Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 38
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
J Affect Disord ; 362: 174-185, 2024 Jul 01.
Artículo en Inglés | MEDLINE | ID: mdl-38960334

RESUMEN

BACKGROUND: Depression and obesity are associated with impaired inhibitory control. Behavioral evidence indicates an exacerbating additive effect when both conditions co-occur. However, the underlying neural mechanisms remain unclear. Moreover, systemic inflammation affects neurocognitive performance in both individuals with depression and obesity. Here, we investigate additive effects of depression and obesity on neural correlates of inhibitory control, and examine inflammation as a connecting pathway. METHODS: We assessed inhibitory control processing in 64 individuals with obesity and varying degrees of depressed mood by probing neural activation and connectivity during an fMRI Stroop task. Additionally, we explored associations of altered neural responses with individual differences in systemic inflammation. Data were collected as part of the BARICO (Bariatric surgery Rijnstate and Radboudumc neuroimaging and Cognition in Obesity) study. RESULTS: Concurrent depression and obesity were linked to increased functional connectivity between the supplementary motor area and precuneus and between the inferior occipital and inferior parietal gyrus. Exploratory analysis revealed that circulating inflammation markers, including plasma leptin, IL-6, IL-8, and CCL-3 correlated with the additive effect of depression and obesity on altered functional connectivity. LIMITATIONS: The observational design limits causal inferences. Future research employing longitudinal or intervention designs is required to validate these findings and elucidate causal pathways. CONCLUSION: These findings suggest increased neural crosstalk underlying impaired inhibitory control in individuals with concurrent obesity and depressed mood. Our results support a model of an additive detrimental effect of concurrent depression and obesity on neurocognitive functioning, with a possible role of inflammation.

2.
Cells ; 12(20)2023 10 16.
Artículo en Inglés | MEDLINE | ID: mdl-37887307

RESUMEN

Increased insulin levels may support the development of neural circuits involved in cognition, while chronic mild inflammation may also result in cognitive impairment. This study aimed to gain more insight into whether cognition is already impacted during adolescence in a genetic rat model for obesity and type 2 diabetes. Visual discrimination learning throughout adolescence and the level of motivation during early adulthood were investigated in Zucker Diabetic Fatty (ZDF) obese and ZDF lean rats using operant touchscreens. Blood glucose, insulin, and lipids were longitudinally analyzed. Histological analyses were performed in the liver, white adipose tissues, and the prefrontal cortex. Prior to the experiments with the genetic ZDF research model, all experimental assays were performed in two groups of outbred Long Evans rats to investigate the effect of different feeding circumstances. Adolescent ZDF obese rats outperformed ZDF lean rats on visual discrimination performance. During the longitudinal cognitive testing period, insulin levels sharply increased over weeks in ZDF obese rats and were significantly enhanced from 6 weeks of age onwards. Early signs of liver steatosis and enlarged adipocytes in white adipose tissue were observed in early adult ZDF obese rats. Histological analyses in early adulthood showed no group differences in the number of prefrontal cortex neurons and microglia, nor PSD95 and SIRT1 mRNA expression levels. Together, our data show that adolescent ZDF obese rats even display enhanced cognition despite their early diabetic profile.


Asunto(s)
Diabetes Mellitus Tipo 2 , Ratas , Animales , Diabetes Mellitus Tipo 2/complicaciones , Diabetes Mellitus Tipo 2/metabolismo , Ratas Zucker , Ratas Long-Evans , Obesidad/metabolismo , Insulina/metabolismo , Cognición
4.
FASEB J ; 37(8): e23096, 2023 08.
Artículo en Inglés | MEDLINE | ID: mdl-37477964

RESUMEN

Cardiovascular disease (CVD) is closely associated with obesity through risk factors such as dyslipidemia and chronic low-grade inflammation, which may be affected by diet. Dietary fats have been extensively studied in relation to CVD risk, however these studies have not always yielded consistent results, most likely due to lack in control of experimental conditions and confounding factors. Here we studied the effects of different plant and animal fats on dyslipidemia, inflammation, and atherosclerosis. Ldlr-/-.Leiden mice were fed isocaloric energy-dense diets with translational macronutrient composition for 28 weeks. The diets were identical apart from the type of fat they contained: either (1) a mixture of olive and rapeseed oil, (2) sunflower oil, (3) pork fat, (4) beef fat, or (5) milk fat. The fatty acid composition of the diets was determined and effects on circulating lipid and inflammatory risk factors and atherosclerosis were examined, complemented by adipose tissue histology and liver transcriptomics. While visceral fat mass, adipocyte size, and adipose tissue inflammation were not differentially affected by the diets, atherosclerotic lesion load and severity was more pronounced with increasing dietary saturated fatty acid content and decreasing monounsaturated and polyunsaturated fatty acid content, and hence most pronounced with beef and milk fat. These differential effects were accompanied by increases in pro-atherogenic plasma lipids/lipoproteins (e.g., triglycerides, apolipoprotein B), activation of pro-atherogenic cytokine/chemokine signaling pathways in liver, and with circulating pro-atherogenic mediators of inflammation altogether providing a rationale for the differential effects of plant and animal fats.


