Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
J Mol Cell Cardiol ; 189: 52-65, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38346641

RESUMEN

Adipocytes normally accumulate in the epicardial and pericardial layers around the human heart, but their infiltration into the myocardium can be proarrhythmic. METHODS AND RESULTS: Human adipose derived stem/stromal cells and human induced pluripotent stem cells (hiPSC) were differentiated, respectively into predominantly white fat-like adipocytes (hAdip) and ventricular cardiomyocytes (CMs). Adipocytes cultured in CM maintenance medium (CM medium) maintained their morphology, continued to express adipogenic markers, and retained clusters of intracellular lipid droplets. In contrast, hiPSC-CMs cultivated in adipogenic growth medium displayed abnormal cell morphologies and more clustering across the monolayer. Pre-plated hiPSC-CMs co-cultured in direct contact with hAdips in CM medium displayed prolonged action potential durations, increased triangulation, slowed conduction velocity, increased conduction velocity heterogeneity, and prolonged calcium transients. When hAdip-conditioned medium was added to monolayer cultures of hiPSC-CMs, results similar to those recorded with direct co-cultures were observed. Both co-culture and conditioned medium experiments resulted in increases in transcript abundance of SCN10A, CACNA1C, SLC8A1, and RYR2, with a decrease in KCNJ2. Human adipokine immunoblots revealed the presence of cytokines that were elevated in adipocyte-conditioned medium, including MCP-1, IL-6, IL-8 and CFD that could induce electrophysiological changes in cultured hiPSC-CMs. CONCLUSIONS: Co-culture of hiPSC-CMs with hAdips reveals a potentially pathogenic role of infiltrating human adipocytes on myocardial tissue. In the absence of structural changes, hAdip paracrine release alone is sufficient to cause CM electrophysiological dysfunction mirroring the co-culture conditions. These effects, mediated largely by paracrine mechanisms, could promote arrhythmias in the heart.


Asunto(s)
Células Madre Pluripotentes Inducidas , Miocitos Cardíacos , Humanos , Células Cultivadas , Medios de Cultivo Condicionados/farmacología , Diferenciación Celular/fisiología , Adipocitos , Potenciales de Acción
2.
Genes (Basel) ; 14(10)2023 09 25.
Artículo en Inglés | MEDLINE | ID: mdl-37895213

RESUMEN

Cardiomyopathies (CMPs) represent a significant healthcare burden and are a major cause of heart failure leading to premature death. Several CMPs are now recognized to have a strong genetic basis, including arrhythmogenic cardiomyopathy (ACM), which predisposes patients to arrhythmic episodes. Variants in one of the five genes (PKP2, JUP, DSC2, DSG2, and DSP) encoding proteins of the desmosome are known to cause a subset of ACM, which we classify as desmosome-related ACM (dACM). Phenotypically, this disease may lead to sudden cardiac death in young athletes and, during late stages, is often accompanied by myocardial fibrofatty infiltrates. While the pathogenicity of the desmosome genes has been well established through animal studies and limited supplies of primary human cells, these systems have drawbacks that limit their utility and relevance to understanding human disease. Human induced pluripotent stem cells (hiPSCs) have emerged as a powerful tool for modeling ACM in vitro that can overcome these challenges, as they represent a reproducible and scalable source of cardiomyocytes (CMs) that recapitulate patient phenotypes. In this review, we provide an overview of dACM, summarize findings in other model systems linking desmosome proteins with this disease, and provide an up-to-date summary of the work that has been conducted in hiPSC-cardiomyocyte (hiPSC-CM) models of dACM. In the context of the hiPSC-CM model system, we highlight novel findings that have contributed to our understanding of disease and enumerate the limitations, prospects, and directions for research to consider towards future progress.


Asunto(s)
Cardiomiopatías , Células Madre Pluripotentes Inducidas , Humanos , Células Madre Pluripotentes Inducidas/metabolismo , Miocitos Cardíacos/metabolismo , Cardiomiopatías/metabolismo , Fenotipo
3.
Nat Cardiovasc Res ; 2(1): 76-95, 2023 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-36950336

