Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 52
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Mol Cell ; 84(7): 1321-1337.e11, 2024 Apr 04.
Artículo en Inglés | MEDLINE | ID: mdl-38513662

RESUMEN

Intracellular Mg2+ (iMg2+) is bound with phosphometabolites, nucleic acids, and proteins in eukaryotes. Little is known about the intracellular compartmentalization and molecular details of Mg2+ transport into/from cellular organelles such as the endoplasmic reticulum (ER). We found that the ER is a major iMg2+ compartment refilled by a largely uncharacterized ER-localized protein, TMEM94. Conventional and AlphaFold2 predictions suggest that ERMA (TMEM94) is a multi-pass transmembrane protein with large cytosolic headpiece actuator, nucleotide, and phosphorylation domains, analogous to P-type ATPases. However, ERMA uniquely combines a P-type ATPase domain and a GMN motif for ERMg2+ uptake. Experiments reveal that a tyrosine residue is crucial for Mg2+ binding and activity in a mechanism conserved in both prokaryotic (mgtB and mgtA) and eukaryotic Mg2+ ATPases. Cardiac dysfunction by haploinsufficiency, abnormal Ca2+ cycling in mouse Erma+/- cardiomyocytes, and ERMA mRNA silencing in human iPSC-cardiomyocytes collectively define ERMA as an essential component of ERMg2+ uptake in eukaryotes.


Asunto(s)
Adenosina Trifosfatasas , ATPasas Tipo P , Animales , Ratones , Humanos , Adenosina Trifosfatasas/metabolismo , Proteínas de Transporte de Membrana/metabolismo , Retículo Endoplásmico/genética , Retículo Endoplásmico/metabolismo , Transporte Biológico , ATPasas Tipo P/metabolismo , Calcio/metabolismo , ATPasas Transportadoras de Calcio del Retículo Sarcoplásmico
2.
JAMA Intern Med ; 183(7): 728-729, 2023 07 01.
Artículo en Inglés | MEDLINE | ID: mdl-37213113

RESUMEN

This case describes a 39-year-old pregnant woman with intermittent, transient but rapid palpitations, some with momentary lightheadedness.


Asunto(s)
Antiarrítmicos , Taquicardia , Embarazo , Femenino , Humanos , Taquicardia/diagnóstico , Antiarrítmicos/uso terapéutico , Electrocardiografía
3.
Nat Cardiovasc Res ; 1(11): 1022-1038, 2022 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-36424916

RESUMEN

Fight-or-flight responses involve ß-adrenergic-induced increases in heart rate and contractile force. In the present study, we uncover the primary mechanism underlying the heart's innate contractile reserve. We show that four protein kinase A (PKA)-phosphorylated residues in Rad, a calcium channel inhibitor, are crucial for controlling basal calcium current and essential for ß-adrenergic augmentation of calcium influx in cardiomyocytes. Even with intact PKA signaling to other proteins modulating calcium handling, preventing adrenergic activation of calcium channels in Rad-phosphosite-mutant mice (4SA-Rad) has profound physiological effects: reduced heart rate with increased pauses, reduced basal contractility, near-complete attenuation of ß-adrenergic contractile response and diminished exercise capacity. Conversely, expression of mutant calcium-channel ß-subunits that cannot bind 4SA-Rad is sufficient to enhance basal calcium influx and contractility to adrenergically augmented levels of wild-type mice, rescuing the failing heart phenotype of 4SA-Rad mice. Hence, disruption of interactions between Rad and calcium channels constitutes the foundation toward next-generation therapeutics specifically enhancing cardiac contractility.

4.
Nat Cardiovasc Res ; 1(2): 142-156, 2022 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-36051854

RESUMEN

Some missense gain-of-function mutations in CACNA1C gene, encoding calcium channel CaV1.2, cause a life-threatening form of long QT syndrome named Timothy syndrome, with currently no clinically-effective therapeutics. Here we report that pharmacological targeting of sigma non-opioid intracellular receptor 1 (SIGMAR1) can restore electrophysiological function in iPSC-derived cardiomyocytes generated from patients with Timothy syndrome and two common forms of long QT syndrome, type 1 (LQTS1) and 2 (LQTS2), caused by missense trafficking mutations in potassium channels. Electrophysiological recordings demonstrate that an FDA-approved cough suppressant, dextromethorphan, can be used as an agonist of SIGMAR1, to shorten the prolonged action potential in Timothy syndrome cardiomyocytes and human cellular models of LQTS1 and LQTS2. When tested in vivo, dextromethorphan also normalized the prolonged QT intervals in Timothy syndrome model mice. Overall, our study demonstrates that SIGMAR1 is a potential therapeutic target for Timothy syndrome and possibly other inherited arrhythmias such as LQTS1 and LQTS2.

