that were also vaccinated with an mRNA vaccine, hereafter referred to as Vaxplas. Vaxplas transiently enhanced disease severity and lung pathology in hamsters treated near peak viral replication due to immune complex and activated complement deposition in pulmonary endothelium, and recruitment of M1 proinflammatory macrophages into the lung parenchyma. However, aside from one report, transient enhanced disease has not been reported in CCP recipient patients, and the transient enhanced disease in Vaxplas hamsters may have been due to mismatched species IgG-FcR interactions, infusion timing, or other experimental factors. Despite transient disease enhancement, Vaxplas dramatically reduced virus replication in lungs and improved infection outcome in SARS-CoV-2-infected hamsters.


Asunto(s)
Anticuerpos Antivirales , Sueroterapia para COVID-19 , Vacunas contra la COVID-19 , COVID-19 , Inmunización Pasiva , Pulmón , SARS-CoV-2 , Replicación Viral , Animales , COVID-19/inmunología , COVID-19/virología , SARS-CoV-2/inmunología , Cricetinae , Pulmón/virología , Pulmón/inmunología , Pulmón/patología , Anticuerpos Antivirales/sangre , Anticuerpos Antivirales/inmunología , Vacunas contra la COVID-19/inmunología , Vacunas contra la COVID-19/administración & dosificación , Humanos , Mesocricetus , Modelos Animales de Enfermedad , Masculino , Femenino
3.
bioRxiv ; 2023 Aug 23.
Artículo en Inglés | MEDLINE | ID: mdl-37662344

RESUMEN

The utility of COVID-19 convalescent plasma (CCP) for treatment of immunocompromised patients who are not able to mount a protective antibody response against SARS-CoV-2 and who have contraindications or adverse effects from currently available antivirals remains unclear. To better understand the mechanism of protection in CCP, we studied viral replication and disease progression in SARS-CoV-2 infected hamsters treated with CCP plasma obtained from recovered COVID patients that had also been vaccinated with an mRNA vaccine, hereafter referred to as Vaxplas. We found that Vaxplas dramatically reduced virus replication in the lungs and improved infection outcome in SARS-CoV-2 infected hamsters. However, we also found that Vaxplas transiently enhanced disease severity and lung pathology in treated animals likely due to the deposition of immune complexes, activation of complement and recruitment of increased numbers of macrophages with an M1 proinflammatory phenotype into the lung parenchyma.

4.
bioRxiv ; 2023 Jun 29.
Artículo en Inglés | MEDLINE | ID: mdl-37425802

RESUMEN

With the SARS-CoV-2 virus still circulating and evolving, there remains an outstanding question if variant-specific vaccines represent the optimal path forward, or if other strategies might be more efficacious towards providing broad protection against emerging variants. Here, we examine the efficacy of strain-specific variants of our previously reported, pan-sarbecovirus vaccine candidate, DCFHP-alum, a ferritin nanoparticle functionalized with an engineered form of the SARS-CoV-2 spike protein. In non-human primates, DCFHP-alum elicits neutralizing antibodies against all known VOCs that have emerged to date and SARS-CoV-1. During development of the DCFHP antigen, we investigated the incorporation of strain-specific mutations from the major VOCs that had emerged to date: D614G, Epsilon, Alpha, Beta, and Gamma. Here, we report the biochemical and immunological characterizations that led us to choose the ancestral Wuhan-1 sequence as the basis for the final DCFHP antigen design. Specifically, we show by size exclusion chromatography and differential scanning fluorimetry that mutations in the VOCs adversely alter the antigen's structure and stability. More importantly, we determined that DCFHP without strain-specific mutations elicits the most robust, cross-reactive response in both pseudovirus and live virus neutralization assays. Our data suggest potential limitations to the variant-chasing approach in the development of protein nanoparticle vaccines, but also have implications for other approaches including mRNA-based vaccines.