RESUMEN

Cardiac cell surface proteins are drug targets and useful biomarkers for discriminating among cellular phenotypes and disease states. Here we developed an analytical platform, CellSurfer, that enables quantitative cell surface proteome (surfaceome) profiling of cells present in limited quantities, and we apply it to isolated primary human heart cells. We report experimental evidence of surface localization and extracellular domains for 1,144 N-glycoproteins, including cell-type-restricted and region-restricted glycoproteins. We identified a surface protein specific for healthy cardiomyocytes, LSMEM2, and validated an anti-LSMEM2 monoclonal antibody for flow cytometry and imaging. Surfaceome comparisons among pluripotent stem cell derivatives and their primary counterparts highlighted important differences with direct implications for drug screening and disease modeling. Finally, 20% of cell surface proteins, including LSMEM2, were differentially abundant between failing and non-failing cardiomyocytes. These results represent a rich resource to advance development of cell type and organ-specific targets for drug delivery, disease modeling, immunophenotyping and in vivo imaging.

4.
J Clin Med ; 10(14)2021 Jul 10.
Artículo en Inglés | MEDLINE | ID: mdl-34300226

RESUMEN

Arrhythmogenic right ventricular cardiomyopathy (ARVC) is a progressive heart condition which causes fibro-fatty myocardial scarring, ventricular arrhythmias, and sudden cardiac death. Most cases of ARVC can be linked to pathogenic mutations in the cardiac desmosome, but the pathophysiology is not well understood, particularly in early phases when arrhythmias can develop prior to structural changes. Here, we created a novel human induced pluripotent stem cell-derived cardiomyocyte (hiPSC-CM) model of ARVC from a patient with a c.2358delA variant in desmoglein-2 (DSG2). These DSG2-mutant (DSG2Mut) hiPSC-CMs were compared against two wildtype hiPSC-CM lines via immunostaining, RT-qPCR, Western blot, RNA-Seq, cytokine expression and optical mapping. Mutant cells expressed reduced DSG2 mRNA and had altered localization of desmoglein-2 protein alongside thinner, more disorganized myofibrils. No major changes in other desmosomal proteins were noted. There was increased pro-inflammatory cytokine expression that may be linked to canonical and non-canonical NFκB signaling. Action potentials in DSG2Mut CMs were shorter with increased upstroke heterogeneity, while time-to-peak calcium and calcium decay rate were reduced. These were accompanied by changes in ion channel and calcium handling gene expression. Lastly, suppressing DSG2 in control lines via siRNA allowed partial recapitulation of electrical anomalies noted in DSG2Mut cells. In conclusion, the aberrant cytoskeletal organization, cytokine expression, and electrophysiology found DSG2Mut hiPSC-CMs could underlie early mechanisms of disease manifestation in ARVC patients.

5.
Sci Rep ; 10(1): 8387, 2020 05 20.
Artículo en Inglés | MEDLINE | ID: mdl-32433563

RESUMEN

Cardiac tissue engineering strategies have the potential to regenerate functional myocardium following myocardial infarction. In this study, we utilized novel electrospun fibrin microfiber sheets of different stiffnesses (50.0 ± 11.2 kPa and 90.0 ± 16.4 kPa) to engineer biomimetic models of vascularized cardiac tissues. We characterized tissue assembly, electrophysiology, and contractility of neonatal rat ventricular cardiomyocytes (NRVCMs) cultured on these sheets. NRVCMs cultured on the softer substrates displayed higher conduction velocities (CVs) and improved electrophysiological properties. Human umbilical vein endothelial cells (HUVECs) formed dense networks on the sheets when co-cultured with human adipose-derived stem/stromal cells (hASCs). To achieve vascularized cardiac tissues, we tested various tri-culture protocols of NRVCM:hASC:HUVEC and found that a ratio of 1,500,000:37,500:150,000 cells/cm2 enabled the formation of robust endothelial networks while retaining statistically identical electrophysiological characteristics to NRVCM-only cultures. Tri-cultures at this ratio on 90 kPa substrates exhibited average CVs of 14 ± 0.6 cm/s, Action Potential Duration (APD)80 and APD30 of 152 ± 11 ms and 71 ± 6 ms, respectively, and maximum capture rate (MCR) of 3.9 ± 0.7 Hz. These data indicate the significant potential of generating densely packed endothelial networks together with electrically integrated cardiac cells in vitro as a physiologic 3D cardiac model.