Asunto(s)
Aterosclerosis , Dislipidemias , Bovinos , Animales , Ratones , Grasas de la Dieta/efectos adversos , Aterosclerosis/etiología , Aterosclerosis/prevención & control , Ácidos Grasos , Obesidad/complicaciones , Obesidad/inducido químicamente , Inflamación/etiología , Dislipidemias/inducido químicamente
5.
Front Cell Neurosci ; 17: 1205261, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37457817

RESUMEN

Introduction: Obesity has been linked to vascular dysfunction, cognitive impairment and neurodegenerative diseases. However, experimental models that recapitulate brain pathology in relation to obesity and vascular dysfunction are still lacking. Methods: In this study we performed the histological and histochemical characterization of brains from Ldlr-/-.Leiden mice, an established model for obesity and associated vascular disease. First, HFD-fed 18 week-old and 50 week-old Ldlr-/-.Leiden male mice were compared with age-matched C57BL/6J mice. We then assessed the effect of high-fat diet (HFD)-induced obesity on brain pathology in Ldlr-/-.Leiden mice and tested whether a treatment with an anti-complement component 5 antibody, a terminal complement pathway inhibitor recently shown to reduce vascular disease, can attenuate neurodegeneration and neuroinflammation. Histological analyses were complemented with Next Generation Sequencing (NGS) analyses of the hippocampus to unravel molecular pathways underlying brain histopathology. Results: We show that chow-fed Ldlr-/-.Leiden mice have more severe neurodegeneration and show an age-dependent astrogliosis that is not observed in age-matched C57BL/6J controls. This was substantiated by pathway enrichment analysis using the NGS data which showed that oxidative phosphorylation, EIF2 signaling and mitochondrial dysfunction pathways, all associated with neurodegeneration, were significantly altered in the hippocampus of Ldlr-/-.Leiden mice compared with C57BL/6J controls. Obesity-inducing HFD-feeding did not aggravate neurodegeneration and astrogliosis in Ldlr-/-.Leiden mice. However, brains from HFD-fed Ldlr-/-.Leiden mice showed reduced IBA-1 immunoreactivity and increased CD68 immunoreactivity compared with chow-fed Ldlr-/-.Leiden mice, indicating alteration of microglial immunophenotype by HFD feeding. The systemic administration of an anti-C5 treatment partially restored the HFD effect on microglial immunophenotype. In addition, NGS data of hippocampi from Ldlr-/-.Leiden mice showed that HFD feeding affected multiple molecular pathways relative to chow-fed controls: HFD notably inactivated synaptogenesis and activated neuroinflammation pathways. The anti-C5 treatment restored the HFD-induced effect on molecular pathways to a large extent. Conclusion: This study shows that the Ldlr-/-.Leiden mouse model is suitable to study brain histopathology and associated biological processes in a context of obesity and provides evidence of the potential therapeutic value of anti-complement therapy against obesity-induced neuroinflammation.

6.
Int J Mol Sci ; 24(10)2023 May 09.
Artículo en Inglés | MEDLINE | ID: mdl-37239841

RESUMEN

Semaglutide, a glucagon-like peptide-1 receptor agonist, is an antidiabetic medication that has recently been approved for the treatment of obesity as well. Semaglutide is postulated to be a promising candidate for the treatment of non-alcoholic steatohepatitis (NASH). Here, Ldlr-/-.Leiden mice received a fast-food diet (FFD) for 25 weeks, followed by another 12 weeks on FFD with daily subcutaneous injections of semaglutide or vehicle (control). Plasma parameters were evaluated, livers and hearts were examined, and hepatic transcriptome analysis was performed. In the liver, semaglutide significantly reduced macrovesicular steatosis (-74%, p < 0.001) and inflammation (-73%, p < 0.001) and completely abolished microvesicular steatosis (-100%, p < 0.001). Histological and biochemical assessment of hepatic fibrosis showed no significant effects of semaglutide. However, digital pathology revealed significant improvements in the degree of collagen fiber reticulation (-12%, p < 0.001). Semaglutide did not affect atherosclerosis relative to controls. Additionally, we compared the transcriptome profile of FFD-fed Ldlr-/-.Leiden mice with a human gene set that differentiates human NASH patients with severe fibrosis from those with mild fibrosis. In FFD-fed Ldlr-/-.Leiden control mice, this gene set was upregulated as well, while semaglutide predominantly reversed this gene expression. Using a translational model with advanced NASH, we demonstrated that semaglutide is a promising candidate with particular potential for the treatment of hepatic steatosis and inflammation, while for the reversal of advanced fibrosis, combinations with other NASH agents may be necessary.


Asunto(s)
Enfermedad del Hígado Graso no Alcohólico , Humanos , Ratones , Animales , Enfermedad del Hígado Graso no Alcohólico/tratamiento farmacológico , Enfermedad del Hígado Graso no Alcohólico/etiología , Enfermedad del Hígado Graso no Alcohólico/metabolismo , Hígado/metabolismo , Cirrosis Hepática/metabolismo , Fibrosis , Inflamación/metabolismo , Ratones Endogámicos C57BL , Modelos Animales de Enfermedad
7.
Int J Mol Sci ; 24(9)2023 Apr 25.
Artículo en Inglés | MEDLINE | ID: mdl-37175538