5.
Nat Commun ; 14(1): 2149, 2023 04 17.
Artículo en Inglés | MEDLINE | ID: mdl-37069151

RESUMEN

While the rapid development of COVID-19 vaccines has been a scientific triumph, the need remains for a globally available vaccine that provides longer-lasting immunity against present and future SARS-CoV-2 variants of concern (VOCs). Here, we describe DCFHP, a ferritin-based, protein-nanoparticle vaccine candidate that, when formulated with aluminum hydroxide as the sole adjuvant (DCFHP-alum), elicits potent and durable neutralizing antisera in non-human primates against known VOCs, including Omicron BQ.1, as well as against SARS-CoV-1. Following a booster ~one year after the initial immunization, DCFHP-alum elicits a robust anamnestic response. To enable global accessibility, we generated a cell line that can enable production of thousands of vaccine doses per liter of cell culture and show that DCFHP-alum maintains potency for at least 14 days at temperatures exceeding standard room temperature. DCFHP-alum has potential as a once-yearly (or less frequent) booster vaccine, and as a primary vaccine for pediatric use including in infants.


Asunto(s)
COVID-19 , Geranium , Nanopartículas , Animales , Humanos , Vacunas contra la COVID-19 , Ferritinas , COVID-19/prevención & control , SARS-CoV-2 , Sueros Inmunes , Primates , Anticuerpos Neutralizantes , Anticuerpos Antivirales
6.
Emerg Infect Dis ; 28(12): 2548-2551, 2022 12.
Artículo en Inglés | MEDLINE | ID: mdl-36417997

RESUMEN

Nonhuman primates living in proximity to humans increase risks for sylvatic arbovirus transmission. We collected serum samples from nonhuman primates in Hlawga National Park near Yangon, Myanmar, and detected antibodies against chikungunya (33%) and Japanese encephalitis (4%) viruses. Buffer zones between primate and human communities might reduce cross-species arbovirus transmission.


Asunto(s)
Arbovirus , Fiebre Chikungunya , Virus Chikungunya , Animales , Humanos , Mianmar/epidemiología , Fiebre Chikungunya/epidemiología , Primates
7.
Nat Chem Biol ; 18(11): 1270-1276, 2022 11.
Artículo en Inglés | MEDLINE | ID: mdl-36076082

RESUMEN

Omicron and its subvariants have rendered most authorized monoclonal antibody-based treatments for severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) ineffective, highlighting the need for biologics capable of overcoming SARS-CoV-2 evolution. These mostly ineffective antibodies target variable epitopes. Here we describe broad-spectrum SARS-CoV-2 inhibitors developed by tethering the SARS-CoV-2 receptor, angiotensin-converting enzyme 2 (ACE2), to known non-neutralizing antibodies that target highly conserved epitopes in the viral spike protein. These inhibitors, called receptor-blocking conserved non-neutralizing antibodies (ReconnAbs), potently neutralize all SARS-CoV-2 variants of concern (VOCs), including Omicron. Neutralization potency is lost when the linker joining the binding and inhibitory ReconnAb components is severed. In addition, a bi-functional ReconnAb, made by linking ACE2 to a bi-specific antibody targeting two non-overlapping conserved epitopes, defined here, shows sub-nanomolar neutralizing activity against all VOCs, including Omicron and BA.2. Given their conserved targets and modular nature, ReconnAbs have the potential to act as broad-spectrum therapeutics against SARS-CoV-2 and other emerging pandemic diseases.


Asunto(s)
Productos Biológicos , Tratamiento Farmacológico de COVID-19 , Humanos , Enzima Convertidora de Angiotensina 2 , SARS-CoV-2 , Anticuerpos Neutralizantes , Glicoproteína de la Espiga del Coronavirus/metabolismo , Anticuerpos Antivirales/metabolismo , Peptidil-Dipeptidasa A/metabolismo , Epítopos , Anticuerpos Monoclonales/farmacología , Anticuerpos Monoclonales/uso terapéutico
8.
J Infect Dis ; 226(10): 1688-1698, 2022 11 11.
Artículo en Inglés | MEDLINE | ID: mdl-36134603