Asunto(s)
Electrofisiología Cardíaca/métodos , Adipocitos/citología , Animales , Biomimética/métodos , Células Endoteliales/citología , Células Endoteliales/metabolismo , Células Endoteliales de la Vena Umbilical Humana , Humanos , Ratas , Células Madre/citología , Células Madre/metabolismo , Células del Estroma/citología , Células del Estroma/metabolismo
6.
Acta Biomater ; 94: 232-242, 2019 08.
Artículo en Inglés | MEDLINE | ID: mdl-31212110

RESUMEN

Engineered skeletal muscle grafts may be employed in various applications including the treatment of volumetric muscle loss (VML) and pharmacological drug screening. To recapitulate the well-defined structure of native muscle, tensile strains have been applied to the grafts. In this study, we cultured C2C12 murine myoblasts on electrospun fibrin microfiber bundles for 7 days in custom-built bioreactor units and investigated the impact of strain regimen and delayed onset of tensile straining on myogenic outcomes. The substrate topography induced uniaxial alignment of cells in all (strained and unstrained) groups. The engineered grafts in strained groups were subjected to 10% strain amplitude for 6 h per day. We found that both static and cyclic uniaxial strains resulted in similar morphological and gene expression outcomes. However, relative to 0% strain groups, there were stark increases in myotube diameter, myosin heavy chain (MHC) coverage, and expression of key myogenic genes (Pax 7, Troponin, MHC I, MHC IIb, MHC IIx) only if strain was applied at Days 5-7 rather than Days 3-7. This finding suggests that a critical indicator of myogenic improvement under strain in our system is the phenotype of the cells at the onset of strain and suggests that this is a key parameter that should be considered in studies where myoblasts are subjected to biophysical stimulation to promote tissue formation. STATEMENT OF SIGNIFICANCE: This is the first report on the impact of the timing of the initial application of mechanical strain for improving the myogenic outcomes of 3D engineered skeletal muscle grafts. In this work, immature skeletal myoblasts were grown on topographically aligned, electrospun fibrin microfiber bundles and we applied 10% uniaxial static or cyclic strain. We concluded that the maturity of myoblasts prior to strain application, rather than strain waveform, was the primary predictor of improved myogenic outcomes, including myogenic gene expression and myotube morphology. Elucidating the optimal conditions for strain application is a vital step in recapitulating physiological myogenic properties in tissue engineered skeletal muscle constructs, with applications for treating volumetric muscle loss, disease modeling, and drug testing.


Asunto(s)
Músculo Esquelético/fisiología , Mioblastos/fisiología , Estrés Mecánico , Animales , Reactores Biológicos , Diferenciación Celular/genética , Células Cultivadas , Antígenos de Histocompatibilidad Clase I/metabolismo , Antígenos de Histocompatibilidad Clase II/metabolismo , Ratones , Desarrollo de Músculos/genética , Fibras Musculares Esqueléticas/metabolismo , Cadenas Pesadas de Miosina/metabolismo , Factor de Transcripción PAX7/metabolismo , Fenotipo , Resistencia a la Tracción , Factores de Tiempo , Ingeniería de Tejidos/métodos , Andamios del Tejido/química , Resultado del Tratamiento , Troponina/metabolismo
7.
Sci Transl Med ; 11(490)2019 05 01.
Artículo en Inglés | MEDLINE | ID: mdl-31043572

RESUMEN

Soft tissue losses from tumor removal, trauma, aging, and congenital malformation affect millions of people each year. Existing options for soft tissue restoration have several drawbacks: Surgical options such as the use of autologous tissue flaps lead to donor site defects, prosthetic implants are prone to foreign body response leading to fibrosis, and fat grafting and dermal fillers are limited to small-volume defects and only provide transient volume restoration. In addition, large-volume fat grafting and other tissue-engineering attempts are hampered by poor vascular ingrowth. Currently, there are no off-the-shelf materials that can fill the volume lost in soft tissue defects while promoting early angiogenesis. Here, we report a nanofiber-hydrogel composite that addresses these issues. By incorporating interfacial bonding between electrospun poly(ε-caprolactone) fibers and a hyaluronic acid hydrogel network, we generated a composite that mimics the microarchitecture and mechanical properties of soft tissue extracellular matrix. Upon subcutaneous injection in a rat model, this composite permitted infiltration of host macrophages and conditioned them into the pro-regenerative phenotype. By secreting pro-angiogenic cytokines and growth factors, these polarized macrophages enabled gradual remodeling and replacement of the composite with vascularized soft tissue. Such host cell infiltration and angiogenesis were also observed in a rabbit model for repairing a soft tissue defect filled with the composite. This injectable nanofiber-hydrogel composite augments native tissue regenerative responses, thus enabling durable soft tissue restoration outcomes.