RESUMEN

Patients with metabolic syndrome are often prescribed statins to prevent the development of cardiovascular disease. Conversely, data on their effects on non-alcoholic steatohepatitis (NASH) are lacking. We evaluated these effects by feeding APOE*3-Leiden mice a Western-type diet (WTD) with or without atorvastatin to induce NASH and hepatic fibrosis. Besides the well-known plasma cholesterol lowering (-30%) and anti-atherogenic effects (severe lesion size -48%), atorvastatin significantly reduced hepatic steatosis (-22%), the number of aggregated inflammatory cells in the liver (-80%) and hepatic fibrosis (-92%) compared to WTD-fed mice. Furthermore, atorvastatin-treated mice showed less immunohistochemically stained areas of inflammation markers. Atorvastatin prevented accumulation of free cholesterol in the form of cholesterol crystals (-78%). Cholesterol crystals are potent inducers of the NLRP3 inflammasome pathway and atorvastatin prevented its activation, which resulted in reduced expression of the pro-inflammatory cytokines interleukin (IL)-1ß (-61%) and IL-18 (-26%). Transcriptome analysis confirmed strong reducing effects of atorvastatin on inflammatory mediators, including NLRP3, NFκB and TLR4. The present study demonstrates that atorvastatin reduces hepatic steatosis, inflammation and fibrosis and prevents cholesterol crystal formation, thereby precluding NLRP3 inflammasome activation. This may render atorvastatin treatment as an attractive approach to reduce NAFLD and prevent progression into NASH in dyslipidemic patients.


Asunto(s)
Enfermedad del Hígado Graso no Alcohólico , Ratones , Animales , Enfermedad del Hígado Graso no Alcohólico/etiología , Enfermedad del Hígado Graso no Alcohólico/inducido químicamente , Atorvastatina/efectos adversos , Inflamasomas/metabolismo , Proteína con Dominio Pirina 3 de la Familia NLR/genética , Proteína con Dominio Pirina 3 de la Familia NLR/metabolismo , Hígado/metabolismo , Cirrosis Hepática/metabolismo , Inflamación/metabolismo , Colesterol/metabolismo , Dieta , Apolipoproteínas E/metabolismo , Ratones Endogámicos C57BL
8.
Nutrients ; 15(7)2023 Mar 31.
Artículo en Inglés | MEDLINE | ID: mdl-37049556

RESUMEN

Exercise and dietary interventions are promising approaches to tackle obesity and its obesogenic effects on the brain. We investigated the impact of exercise and possible synergistic effects of exercise and branched-chain amino acids (BCAA) supplementation on the brain and behavior in high-fat-diet (HFD)-induced obese Ldlr-/-.Leiden mice. Baseline measurements were performed in chow-fed Ldlr-/-.Leiden mice to assess metabolic risk factors, cognition, and brain structure using magnetic resonance imaging. Thereafter, a subgroup was sacrificed, serving as a healthy reference. The remaining mice were fed an HFD and divided into three groups: (i) no exercise, (ii) exercise, or (iii) exercise and dietary BCAA. Mice were followed for 6 months and aforementioned tests were repeated. We found that exercise alone changed cerebral blood flow, attenuated white matter loss, and reduced neuroinflammation compared to non-exercising HFD-fed mice. Contrarily, no favorable effects of exercise on the brain were found in combination with BCAA, and neuroinflammation was increased. However, cognition was slightly improved in exercising mice on BCAA. Moreover, BCAA and exercise increased the percentage of epididymal white adipose tissue and muscle weight, decreased body weight and fasting insulin levels, improved the circadian rhythm, and transiently improved grip strength. In conclusion, BCAA should be supplemented with caution, although beneficial effects on metabolism, behavior, and cognition were observed.


Asunto(s)
Resistencia a la Insulina , Ratones , Animales , Enfermedades Neuroinflamatorias , Obesidad/metabolismo , Aminoácidos de Cadena Ramificada , Suplementos Dietéticos , Dieta Alta en Grasa/efectos adversos , Encéfalo/metabolismo
9.
Heliyon ; 9(3): e13985, 2023 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-36915476

RESUMEN

Background: NAFLD progression, from steatosis to inflammation and fibrosis, results from an interplay of intra- and extrahepatic mechanisms. Disease drivers likely include signals from white adipose tissue (WAT) and gut. However, the temporal dynamics of disease development remain poorly understood. Methods: High-fat-diet (HFD)-fed Ldlr-/-.Leiden mice were compared to chow-fed controls. At t = 0, 8, 16, 28 and 38w mice were euthanized, and liver, WAT depots and gut were analyzed biochemically, histologically and by lipidomics and transcriptomics together with circulating factors to investigate the sequence of pathogenic events and organ cross-talk during NAFLD development. Results: HFD-induced obesity was associated with an increase in visceral fat, plasma lipids and hyperinsulinemia at t = 8w, along with increased liver steatosis and circulating liver damage biomarkers. In parallel, upstream regulator analysis predicted that lipid catabolism regulators were deactivated and lipid synthesis regulators were activated. Subsequently, hepatocyte hypertrophy, oxidative stress and hepatic inflammation developed. Hepatic collagen accumulated from t = 16 w and became pronounced at t = 28-38 w. Epididymal WAT was maximally hypertrophic from t = 8 w, which coincided with inflammation development. Mesenteric and subcutaneous WAT hypertrophy developed slower and did not appear to reach a maximum, with minimal inflammation. In gut, HFD significantly increased permeability, induced a shift in microbiota composition from t = 8 w and changed circulating gut-derived metabolites. Conclusion: HFD-fed Ldlr-/-.Leiden mice develop obesity, dyslipidemia and insulin resistance, essentially as observed in obese NAFLD patients, underlining their translational value. We demonstrate that marked epididymal-WAT inflammation, and gut permeability and dysbiosis precede the development of NAFLD stressing the importance of a multiple-organ approach in the prevention and treatment of NAFLD.