5.
iScience ; 25(5): 104184, 2022 May 20.
Artículo en Inglés | MEDLINE | ID: mdl-35494220

RESUMEN

The response of vital organs to different types of nutrition or diet is a fundamental question in physiology. We examined the cardiac response to 4 weeks of high-fat diet in mice, measuring cardiac metabolites and mRNA. Metabolomics showed dramatic differences after a high-fat diet, including increases in several acyl-carnitine species. The RNA-seq data showed changes consistent with adaptations to use more fatty acid as substrate and an increase in the antioxidant protein catalase. Changes in mRNA were correlated with changes in protein level for several highly responsive genes. We also found significant sex differences in both metabolomics and RNA-seq datasets, both at baseline and after high fat diet. This work reveals the response of a vital organ to dietary intervention at both metabolomic and transcriptomic levels, which is a fundamental question in physiology. This work also reveals significant sex differences in cardiac metabolites and gene expression.

6.
Sci Rep ; 11(1): 17808, 2021 09 08.
Artículo en Inglés | MEDLINE | ID: mdl-34497331

RESUMEN

Obesity and diabetes increase the risk of arrhythmia and sudden cardiac death. However, the molecular mechanisms of arrhythmia caused by metabolic abnormalities are not well understood. We hypothesized that mitochondrial dysfunction caused by high fat diet (HFD) promotes ventricular arrhythmia. Based on our previous work showing that saturated fat causes calcium handling abnormalities in cardiomyocytes, we hypothesized that mitochondrial calcium uptake contributes to HFD-induced mitochondrial dysfunction and arrhythmic events. For experiments, we used mice with conditional cardiac-specific deletion of the mitochondrial calcium uniporter (Mcu), which is required for mitochondrial calcium uptake, and littermate controls. Mice were used for in vivo heart rhythm monitoring, perfused heart experiments, and isolated cardiomyocyte experiments. MCU KO mice are protected from HFD-induced long QT, inducible ventricular tachycardia, and abnormal ventricular repolarization. Abnormal repolarization may be due, at least in part, to a reduction in protein levels of voltage gated potassium channels. Furthermore, isolated cardiomyocytes from MCU KO mice exposed to saturated fat are protected from increased reactive oxygen species (ROS), mitochondrial dysfunction, and abnormal calcium handling. Activation of calmodulin-dependent protein kinase (CaMKII) corresponds with the increase in arrhythmias in vivo. Additional experiments showed that CaMKII inhibition protects cardiomyocytes from the mitochondrial dysfunction caused by saturated fat. Hearts from transgenic CaMKII inhibitor mice were protected from inducible ventricular tachycardia after HFD. These studies identify mitochondrial dysfunction caused by calcium overload as a key mechanism of arrhythmia during HFD. This work indicates that MCU and CaMKII could be therapeutic targets for arrhythmia caused by metabolic abnormalities.


Asunto(s)
Arritmias Cardíacas/metabolismo , Canales de Calcio/metabolismo , Dieta Alta en Grasa , Mitocondrias/metabolismo , Miocitos Cardíacos/metabolismo , Animales , Canales de Calcio/genética , Proteína Quinasa Tipo 2 Dependiente de Calcio Calmodulina/metabolismo , Ratones , Ratones Noqueados , Estrés Oxidativo/fisiología , Especies Reactivas de Oxígeno/metabolismo
7.
JAMA Netw Open ; 4(4): e216842, 2021 04 01.
Artículo en Inglés | MEDLINE | ID: mdl-33890991