Asunto(s)
Hidrogeles/química , Nanofibras/química , Neovascularización Fisiológica , Ingeniería de Tejidos , Animales , Movimiento Celular , Polaridad Celular , Modelos Animales de Enfermedad , Regulación de la Expresión Génica , Macrófagos/patología , Modelos Animales , Nanofibras/ultraestructura , Neovascularización Fisiológica/genética , Fenotipo , Conejos , Ratas , Tejido Subcutáneo/patología
8.
Methods Mol Biol ; 1773: 123-135, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-29687385

RESUMEN

Adipose-derived stem/stromal cells (ASCs) constitute a very promising source for cell therapy and tissue engineering approaches as they can be easily obtained in large quantities with comparatively minimal patient discomfort. Moreover, ASCs have multilineage differentiation capacity. Among these, differentiation capacity along the myogenic lineage is of particular interest since myogenic precursors are scarce and obtaining a large number of cells from skeletal muscle biopsies is difficult. Here, we describe a method to effectively induce ASC myogenesis through the combination of biochemical (cocktail including 5-azacytidine and horse serum) and biophysical (dynamic culture via uniaxial cyclic strain) stimulation. This method results in multinucleated cells that are positive in myogenic markers including Pax 3/7, desmin, myoD, and myosin heavy chain.


Asunto(s)
Diferenciación Celular/efectos de los fármacos , Mecanotransducción Celular/efectos de los fármacos , Células Madre Mesenquimatosas/citología , Desarrollo de Músculos/efectos de los fármacos , Fibras Musculares Esqueléticas/citología , Adipocitos/citología , Adipocitos/efectos de los fármacos , Adipocitos/inmunología , Tejido Adiposo/citología , Tejido Adiposo/efectos de los fármacos , Tejido Adiposo/inmunología , Animales , Azacitidina/farmacología , Diferenciación Celular/inmunología , Caballos/sangre , Humanos , Inmunohistoquímica , Mecanotransducción Celular/inmunología , Células Madre Mesenquimatosas/efectos de los fármacos , Células Madre Mesenquimatosas/inmunología , Desarrollo de Músculos/inmunología , Fibras Musculares Esqueléticas/efectos de los fármacos , Fibras Musculares Esqueléticas/inmunología , Cultivo Primario de Células , Suero/inmunología , Ingeniería de Tejidos
9.
J Tissue Eng Regen Med ; 12(2): e962-e972, 2018 02.
Artículo en Inglés | MEDLINE | ID: mdl-28103423

RESUMEN

Cardiac tissue engineering approaches have the potential to regenerate functional myocardium with intrinsic vascular networks. This study compared the relative effects of human adipose-derived stem/stromal cells (hASCs) and human dermal fibroblasts (hDFs) in cocultures with neonatal rat ventricular cardiomyocytes (NRVCMs) and human umbilical vein endothelial cells (HUVECs). At the same ratios of NRVCM:hASC and NRVCM:hDF, the hASC cocultures displayed shorter action potentials and maintained capture at faster pacing rates. Similarly, in coculture with HUVECs, hASC:HUVEC exhibited superior ability to support vascular capillary network formation relative to hDF:HUVEC. Based on these studies, a range of suitable cell ratios were determined to develop a triculture system. Six seeding ratios of NRVCM:hASC:HUVEC were tested and it was found that a ratio of 500:50:25 cells (i.e. 250,000:25,000:12,500 cells/cm2 ) resulted in the formation of robust vascular networks while retaining action potential durations and propagation similar to pure NRVCM cultures. Tricultures in this ratio exhibited an average conduction velocity of 20 ± 2 cm/s, action potential durations at 80% repolarization (APD80 ) and APD30 of 122 ± 5 ms and 59 ± 4 ms, respectively, and maximum capture rate of 7.4 ± 0.6 Hz. The NRVCM control groups had APD80 and APD30 of 120 ± 9 ms and 51 ± 5 ms, with a maximum capture rate of 7.3 ± 0.2 Hz. In summary, the combination of hASCs in the appropriate ratios with NRVCMs and HUVECs can facilitate the formation of densely vascularized cardiac tissues that appear not to impact the electrophysiological function of cardiomyocytes negatively. Copyright © 2017 John Wiley & Sons, Ltd.