10.
Int J Mol Sci ; 23(18)2022 Sep 14.
Artículo en Inglés | MEDLINE | ID: mdl-36142647

RESUMEN

BACKGROUND: Chronic inflammation is an important driver in the progression of non-alcoholic steatohepatitis (NASH) and atherosclerosis. The complement system, one of the first lines of defense in innate immunity, has been implicated in both diseases. However, the potential therapeutic value of complement inhibition in the ongoing disease remains unclear. METHODS: After 20 weeks of high-fat diet (HFD) feeding, obese Ldlr-/-.Leiden mice were treated twice a week with an established anti-C5 antibody (BB5.1) or vehicle control. A separate group of mice was kept on a chow diet as a healthy reference. After 12 weeks of treatment, NASH was analyzed histopathologically, and genome-wide hepatic gene expression was analyzed by next-generation sequencing and pathway analysis. Atherosclerotic lesion area and severity were quantified histopathologically in the aortic roots. RESULTS: Anti-C5 treatment considerably reduced complement system activity in plasma and MAC deposition in the liver but did not affect NASH. Anti-C5 did, however, reduce the development of atherosclerosis, limiting the total lesion size and severity independently of an effect on plasma cholesterol but with reductions in oxidized LDL (oxLDL) and macrophage migration inhibitory factor (MIF). CONCLUSION: We show, for the first time, that treatment with an anti-C5 antibody in advanced stages of NASH is not sufficient to reduce the disease, while therapeutic intervention against established atherosclerosis is beneficial to limit further progression.


Asunto(s)
Aterosclerosis , Factores Inhibidores de la Migración de Macrófagos , Enfermedad del Hígado Graso no Alcohólico , Animales , Aterosclerosis/metabolismo , Colesterol/metabolismo , Complemento C5/metabolismo , Dieta Alta en Grasa/efectos adversos , Modelos Animales de Enfermedad , Hígado/metabolismo , Factores Inhibidores de la Migración de Macrófagos/genética , Factores Inhibidores de la Migración de Macrófagos/metabolismo , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Enfermedad del Hígado Graso no Alcohólico/metabolismo , Receptores de LDL/genética , Receptores de LDL/metabolismo
11.
Front Nutr ; 9: 904740, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35782914

RESUMEN

Non-alcoholic fatty liver disease (NAFLD) is a complex multifactorial disorder that is associated with gut dysbiosis, enhanced gut permeability, adiposity and insulin resistance. Prebiotics such as human milk oligosaccharide 2'-fucosyllactose are thought to primarily improve gut health and it is uncertain whether they would affect more distant organs. This study investigates whether 2'-fucosyllactose can alleviate NAFLD development in manifest obesity. Obese hyperinsulinemic Ldlr-/-.Leiden mice, after an 8 week run-in on a high-fat diet (HFD), were treated with 2'-fucosyllactose by oral gavage until week 28 and compared to HFD-vehicle controls. 2'-fucosyllactose did not affect food intake, body weight, total fat mass or plasma lipids. 2'-fucosyllactose altered the fecal microbiota composition which was paralleled by a suppression of HFD-induced gut permeability at t = 12 weeks. 2'-fucosyllactose significantly attenuated the development of NAFLD by reducing microvesicular steatosis. These hepatoprotective effects were supported by upstream regulator analyses showing that 2'-fucosyllactose activated ACOX1 (involved in lipid catabolism), while deactivating SREBF1 (involved in lipogenesis). Furthermore, 2'-fucosyllactose suppressed ATF4, ATF6, ERN1, and NUPR1 all of which participate in endoplasmic reticulum stress. 2'-fucosyllactose reduced fasting insulin concentrations and HOMA-IR, which was corroborated by decreased intrahepatic diacylglycerols. In conclusion, long-term supplementation with 2'-fucosyllactose can counteract the detrimental effects of HFD on gut dysbiosis and gut permeability and attenuates the development of liver steatosis. The observed reduction in intrahepatic diacylglycerols provides a mechanistic rationale for the improvement of hyperinsulinemia and supports the use of 2'-fucosyllactose to correct dysmetabolism and insulin resistance.