RESUMEN

Importance: Critical illness, a marked inflammatory response, and viruses such as SARS-CoV-2 may prolong corrected QT interval (QTc). Objective: To evaluate baseline QTc interval on 12-lead electrocardiograms (ECGs) and ensuing changes among patients with and without COVID-19. Design, Setting, and Participants: This cohort study included 3050 patients aged 18 years and older who underwent SARS-CoV-2 testing and had ECGs at Columbia University Irving Medical Center from March 1 through May 1, 2020. Patients were analyzed by treatment group over 5 days, as follows: hydroxychloroquine with azithromycin, hydroxychloroquine alone, azithromycin alone, and neither hydroxychloroquine nor azithromycin. ECGs were manually analyzed by electrophysiologists masked to COVID-19 status. Multivariable modeling evaluated clinical associations with QTc prolongation from baseline. Exposures: COVID-19, hydroxychloroquine, azithromycin. Main Outcomes and Measures: Mean QTc prolongation, percentage of patients with QTc of 500 milliseconds or greater. Results: A total of 965 patients had more than 2 ECGs and were included in the study, with 561 (58.1%) men, 198 (26.2%) Black patients, and 191 (19.8%) aged 80 years and older. There were 733 patients (76.0%) with COVID-19 and 232 patients (24.0%) without COVID-19. COVID-19 infection was associated with significant mean QTc prolongation from baseline by both 5-day and 2-day multivariable models (5-day, patients with COVID-19: 20.81 [95% CI, 15.29 to 26.33] milliseconds; P < .001; patients without COVID-19: -2.01 [95% CI, -17.31 to 21.32] milliseconds; P = .93; 2-day, patients with COVID-19: 17.40 [95% CI, 12.65 to 22.16] milliseconds; P < .001; patients without COVID-19: 0.11 [95% CI, -12.60 to 12.81] milliseconds; P = .99). COVID-19 infection was independently associated with a modeled mean 27.32 (95% CI, 4.63-43.21) millisecond increase in QTc at 5 days compared with COVID-19-negative status (mean QTc, with COVID-19: 450.45 [95% CI, 441.6 to 459.3] milliseconds; without COVID-19: 423.13 [95% CI, 403.25 to 443.01] milliseconds; P = .01). More patients with COVID-19 not receiving hydroxychloroquine and azithromycin had QTc of 500 milliseconds or greater compared with patients without COVID-19 (34 of 136 [25.0%] vs 17 of 158 [10.8%], P = .002). Multivariable analysis revealed that age 80 years and older compared with those younger than 50 years (mean difference in QTc, 11.91 [SE, 4.69; 95% CI, 2.73 to 21.09]; P = .01), severe chronic kidney disease compared with no chronic kidney disease (mean difference in QTc, 12.20 [SE, 5.26; 95% CI, 1.89 to 22.51; P = .02]), elevated high-sensitivity troponin levels (mean difference in QTc, 5.05 [SE, 1.19; 95% CI, 2.72 to 7.38]; P < .001), and elevated lactate dehydrogenase levels (mean difference in QTc, 5.31 [SE, 2.68; 95% CI, 0.06 to 10.57]; P = .04) were associated with QTc prolongation. Torsades de pointes occurred in 1 patient (0.1%) with COVID-19. Conclusions and Relevance: In this cohort study, COVID-19 infection was independently associated with significant mean QTc prolongation at days 5 and 2 of hospitalization compared with day 0. More patients with COVID-19 had QTc of 500 milliseconds or greater compared with patients without COVID-19.


Asunto(s)
Azitromicina , Tratamiento Farmacológico de COVID-19 , COVID-19 , Electrocardiografía , Hidroxicloroquina , Síndrome de QT Prolongado , Anciano de 80 o más Años , Antiinfecciosos/administración & dosificación , Antiinfecciosos/efectos adversos , Azitromicina/administración & dosificación , Azitromicina/efectos adversos , COVID-19/diagnóstico , COVID-19/epidemiología , Prueba de COVID-19/métodos , Quimioterapia Combinada/métodos , Quimioterapia Combinada/estadística & datos numéricos , Electrocardiografía/métodos , Electrocardiografía/estadística & datos numéricos , Femenino , Hospitalización/estadística & datos numéricos , Humanos , Hidroxicloroquina/administración & dosificación , Hidroxicloroquina/efectos adversos , Síndrome de QT Prolongado/inducido químicamente , Síndrome de QT Prolongado/diagnóstico , Síndrome de QT Prolongado/epidemiología , Síndrome de QT Prolongado/virología , Masculino , Persona de Mediana Edad , New York/epidemiología , Evaluación de Procesos y Resultados en Atención de Salud , Factores de Riesgo , SARS-CoV-2 , Factores de Tiempo
8.
J Clin Invest ; 131(4)2021 02 15.
Artículo en Inglés | MEDLINE | ID: mdl-33586686

RESUMEN

Different fat depots have different physiologic functions. In a provocative study published in this issue of the JCI, Petrosino et al. investigate the role of paracardial fat in whole-body metabolism and exercise physiology. Petrosino et al. show that paracardial fat samples from older mice or mice fed a Western diet had decreased levels of alcohol dehydrogenase 1 (ADH1). Paracardial fat samples from humans with obesity also had decreased levels of ADH1 mRNA, supporting the translational relevance. Additional experiments with Adh1-KO mice and surgical fat transplantation experiments provide additional mechanistic insight. Paracardial fat may regulate exercise performance by altering circulating metabolites and/or endocrine effects. ADH1 appears to regulate the mitochondrial content of paracardial fat, a mechanism mediated by retinaldehyde. When ADH1 is active, the paracardial fat has characteristics of brown fat, which is beneficial for exercise performance. Further research is warranted to determine the translational potential of these findings, such as whether removing paracardial fat at the time of open-heart surgery might improve recovery time by increasing exercise capacity.