Asunto(s)
Prótesis Vascular , Corazón/fisiología , Células Madre Mesenquimatosas/citología , Regeneración/fisiología , Ingeniería de Tejidos/métodos , Animales , Fenómenos Electrofisiológicos , Femenino , Células Endoteliales de la Vena Umbilical Humana/citología , Células Endoteliales de la Vena Umbilical Humana/metabolismo , Humanos , Células Madre Mesenquimatosas/metabolismo , Persona de Mediana Edad , Miocitos Cardíacos/citología , Neovascularización Fisiológica , Ratas Sprague-Dawley
10.
Mol Pharm ; 15(3): 705-720, 2018 03 05.
Artículo en Inglés | MEDLINE | ID: mdl-28853901

RESUMEN

In this study, we catalog structure activity relationships (SAR) of several short chain fatty acid (SCFA)-modified hexosamine analogues used in metabolic glycoengineering (MGE) by comparing in silico and experimental measurements of physiochemical properties important in drug design. We then describe the impact of these compounds on selected biological parameters that influence the pharmacological properties and safety of drug candidates by monitoring P-glycoprotein (Pgp) efflux, inhibition of cytochrome P450 3A4 (CYP3A4), hERG channel inhibition, and cardiomyocyte cytotoxicity. These parameters are influenced by length of the SCFAs (e.g., acetate vs n-butyrate), which are added to MGE analogues to increase the efficiency of cellular uptake, the regioisomeric arrangement of the SCFAs on the core sugar, the structure of the core sugar itself, and by the type of N-acyl modification (e.g., N-acetyl vs N-azido). By cataloging the influence of these SAR on pharmacological properties of MGE analogues, this study outlines design considerations for tuning the pharmacological, physiochemical, and the toxicological parameters of this emerging class of small molecule drug candidates.


Asunto(s)
Inhibidores del Citocromo P-450 CYP3A/farmacología , Diseño de Fármacos , Ácidos Grasos Volátiles/farmacología , Hexosaminas/farmacología , Ingeniería Metabólica/métodos , Subfamilia B de Transportador de Casetes de Unión a ATP/metabolismo , Animales , Animales Recién Nacidos , Células Cultivadas , Citocromo P-450 CYP3A/metabolismo , Inhibidores del Citocromo P-450 CYP3A/química , Evaluación Preclínica de Medicamentos , Ácidos Grasos Volátiles/química , Hexosaminas/química , Estructura Molecular , Miocitos Cardíacos/efectos de los fármacos , Cultivo Primario de Células , Ratas , Relación Estructura-Actividad , Pruebas de Toxicidad/métodos , Regulador Transcripcional ERG/antagonistas & inhibidores
11.
Biomaterials ; 52: 376-84, 2015 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-25818444

RESUMEN

Oxygen diffusion limitations within nascent tissue engineered (TE) grafts lead to the development of hypoxic regions, cell death, and graft failure. Previous efforts have been made to deliver oxygen within TE scaffolds, including peroxide-doping, perfluorocarbons, and hyperbaric oxygen therapy, to mitigate these effects and help maintain post transplantation cell viability, but these have suffered from significant drawbacks. Here we present a novel approach utilizing polymeric hollow-core microspheres that can be hyperbarically loaded with oxygen and subsequently provide prolonged oxygen delivery. These oxygen carriers are termed, microtanks. With an interest in orthopedic applications, we combined microtanks within polycaprolactone to form solid phase constructs with oxygen delivery capabilities. The mathematical laws governing oxygen delivery from microtank-loaded constructs are developed along with empirical validation. Constructs achieved periods of oxygen delivery out to 6 days, which was shown to prolong the survival of human adipose derived stem cells (hASCs) and human umbilical vein endothelial cells (HUVECs) as well as to enhance their cellular morphology under anoxic conditions. The results of this study suggest the microtank approach may be a feasible means of maintaining cell viability in TE scaffolds during the critical period of vascularization in vivo.


Asunto(s)
Células Endoteliales de la Vena Umbilical Humana/citología , Hipoxia/patología , Oxígeno/química , Poliésteres/química , Células Madre/citología , Adipocitos/citología , Proliferación Celular , Supervivencia Celular , Colorantes/química , Humanos , Ensayo de Materiales , Microesferas , Modelos Teóricos , Ortopedia , Ingeniería de Tejidos/métodos , Andamios del Tejido
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...