RESUMEN

BACKGROUND: As of early 2022, the Omicron variants are the predominant circulating lineages globally. Understanding neutralizing antibody responses against Omicron BA.1 and BA.2 after vaccine breakthrough infections will provide insights into BA.2 infectivity and susceptibility to subsequent reinfection. METHODS: Live virus neutralization assays were used to study immunity against Delta and Omicron BA.1 and BA.2 variants in samples from 86 individuals, 24 unvaccinated (27.9%) and 62 vaccinated (72.1%), who were infected with Delta (n = 42, 48.8%) or BA.1 (n = 44, 51.2%). Among the 62 vaccinated individuals, 39 were unboosted (62.9%), whereas 23 were boosted (37.1%). RESULTS: In unvaccinated infections, neutralizing antibodies (nAbs) against the three variants were weak or undetectable, except against Delta for Delta-infected individuals. Both Delta and BA.1 breakthrough infections resulted in strong nAb responses against ancestral wild-type and Delta lineages, but moderate nAb responses against BA.1 and BA.2, with similar titers between unboosted and boosted individuals. Antibody titers against BA.2 were generally higher than those against BA.1 in breakthrough infections. CONCLUSIONS: These results underscore the decreased immunogenicity of BA.1 compared to BA.2, insufficient neutralizing immunity against BA.2 in unvaccinated individuals, and moderate to strong neutralizing immunity induced against BA.2 in Delta and BA.1 breakthrough infections.


Asunto(s)
Anticuerpos Neutralizantes , Vacunas , Humanos , Anticuerpos Antivirales
9.
Nat Commun ; 13(1): 4212, 2022 07 21.
Artículo en Inglés | MEDLINE | ID: mdl-35864104

RESUMEN

An easily implementable serological assay to accurately detect severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) neutralizing antibodies is urgently needed to better track herd immunity, vaccine efficacy and vaccination rates. Herein, we report the Split-Oligonucleotide Neighboring Inhibition Assay (SONIA) which uses real-time qPCR to measure the ability of neutralizing antibodies to block binding between DNA-barcoded viral spike protein subunit 1 and the human angiotensin-converting enzyme 2 receptor protein. The SONIA neutralizing antibody assay using finger-prick dried blood spots displays 91-97% sensitivity and 100% specificity in comparison to the live-virus neutralization assays using matched serum specimens for multiple SARS-CoV-2 variants-of-concern. The multiplex version of this neutralizing antibody assay, using easily collectable finger-prick dried blood spots, can be a valuable tool to help reveal the impact of age, pre-existing health conditions, waning immunity, different vaccination schemes and the emergence of new variants-of-concern.


Asunto(s)
COVID-19 , SARS-CoV-2 , Anticuerpos Neutralizantes , Anticuerpos Antivirales , Humanos , Pruebas de Neutralización , Reacción en Cadena de la Polimerasa , SARS-CoV-2/genética , Glicoproteína de la Espiga del Coronavirus
10.
Nature ; 607(7918): 351-355, 2022 07.
Artículo en Inglés | MEDLINE | ID: mdl-35584773

RESUMEN

SARS-CoV-2 Delta and Omicron are globally relevant variants of concern. Although individuals infected with Delta are at risk of developing severe lung disease, infection with Omicron often causes milder symptoms, especially in vaccinated individuals1,2. The question arises of whether widespread Omicron infections could lead to future cross-variant protection, accelerating the end of the pandemic. Here we show that without vaccination, infection with Omicron induces a limited humoral immune response in mice and humans. Sera from mice overexpressing the human ACE2 receptor and infected with Omicron neutralize only Omicron, but not other variants of concern, whereas broader cross-variant neutralization was observed after WA1 and Delta infections. Unlike WA1 and Delta, Omicron replicates to low levels in the lungs and brains of infected animals, leading to mild disease with reduced expression of pro-inflammatory cytokines and diminished activation of lung-resident T cells. Sera from individuals who were unvaccinated and infected with Omicron show the same limited neutralization of only Omicron itself. By contrast, Omicron breakthrough infections induce overall higher neutralization titres against all variants of concern. Our results demonstrate that Omicron infection enhances pre-existing immunity elicited by vaccines but, on its own, may not confer broad protection against non-Omicron variants in unvaccinated individuals.