12.
FASEB J ; 36(8): e22435, 2022 08.
Artículo en Inglés | MEDLINE | ID: mdl-35830259

RESUMEN

Non-alcoholic steatohepatitis (NASH) is associated with a disturbed metabolism in liver, insulin resistance, and excessive accumulation of ectopic fat. Branched-chain amino acids (BCAAs) may beneficially modulate hepatic lipids, however, it remains unclear whether individual BCAAs can attenuate already established NASH and associated oxidative-inflammatory stress. After a 26 weeks run-in on fast food diet (FFD), obese Ldlr-/-.Leiden mice were treated for another 12 weeks with either valine or isoleucine (3% of FFD) and then compared to FFD controls. Valine and isoleucine did not affect obesity, dyslipidemia, gut permeability, or fecal fatty acid excretion, but significantly reduced hyperinsulinemia. Valine and isoleucine reduced ALT, CK18-M30, and liver steatosis with a particularly pronounced suppression of the microvesicular component (-61% by valine and -71% by isoleucine). Both BCAAs decreased intrahepatic diacylglycerols and 4-hydroxynonenal immunoreactivity, a marker for oxidative stress-induced lipid peroxidation. Functional genomics analysis demonstrated that valine and isoleucine affected BCAA metabolism genes, deactivated master regulators of anabolic pathways related to steatosis (e.g., SREBPF1), and activated master regulators of mitochondrial biogenesis (e.g., PPARGC1A) and lipid catabolism (e.g., ACOX1, AMPK). This correction of critical metabolic pathways on gene expression level was accompanied by a significant decrease in histological liver inflammation, and suppression of FFD-stimulated cytokine and chemokine proteins KC/CXCL1, MCP-1/CCL2, and MIP-2/CXCL2 and their pathways. In conclusion, dietary intervention with either valine or isoleucine corrected liver diacylglycerols, gene expression of multiple metabolic processes, and reduced NASH histology with profound hepatoprotective effects on oxidative stress and inflammatory proteins.


Asunto(s)
Hiperinsulinismo , Enfermedad del Hígado Graso no Alcohólico , Aminoácidos de Cadena Ramificada/metabolismo , Animales , Diglicéridos/metabolismo , Hiperinsulinismo/metabolismo , Inflamación/metabolismo , Isoleucina/farmacología , Isoleucina/uso terapéutico , Hígado/metabolismo , Ratones , Ratones Endogámicos C57BL , Enfermedad del Hígado Graso no Alcohólico/metabolismo , Obesidad/metabolismo , Valina/farmacología
13.
Hepatology ; 76(4): 1121-1134, 2022 10.
Artículo en Inglés | MEDLINE | ID: mdl-35220605

RESUMEN

BACKGROUND AND AIMS: We previously identified subsets of patients with NAFLD with different metabolic phenotypes. Here we align metabolomic signatures with cardiovascular disease (CVD) and genetic risk factors. APPROACH AND RESULTS: We analyzed serum metabolome from 1154 individuals with biopsy-proven NAFLD, and from four mouse models of NAFLD with impaired VLDL-triglyceride (TG) secretion, and one with normal VLDL-TG secretion. We identified three metabolic subtypes: A (47%), B (27%), and C (26%). Subtype A phenocopied the metabolome of mice with impaired VLDL-TG secretion; subtype C phenocopied the metabolome of mice with normal VLDL-TG; and subtype B showed an intermediate signature. The percent of patients with NASH and fibrosis was comparable among subtypes, although subtypes B and C exhibited higher liver enzymes. Serum VLDL-TG levels and secretion rate were lower among subtype A compared with subtypes B and C. Subtype A VLDL-TG and VLDL-apolipoprotein B concentrations were independent of steatosis, whereas subtypes B and C showed an association with these parameters. Serum TG, cholesterol, VLDL, small dense LDL5,6 , and remnant lipoprotein cholesterol were lower among subtype A compared with subtypes B and C. The 10-year high risk of CVD, measured with the Framingham risk score, and the frequency of patatin-like phospholipase domain-containing protein 3 NAFLD risk allele were lower in subtype A. CONCLUSIONS: Metabolomic signatures identify three NAFLD subgroups, independent of histological disease severity. These signatures align with known CVD and genetic risk factors, with subtype A exhibiting a lower CVD risk profile. This may account for the variation in hepatic versus cardiovascular outcomes, offering clinically relevant risk stratification.


Asunto(s)
Enfermedades Cardiovasculares , Enfermedad del Hígado Graso no Alcohólico , Animales , Apolipoproteínas B , Enfermedades Cardiovasculares/epidemiología , Enfermedades Cardiovasculares/etiología , VLDL-Colesterol/metabolismo , Factores de Riesgo de Enfermedad Cardiaca , Lipoproteínas VLDL , Hígado/patología , Ratones , Enfermedad del Hígado Graso no Alcohólico/patología , Fosfolipasas/metabolismo , Factores de Riesgo , Triglicéridos/metabolismo
14.
Int J Mol Sci ; 23(4)2022 Feb 19.
Artículo en Inglés | MEDLINE | ID: mdl-35216439

RESUMEN

The development of non-alcoholic steatohepatitis (NASH) has been associated with alterations in gut microbiota composition and reduced gut barrier function. Akkermansia muciniphila is a gut microbe that is thought to have health-promoting properties, including the ability to improve gut barrier function and host metabolism, both when administered live and after heat-inactivation. We questioned whether heat-inactivated A. muciniphila may reduce NASH development. Ldlr-/-.Leiden mice, a translational, diet-induced model for NASH, were fed a NASH-inducing high-fat diet (HFD) supplemented with heat-inactivated A. muciniphila. After 28 weeks, effects of the treatment on obesity and associated metabolic dysfunction in the gut (microbiota composition and permeability), adipose tissue, and liver were studied relative to an untreated HFD control. Treatment with heat-inactivated A. muciniphila did not affect body weight or adiposity and had no effect on plasma lipids, blood glucose, or plasma insulin. Heat-inactivated A. muciniphila had some minor effects on mucosal microbiota composition in ileum and colon and improved gut barrier function, as assessed by an in vivo functional gut permeability test. Epidydimal white adipose tissue (WAT) hypertrophy and inflammation were not affected, but heat-inactivated A. muciniphila did reduce hypertrophy in the mesenteric WAT which is in close proximity to the intestine. Heat-inactivated A. muciniphila did not affect the development of NASH or associated fibrosis in the liver and did not affect circulating bile acids or markers of liver fibrosis, but did reduce PRO-C4, a type IV collagen synthesis marker, which may be associated with gut integrity. In conclusion, despite beneficial effects in the gut and mesenteric adipose tissue, heat-inactivated A. muciniphila did not affect the development of NASH and fibrosis in a chronic disease setting that mimics clinically relevant disease stages.