Asunto(s)
COVID-19 , Protección Cruzada , SARS-CoV-2 , Vacunación , Animales , Anticuerpos Neutralizantes/inmunología , Anticuerpos Antivirales/inmunología , COVID-19/inmunología , COVID-19/prevención & control , COVID-19/virología , Vacunas contra la COVID-19/administración & dosificación , Protección Cruzada/inmunología , Citocinas , Humanos , Ratones , SARS-CoV-2/clasificación , SARS-CoV-2/inmunología , Vacunación/estadística & datos numéricos
11.
Cell ; 185(9): 1539-1548.e5, 2022 04 28.
Artículo en Inglés | MEDLINE | ID: mdl-35429436

RESUMEN

Virus-like particle (VLP) and live virus assays were used to investigate neutralizing immunity against Delta and Omicron SARS-CoV-2 variants in 259 samples from 128 vaccinated individuals. Following Delta breakthrough infection, titers against WT rose 57-fold and 3.1-fold compared with uninfected boosted and unboosted individuals, respectively, versus only a 5.8-fold increase and 3.1-fold decrease for Omicron breakthrough infection. Among immunocompetent, unboosted patients, Delta breakthrough infections induced 10.8-fold higher titers against WT compared with Omicron (p = 0.037). Decreased antibody responses in Omicron breakthrough infections relative to Delta were potentially related to a higher proportion of asymptomatic or mild breakthrough infections (55.0% versus 28.6%, respectively), which exhibited 12.3-fold lower titers against WT compared with moderate to severe infections (p = 0.020). Following either Delta or Omicron breakthrough infection, limited variant-specific cross-neutralizing immunity was observed. These results suggest that Omicron breakthrough infections are less immunogenic than Delta, thus providing reduced protection against reinfection or infection from future variants.


Asunto(s)
COVID-19 , SARS-CoV-2 , Anticuerpos Neutralizantes , Anticuerpos Antivirales , Vacuna BNT162 , COVID-19/inmunología , COVID-19/prevención & control , Vacunas contra la COVID-19 , Humanos
12.
J Clin Invest ; 132(10)2022 05 16.
Artículo en Inglés | MEDLINE | ID: mdl-35316221

RESUMEN

BackgroundThe Delta and Omicron variants of SARS-CoV-2 are currently responsible for breakthrough infections due to waning immunity. We report phase I/II trial results of UB-612, a multitope subunit vaccine containing S1-RBD-sFc protein and rationally designed promiscuous peptides representing sarbecovirus conserved helper T cell and cytotoxic T lymphocyte epitopes on the nucleocapsid (N), membrane (M), and spike (S2) proteins.MethodWe conducted a phase I primary 2-dose (28 days apart) trial of 10, 30, or 100 µg UB-612 in 60 healthy young adults 20 to 55 years old, and 50 of them were boosted with 100 µg of UB-612 approximately 7 to 9 months after the second dose. A separate placebo-controlled and randomized phase II study was conducted with 2 doses of 100 µg of UB-612 (n = 3,875, 18-85 years old). We evaluated interim safety and immunogenicity of phase I until 14 days after the third (booster) dose and of phase II until 28 days after the second dose.ResultsNo vaccine-related serious adverse events were recorded. The most common solicited adverse events were injection site pain and fatigue, mostly mild and transient. In both trials, UB-612 elicited respective neutralizing antibody titers similar to a panel of human convalescent sera. The most striking findings were long-lasting virus-neutralizing antibodies and broad T cell immunity against SARS-CoV-2 variants of concern (VoCs), including Delta and Omicron, and a strong booster-recalled memory immunity with high cross-reactive neutralizing titers against the Delta and Omicron VoCs.ConclusionUB-612 has presented a favorable safety profile, potent booster effect against VoCs, and long-lasting B and broad T cell immunity that warrants further development for both primary immunization and heterologous boosting of other COVID-19 vaccines.Trial RegistrationClinicalTrials.gov: NCT04545749, NCT04773067, and NCT04967742.FundingUBI Asia, Vaxxinity Inc., and Taiwan Centers for Disease Control, Ministry of Health and Welfare.


Asunto(s)
Vacunas contra la COVID-19 , COVID-19 , Adolescente , Adulto , Anciano , Anciano de 80 o más Años , Anticuerpos Neutralizantes , Anticuerpos Antivirales , COVID-19/prevención & control , COVID-19/terapia , Humanos , Inmunización Pasiva , Persona de Mediana Edad , SARS-CoV-2 , Linfocitos T , Adulto Joven , Sueroterapia para COVID-19
13.
PLoS Pathog ; 18(2): e1009914, 2022 02.
Artículo en Inglés | MEDLINE | ID: mdl-35143587

RESUMEN

As novel SARS-CoV-2 variants continue to emerge, it is critical that their potential to cause severe disease and evade vaccine-induced immunity is rapidly assessed in humans and studied in animal models. In early January 2021, a novel SARS-CoV-2 variant designated B.1.429 comprising 2 lineages, B.1.427 and B.1.429, was originally detected in California (CA) and it was shown to have enhanced infectivity in vitro and decreased antibody neutralization by plasma from convalescent patients and vaccine recipients. Here we examine the virulence, transmissibility, and susceptibility to pre-existing immunity for B 1.427 and B 1.429 in the Syrian hamster model. We find that both variants exhibit enhanced virulence as measured by increased body weight loss compared to hamsters infected with ancestral B.1 (614G), with B.1.429 causing the most marked body weight loss among the 3 variants. Faster dissemination from airways to parenchyma and more severe lung pathology at both early and late stages were also observed with B.1.429 infections relative to B.1. (614G) and B.1.427 infections. In addition, subgenomic viral RNA (sgRNA) levels were highest in oral swabs of hamsters infected with B.1.429, however sgRNA levels in lungs were similar in all three variants. This demonstrates that B.1.429 replicates to higher levels than ancestral B.1 (614G) or B.1.427 in the oropharynx but not in the lungs. In multi-virus in-vivo competition experiments, we found that B.1. (614G), epsilon (B.1.427/B.1.429) and gamma (P.1) dramatically outcompete alpha (B.1.1.7), beta (B.1.351) and zeta (P.2) in the lungs. In the nasal cavity, B.1. (614G), gamma, and epsilon dominate, but the highly infectious alpha variant also maintains a moderate size niche. We did not observe significant differences in airborne transmission efficiency among the B.1.427, B.1.429 and ancestral B.1 (614G) and WA-1 variants in hamsters. These results demonstrate enhanced virulence and high relative oropharyngeal replication of the epsilon (B.1.427/B.1.429) variant in Syrian hamsters compared to an ancestral B.1 (614G) variant.


Asunto(s)
COVID-19/virología , SARS-CoV-2/patogenicidad , Animales , COVID-19/patología , Modelos Animales de Enfermedad , Femenino , Humanos , Pulmón/patología , Pulmón/virología , Masculino , Mesocricetus , Mutación , SARS-CoV-2/clasificación , SARS-CoV-2/genética , SARS-CoV-2/fisiología , Glicoproteína de la Espiga del Coronavirus/genética , Glicoproteína de la Espiga del Coronavirus/metabolismo , Virulencia
14.
Nat Microbiol ; 7(2): 277-288, 2022 02.
Artículo en Inglés | MEDLINE | ID: mdl-35013591