Asunto(s)
Mucosa Intestinal/metabolismo , Enfermedad del Hígado Graso no Alcohólico/metabolismo , Receptores de LDL/metabolismo , Tejido Adiposo/metabolismo , Akkermansia/metabolismo , Animales , Dieta Alta en Grasa/métodos , Microbioma Gastrointestinal/fisiología , Calor , Inflamación/metabolismo , Hígado/metabolismo , Cirrosis Hepática/metabolismo , Masculino , Ratones , Ratones Obesos , Obesidad/metabolismo , Permeabilidad
15.
Int J Obes (Lond) ; 46(2): 342-349, 2022 02.
Artículo en Inglés | MEDLINE | ID: mdl-34716425

RESUMEN

BACKGROUND: Milk-fat globule membrane (MFGM) is a complex structure secreted by the mammary gland and present in mammalian milk. MFGM contains lipids and glycoproteins as well as gangliosides, which may be involved in myelination processes. Notably, myelination and thereby white matter integrity are often altered in obesity. Furthermore, MFGM interventions showed beneficial effects in obesity by affecting inflammatory processes and the microbiome. In this study, we investigated the impact of a dietary MFGM intervention on fat storage, neuroinflammatory processes and myelination in a rodent model of high fat diet (HFD)-induced obesity. METHODS: 12-week-old male low density lipoprotein receptor-deficient Leiden mice were exposed to a HFD, a HFD enriched with 3% whey protein lipid concentrate (WPC) high in MFGM components, or a low fat diet. The impact of MFGM supplementation during 24-weeks of HFD-feeding was examined over time by analyzing body weight and fat storage, assessing cognitive tasks and MRI scanning, analyzing myelinization with polarized light imaging and examining neuroinflammation using immunohistochemistry. RESULTS: We found in this study that 24 weeks of HFD-feeding induced excessive fat storage, increased systolic blood pressure, altered white matter integrity, decreased functional connectivity, induced neuroinflammation and impaired spatial memory. Notably, supplementation with 3% WPC high in MFGM components restored HFD-induced neuroinflammation and attenuated the reduction in hippocampal-dependent spatial memory and hippocampal functional connectivity. CONCLUSIONS: We showed that supplementation with WPC high in MFGM components beneficially contributed to hippocampal-dependent spatial memory, functional connectivity in the hippocampus and anti-inflammatory processes in HFD-induced obesity in rodents. Current knowledge regarding exact biological mechanisms underlying these effects should be addressed in future studies.


Asunto(s)
Dieta Alta en Grasa , Glucolípidos/farmacología , Glicoproteínas/farmacología , Obesidad/complicaciones , Animales , Modelos Animales de Enfermedad , Glucolípidos/metabolismo , Glicoproteínas/metabolismo , Gotas Lipídicas/metabolismo , Masculino , Ratones , Ratones Obesos , Neuropatología/métodos , Neuropatología/estadística & datos numéricos , Obesidad/epidemiología , Obesidad/metabolismo
16.
Biomedicines ; 9(12)2021 Dec 20.
Artículo en Inglés | MEDLINE | ID: mdl-34944770

RESUMEN

In obesity-associated non-alcoholic steatohepatitis (NASH), persistent hepatocellular damage and inflammation are key drivers of fibrosis, which is the main determinant of NASH-associated mortality. The short-chain fatty acid butyrate can exert metabolic improvements and anti-inflammatory activities in NASH. However, its effects on NASH-associated liver fibrosis remain unclear. Putative antifibrotic effects of butyrate were studied in Ldlr-/-.Leiden mice fed an obesogenic diet (HFD) containing 2.5% (w/w) butyrate for 38 weeks and compared with a HFD-control group. Antifibrotic mechanisms of butyrate were further investigated in TGF-ß-stimulated primary human hepatic stellate cells (HSC). HFD-fed mice developed obesity, insulin resistance, increased plasma leptin levels, adipose tissue inflammation, gut permeability, dysbiosis, and NASH-associated fibrosis. Butyrate corrected hyperinsulinemia, lowered plasma leptin levels, and attenuated adipose tissue inflammation, without affecting gut permeability or microbiota composition. Butyrate lowered plasma ALT and CK-18M30 levels and attenuated hepatic steatosis and inflammation. Butyrate inhibited fibrosis development as demonstrated by decreased hepatic collagen content and Sirius-red-positive area. In TGF-ß-stimulated HSC, butyrate dose-dependently reduced collagen deposition and decreased procollagen1α1 and PAI1 protein expression. Transcriptomic analysis and subsequent pathway and upstream regulator analysis revealed deactivation of specific non-canonical TGF-ß signaling pathways Rho-like GTPases and PI3K/AKT and other important pro-fibrotic regulators (e.g., YAP/TAZ, MYC) by butyrate, providing a potential rationale for its antifibrotic effects. In conclusion, butyrate protects against obesity development, insulin resistance-associated NASH, and liver fibrosis. These antifibrotic effects are at least partly attributable to a direct effect of butyrate on collagen production in hepatic stellate cells, involving inhibition of non-canonical TGF-ß signaling pathways.