RESUMEN

Associations between vaccine breakthrough cases and infection by different SARS coronavirus 2 (SARS-CoV-2) variants have remained largely unexplored. Here we analysed SARS-CoV-2 whole-genome sequences and viral loads from 1,373 persons with COVID-19 from the San Francisco Bay Area from 1 February to 30 June 2021, of which 125 (9.1%) were vaccine breakthrough infections. Vaccine breakthrough infections were more commonly associated with circulating antibody-resistant variants carrying ≥1 mutation associated with decreased antibody neutralization (L452R/Q, E484K/Q and/or F490S) than infections in unvaccinated individuals (78% versus 48%, P = 1.96 × 10-8). Differences in viral loads were non-significant between unvaccinated and fully vaccinated cases overall (P = 0.99) and according to lineage (P = 0.09-0.78). Symptomatic vaccine breakthrough infections had comparable viral loads (P = 0.64), whereas asymptomatic breakthrough infections had decreased viral loads (P = 0.023) compared with infections in unvaccinated individuals. In 5 cases with serial samples available for serologic analyses, vaccine breakthrough infections were found to be associated with low or undetectable neutralizing antibody levels attributable to an immunocompromised state or infection by an antibody-resistant lineage. Taken together, our results show that vaccine breakthrough infections are overrepresented by antibody-resistant SARS-CoV-2 variants, and that symptomatic breakthrough infections may be as efficient in spreading COVID-19 as unvaccinated infections, regardless of the infecting lineage.


Asunto(s)
Anticuerpos Antivirales/sangre , Vacuna BNT162/inmunología , COVID-19/epidemiología , SARS-CoV-2/genética , SARS-CoV-2/inmunología , Adolescente , Adulto , Anciano , Anticuerpos Neutralizantes/sangre , Anticuerpos Neutralizantes/inmunología , Anticuerpos Antivirales/inmunología , Vacuna BNT162/administración & dosificación , COVID-19/inmunología , Vacunas contra la COVID-19/inmunología , Estudios de Cohortes , Femenino , Genoma Viral , Humanos , Masculino , Persona de Mediana Edad , Mutación , Filogenia , San Francisco/epidemiología , Vacunación , Carga Viral/estadística & datos numéricos , Secuenciación Completa del Genoma , Adulto Joven
15.
bioRxiv ; 2022 Dec 26.
Artículo en Inglés | MEDLINE | ID: mdl-36597527

RESUMEN

While the rapid development of COVID-19 vaccines has been a scientific triumph, the need remains for a globally available vaccine that provides longer-lasting immunity against present and future SARS-CoV-2 variants of concern (VOCs). Here, we describe DCFHP, a ferritin-based, protein-nanoparticle vaccine candidate that, when formulated with aluminum hydroxide as the sole adjuvant (DCFHP-alum), elicits potent and durable neutralizing antisera in non-human primates against known VOCs, including Omicron BQ.1, as well as against SARS-CoV-1. Following a booster ∻one year after the initial immunization, DCFHP-alum elicits a robust anamnestic response. To enable global accessibility, we generated a cell line that can enable production of thousands of vaccine doses per liter of cell culture and show that DCFHP-alum maintains potency for at least 14 days at temperatures exceeding standard room temperature. DCFHP-alum has potential as a once-yearly booster vaccine, and as a primary vaccine for pediatric use including in infants.

16.
Emerg Infect Dis ; 27(11): 2761-2767, 2021 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-34469287

RESUMEN

The Abbott BinaxNOW rapid antigen test is cheaper and faster than real-time reverse transcription PCR (rRT-PCR) for detecting severe acute respiratory syndrome coronavirus 2. We compared BinaxNOW with rRT-PCR in 769 paired specimens from 342 persons during a coronavirus disease outbreak among horse racetrack workers in California, USA. We found positive percent agreement was 43.3% (95% CI 34.6%-52.4%), negative percent agreement 100% (95% CI 99.4%-100%), positive predictive value 100% (95% CI 93.5%-100%), and negative predictive value 89.9% (95% CI 87.5%-92.0%). Among 127 rRT-PCR-positive specimens, the 55 with paired BinaxNOW-positive results had a lower mean cycle threshold than the 72 with paired BinaxNOW-negative results (17.8 vs. 28.5; p<0.001). Of 100 specimens with cycle threshold <30, a total of 51 resulted in positive virus isolation; 45 (88.2%) of those were BinaxNOW-positive. Our comparison supports immediate isolation for BinaxNOW-positive persons and confirmatory testing for negative persons.


Asunto(s)
COVID-19 , Animales , Antígenos Virales , California/epidemiología , Brotes de Enfermedades , Caballos , Humanos , SARS-CoV-2 , Sensibilidad y Especificidad
17.
bioRxiv ; 2021 Aug 25.
Artículo en Inglés | MEDLINE | ID: mdl-34462750

RESUMEN

As novel SARS-CoV-2 variants continue to emerge, it is critical that their potential to cause severe disease and evade vaccine-induced immunity is rapidly assessed in humans and studied in animal models. In early January 2021, a novel variant of concern (VOC) designated B.1.429 comprising 2 lineages, B.1.427 and B.1.429, was originally detected in California (CA) and shown to enhance infectivity in vitro and decrease antibody neutralization by plasma from convalescent patients and vaccine recipients. Here we examine the virulence, transmissibility, and susceptibility to pre-existing immunity for B 1.427 and B 1.429 in the Syrian hamster model. We find that both strains exhibit enhanced virulence as measured by increased body weight loss compared to hamsters infected with ancestral B.1 (614G), with B.1.429 causing the most body weight loss among all 3 lineages. Faster dissemination from airways to parenchyma and more severe lung pathology at both early and late stages were also observed with B.1.429 infections relative to B.1. (614G) and B.1.427 infections. In addition, subgenomic viral RNA (sgRNA) levels were highest in oral swabs of hamsters infected with B.1.429, however sgRNA levels in lungs were similar in all three strains. This demonstrates that B.1.429 replicates to higher levels than ancestral B.1 (614G) or B.1.427 in the upper respiratory tract (URT) but not in the lungs. In multi-virus in-vivo competition experiments, we found that epsilon (B.1.427/B.1.429) and gamma (P.1) dramatically outcompete alpha (B.1.1.7), beta (B.1.351) and zeta (P.2) in the lungs. In the URT gamma, and epsilon dominate, but the highly infectious alpha variant also maintains a moderate size niche. We did not observe significant differences in airborne transmission efficiency among the B.1.427, B.1.429 and ancestral B.1 (614G) variants in hamsters. These results demonstrate enhanced virulence and high relative fitness of the epsilon (B.1.427/B.1.429) variant in Syrian hamsters compared to an ancestral B.1 (614G) strain. AUTHOR SUMMARY: In the last 12 months new variants of SARS-CoV-2 have arisen in the UK, South Africa, Brazil, India, and California. New SARS-CoV-2 variants will continue to emerge for the foreseeable future in the human population and the potential for these new variants to produce severe disease and evade vaccines needs to be understood. In this study, we used the hamster model to determine the epsilon (B.1.427/429) SARS-CoV-2 strains that emerged in California in late 2020 cause more severe disease and infected hamsters have higher viral loads in the upper respiratory tract compared to the prior B.1 (614G) strain. These findings are consistent with human clinical data and help explain the emergence and rapid spread of this strain in early 2021.

18.
Cell ; 184(13): 3426-3437.e8, 2021 06 24.
Artículo en Inglés | MEDLINE | ID: mdl-33991487

RESUMEN

We identified an emerging severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) variant by viral whole-genome sequencing of 2,172 nasal/nasopharyngeal swab samples from 44 counties in California, a state in the western United States. Named B.1.427/B.1.429 to denote its two lineages, the variant emerged in May 2020 and increased from 0% to >50% of sequenced cases from September 2020 to January 2021, showing 18.6%-24% increased transmissibility relative to wild-type circulating strains. The variant carries three mutations in the spike protein, including an L452R substitution. We found 2-fold increased B.1.427/B.1.429 viral shedding in vivo and increased L452R pseudovirus infection of cell cultures and lung organoids, albeit decreased relative to pseudoviruses carrying the N501Y mutation common to variants B.1.1.7, B.1.351, and P.1. Antibody neutralization assays revealed 4.0- to 6.7-fold and 2.0-fold decreases in neutralizing titers from convalescent patients and vaccine recipients, respectively. The increased prevalence of a more transmissible variant in California exhibiting decreased antibody neutralization warrants further investigation.