17.
Nutrients ; 13(8)2021 Aug 18.
Artículo en Inglés | MEDLINE | ID: mdl-34444996

RESUMEN

The development of obesity is characterized by the metabolic overload of tissues and subsequent organ inflammation. The health effects of krill oil (KrO) on obesity-associated inflammation remain largely elusive, because long-term treatments with KrO have not been performed to date. Therefore, we examined the putative health effects of 28 weeks of 3% (w/w) KrO supplementation to an obesogenic diet (HFD) with fat derived mostly from lard. The HFD with KrO was compared to an HFD control group to evaluate the effects on fatty acid composition and associated inflammation in epididymal white adipose tissue (eWAT) and the liver during obesity development. KrO treatment increased the concentrations of EPA and DHA and associated oxylipins, including 18-HEPE, RvE2 and 14-HDHA in eWAT and the liver. Simultaneously, KrO decreased arachidonic acid concentrations and arachidonic-acid-derived oxylipins (e.g., HETEs, PGD2, PGE2, PGF2α, TXB2). In eWAT, KrO activated regulators of adipogenesis (e.g., PPARγ, CEBPα, KLF15, STAT5A), induced a shift towards smaller adipocytes and increased the total adipocyte numbers indicative for hyperplasia. KrO reduced crown-like structures in eWAT, and suppressed HFD-stimulated inflammatory pathways including TNFα and CCL2/MCP-1 signaling. The observed eWAT changes were accompanied by reduced plasma leptin and increased plasma adiponectin levels over time, and improved insulin resistance (HOMA-IR). In the liver, KrO suppressed inflammatory signaling pathways, including those controlled by IL-1ß and M-CSF, without affecting liver histology. Furthermore, KrO deactivated hepatic REL-A/p65-NF-κB signaling, consistent with increased PPARα protein expression and a trend towards an increase in IkBα. In conclusion, long-term KrO treatment increased several anti-inflammatory PUFAs and oxylipins in WAT and the liver. These changes were accompanied by beneficial effects on general metabolism and inflammatory tone at the tissue level. The stimulation of adipogenesis by KrO allows for safe fat storage and may, together with more direct PPAR-mediated anti-inflammatory mechanisms, attenuate inflammation.


Asunto(s)
Tejido Adiposo/efectos de los fármacos , Euphausiacea/química , Hígado/efectos de los fármacos , Obesidad/metabolismo , Aceites/farmacología , Adipogénesis/efectos de los fármacos , Tejido Adiposo/química , Animales , Productos Biológicos/farmacología , Ácidos Grasos/análisis , Ácidos Grasos/metabolismo , Inflamación/metabolismo , Hígado/química , Masculino , Ratones
18.
Front Endocrinol (Lausanne) ; 12: 601160, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-33815271

RESUMEN

Background: Non-alcoholic fatty liver disease (NAFLD) is a complex multifactorial disorder that is characterised by dysfunctional lipid metabolism and cholesterol homeostasis, and a related chronic inflammatory response. NAFLD has become the most common cause of chronic liver disease in many countries, and its prevalence continues to rise in parallel with increasing rates of obesity. Here, we evaluated the putative NAFLD-attenuating effects of a multicomponent medicine consisting of 24 natural ingredients: Hepar compositum (HC-24). Methods: Ldlr-/-.Leiden mice were fed a high-fat diet (HFD) with a macronutrient composition and cholesterol content comparable to human diets for 24 weeks to induce obesity-associated metabolic dysfunction, including hepatic steatosis and inflammation. HC-24 or vehicle control was administered intraperitoneally 3 times/week (1.5 ml/kg) for the last 18 weeks of the study. Histological analyses of liver and adipose tissue were combined with extensive hepatic transcriptomics analysis. Transcriptomics results were further substantiated with ELISA, immunohistochemical and liver lipid analyses. Results: HFD feeding induced obesity and metabolic dysfunction including adipose tissue inflammation and increased gut permeability. In the liver, HFD-feeding resulted in a disturbance of cholesterol homeostasis and an associated inflammatory response. HC-24 did not affect body weight, metabolic risk factors, adipose tissue inflammation or gut permeability. While HC-24 did not alter total liver steatosis, there was a pronounced reduction in lobular inflammation in HC-24-treated animals, which was associated with modulation of genes and proteins involved in inflammation (e.g., neutrophil chemokine Cxcl1) and cholesterol homeostasis (i.e., predicted effect on 'cholesterol' as an upstream regulator, based on gene expression changes associated with cholesterol handling). These effects were confirmed by CXCL1 ELISA, immunohistochemical staining of neutrophils and biochemical analysis of hepatic free cholesterol content. Intrahepatic free cholesterol levels were found to correlate significantly with the number of inflammatory aggregates in the liver, thereby providing a potential rationale for the observed anti-inflammatory effects of HC-24. Conclusions: Free cholesterol accumulates in the liver of Ldlr-/-.Leiden mice under physiologically translational dietary conditions, and this is associated with the development of hepatic inflammation. The multicomponent medicine HC-24 reduces accumulation of free cholesterol and has molecular and cellular anti-inflammatory effects in the liver.