Asunto(s)
Anticuerpos Neutralizantes/inmunología , COVID-19/inmunología , COVID-19/transmisión , SARS-CoV-2/genética , Glicoproteína de la Espiga del Coronavirus/inmunología , Anticuerpos Monoclonales/inmunología , Anticuerpos Antivirales/inmunología , Humanos , Mutación/genética , Secuenciación Completa del Genoma/métodos
19.
medRxiv ; 2021 Mar 09.
Artículo en Inglés | MEDLINE | ID: mdl-33758899

RESUMEN

We identified a novel SARS-CoV-2 variant by viral whole-genome sequencing of 2,172 nasal/nasopharyngeal swab samples from 44 counties in California. Named B.1.427/B.1.429 to denote its 2 lineages, the variant emerged around May 2020 and increased from 0% to >50% of sequenced cases from September 1, 2020 to January 29, 2021, exhibiting an 18.6-24% increase in transmissibility relative to wild-type circulating strains. The variant carries 3 mutations in the spike protein, including an L452R substitution. Our analyses revealed 2-fold increased B.1.427/B.1.429 viral shedding in vivo and increased L452R pseudovirus infection of cell cultures and lung organoids, albeit decreased relative to pseudoviruses carrying the N501Y mutation found in the B.1.1.7, B.1.351, and P.1 variants. Antibody neutralization assays showed 4.0 to 6.7-fold and 2.0-fold decreases in neutralizing titers from convalescent patients and vaccine recipients, respectively. The increased prevalence of a more transmissible variant in California associated with decreased antibody neutralization warrants further investigation.

20.
Mol Ther ; 27(11): 2038-2052, 2019 11 06.
Artículo en Inglés | MEDLINE | ID: mdl-31471224

RESUMEN

High-mannose-type glycans (HMGs) are aberrantly enriched on HIV envelope glycoproteins. However, there is currently no drug selectively targeting HIV-associated HMGs. Here, we describe a novel HMG-targeting "lectibody," a recombinant Fc-fusion protein comprising human IgG1 Fc and a novel actinohivin lectin variant (Avaren) obtained by structure-guided modifications for improved overall surface charge properties (AvFc). AvFc was engineered and produced using a rapid and scalable plant-based transient overexpression system. The lectibody exhibited potent antiviral activity against HIV-1 groups M and O primary viruses, as well as HIV-2 and simian immunodeficiency virus (SIV) strains, without affecting normal human blood cells. Furthermore, the lectibody induced Fc-mediated cell killing activity against HIV-1-infected cells and selectively recognized SIVmac239-infected macaque mesenteric lymph node cells in vitro. AvFc showed an extended serum half-life in rats and rhesus macaques, while no discernible toxicity was observed upon repeated systemic dosing in mice. These results highlight AvFc's potential as a biotherapeutic targeting HIV-associated HMGs of cell-free virions, as well as productively infected cells, providing a foundation for new anti-HIV strategies. Efficient and cost-effective bioproduction in greenhouse facilities may open unique possibilities for further development of AvFc.


Asunto(s)
Ingeniería Genética , Manosa/antagonistas & inhibidores , Polisacáridos/antagonistas & inhibidores , Proteínas Recombinantes de Fusión/genética , Proteínas Recombinantes de Fusión/farmacología , Productos del Gen env del Virus de la Inmunodeficiencia Humana/antagonistas & inhibidores , Secuencia de Aminoácidos , Animales , Femenino , Citometría de Flujo , Vectores Genéticos/genética , VIH-1 , Macaca mulatta , Conformación Proteica , Ratas , Proteínas Recombinantes de Fusión/química , Virus de la Inmunodeficiencia de los Simios
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...