Asunto(s)
Colesterol/metabolismo , Enfermedad del Hígado Graso no Alcohólico/tratamiento farmacológico , Extractos Vegetales/administración & dosificación , Animales , Quimiocina CXCL1/genética , Quimiocina CXCL1/metabolismo , Dieta Alta en Grasa/efectos adversos , Humanos , Metabolismo de los Lípidos/efectos de los fármacos , Hígado/efectos de los fármacos , Hígado/inmunología , Hígado/metabolismo , Masculino , Ratones , Ratones Noqueados , Enfermedad del Hígado Graso no Alcohólico/genética , Enfermedad del Hígado Graso no Alcohólico/inmunología , Enfermedad del Hígado Graso no Alcohólico/metabolismo , Receptores de LDL/genética , Receptores de LDL/inmunología
19.
FASEB J ; 34(7): 9575-9593, 2020 07.
Artículo en Inglés | MEDLINE | ID: mdl-32472598

RESUMEN

The obesity epidemic increases the interest to elucidate impact of short-chain fatty acids on metabolism, obesity, and the brain. We investigated the effects of propionic acid (PA) and caproic acid (CA) on metabolic risk factors, liver and adipose tissue pathology, brain function, structure (by MRI), and gene expression, during obesity development in Ldlr-/- .Leiden mice. Ldlr-/- .Leiden mice received 16 weeks either a high-fat diet (HFD) to induce obesity, or chow as reference group. Next, obese HFD-fed mice were treated 12 weeks with (a) HFD + CA (CA), (b) HFD + PA (PA), or (c) a HFD-control group. PA reduced the body weight and systolic blood pressure, lowered fasting insulin levels, and reduced HFD-induced liver macrovesicular steatosis, hypertrophy, inflammation, and collagen content. PA increased the amount of glucose transporter type 1-positive cerebral blood vessels, reverted cerebral vasoreactivity, and HFD-induced effects in microstructural gray and white matter integrity of optic tract, and somatosensory and visual cortex. PA and CA also reverted HFD-induced effects in functional connectivity between visual and auditory cortex. However, PA mice were more anxious in open field, and showed reduced activity of synaptogenesis and glutamate regulators in hippocampus. Therefore, PA treatment should be used with caution even though positive metabolic, (cerebro) vascular, and brain structural and functional effects were observed.


Asunto(s)
Caproatos/farmacología , Trastornos Cerebrovasculares/prevención & control , Inflamación/tratamiento farmacológico , Enfermedad del Hígado Graso no Alcohólico/tratamiento farmacológico , Obesidad/complicaciones , Propionatos/farmacología , Receptores de LDL/fisiología , Animales , Trastornos Cerebrovasculares/etiología , Trastornos Cerebrovasculares/metabolismo , Trastornos Cerebrovasculares/patología , Dieta con Restricción de Grasas/efectos adversos , Dieta Alta en Grasa/efectos adversos , Inflamación/metabolismo , Inflamación/patología , Masculino , Ratones , Ratones Noqueados , Ratones Obesos , Enfermedad del Hígado Graso no Alcohólico/metabolismo , Enfermedad del Hígado Graso no Alcohólico/patología
20.
Nutrients ; 11(8)2019 Aug 10.
Artículo en Inglés | MEDLINE | ID: mdl-31405127

RESUMEN

BACKGROUND: Sex-specific differences play a role in metabolism, fat storage in adipose tissue, and brain structure. At juvenile age, brain function is susceptible to the effects of obesity; little is known about sex-specific differences in juvenile obesity. Therefore, this study examined sex-specific differences in adipose tissue and liver of high-fat diet (HFD)-induced obese mice, and putative alterations between male and female mice in brain structure in relation to behavioral changes during the development of juvenile obesity. METHODS: In six-week-old male and female Ldlr-/-.Leiden mice (n = 48), the impact of 18 weeks of HFD-feeding was examined. Fat distribution, liver pathology and brain structure and function were analyzed imunohisto- and biochemically, in cognitive tasks and with MRI. RESULTS: HFD-fed female mice were characterized by an increased perigonadal fat mass, pronounced macrovesicular hepatic steatosis and liver inflammation. Male mice on HFD displayed an increased mesenteric fat mass, pronounced adipose tissue inflammation and microvesicular hepatic steatosis. Only male HFD-fed mice showed decreased cerebral blood flow and reduced white matter integrity. CONCLUSIONS: At young age, male mice are more susceptible to the detrimental effects of HFD than female mice. This study emphasizes the importance of sex-specific differences in obesity, liver pathology, and brain function.


Asunto(s)
Dieta Alta en Grasa/efectos adversos , Enfermedad del Hígado Graso no Alcohólico/etiología , Obesidad/metabolismo , Obesidad/patología , Factores Sexuales , Tejido Adiposo/metabolismo , Animales , Encéfalo/patología , Femenino , Metabolismo de los Lípidos , Hígado/patología , Masculino , Ratones , Ratones Obesos , Obesidad/complicaciones , Receptores de LDL/deficiencia
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...