Asunto(s)
Obesidad , Vitamina A , Tejido Adiposo Pardo , Animales , Ratones , Obesidad/genética
9.
Am J Cardiol ; 147: 52-57, 2021 05 15.
Artículo en Inglés | MEDLINE | ID: mdl-33617812

RESUMEN

There is growing evidence that COVID-19 can cause cardiovascular complications. However, there are limited data on the characteristics and importance of atrial arrhythmia (AA) in patients hospitalized with COVID-19. Data from 1,029 patients diagnosed with of COVID-19 and admitted to Columbia University Medical Center between March 1, 2020 and April 15, 2020 were analyzed. The diagnosis of AA was confirmed by 12 lead electrocardiographic recordings, 24-hour telemetry recordings and implantable device interrogations. Patients' history, biomarkers and hospital course were reviewed. Outcomes that were assessed were intubation, discharge and mortality. Of 1,029 patients reviewed, 82 (8%) were diagnosed with AA in whom 46 (56%) were new-onset AA 16 (20%) recurrent paroxysmal and 20 (24%) were chronic persistent AA. Sixty-five percent of the patients diagnosed with AA (n=53) died. Patients diagnosed with AA had significantly higher mortality compared with those without AA (65% vs 21%; p < 0.001). Predictors of mortality were older age (Odds Ratio (OR)=1.12, [95% Confidence Interval (CI), 1.04 to 1.22]); male gender (OR=6.4 [95% CI, 1.3 to 32]); azithromycin use (OR=13.4 [95% CI, 2.14 to 84]); and higher D-dimer levels (OR=2.8 [95% CI, 1.1 to 7.3]). In conclusion, patients diagnosed with AA had 3.1 times significant increase in mortality rate versus patients without diagnosis of AA in COVID-19 patients. Older age, male gender, azithromycin use and higher baseline D-dimer levels were predictors of mortality.


Asunto(s)
Fibrilación Atrial/epidemiología , COVID-19/epidemiología , Manejo de la Enfermedad , Pandemias , Anciano , Anciano de 80 o más Años , COVID-19/terapia , Comorbilidad , Femenino , Humanos , Incidencia , Masculino , Persona de Mediana Edad , New York/epidemiología , Estudios Retrospectivos , Factores de Riesgo , SARS-CoV-2 , Índice de Severidad de la Enfermedad
11.
J Am Heart Assoc ; 10(1): e018476, 2021 01 05.
Artículo en Inglés | MEDLINE | ID: mdl-33169643

RESUMEN

Background Cardiovascular involvement in coronavirus disease 2019 (COVID-19) is common and leads to worsened mortality. Diagnostic cardiovascular studies may be helpful for resource appropriation and identifying patients at increased risk for death. Methods and Results We analyzed 887 patients (aged 64±17 years) admitted with COVID-19 from March 1 to April 3, 2020 in New York City with 12 lead electrocardiography within 2 days of diagnosis. Demographics, comorbidities, and laboratory testing, including high sensitivity cardiac troponin T (hs-cTnT), were abstracted. At 30 days follow-up, 556 patients (63%) were living without requiring mechanical ventilation, 123 (14%) were living and required mechanical ventilation, and 203 (23%) had expired. Electrocardiography findings included atrial fibrillation or atrial flutter (AF/AFL) in 46 (5%) and ST-T wave changes in 306 (38%). 27 (59%) patients with AF/AFL expired as compared to 181 (21%) of 841 with other non-life-threatening rhythms (P<0.001). Multivariable analysis incorporating age, comorbidities, AF/AFL, QRS abnormalities, and ST-T wave changes, and initial hs-cTnT ≥20 ng/L showed that increased age (HR 1.04/year), elevated hs-cTnT (HR 4.57), AF/AFL (HR 2.07), and a history of coronary artery disease (HR 1.56) and active cancer (HR 1.87) were associated with increased mortality. Conclusions Myocardial injury with hs-cTnT ≥20 ng/L, in addition to cardiac conduction perturbations, especially AF/AFL, upon hospital admission for COVID-19 infection is associated with markedly increased risk for mortality than either diagnostic abnormality alone.


Asunto(s)
Fibrilación Atrial/diagnóstico , COVID-19/epidemiología , Electrocardiografía , Frecuencia Cardíaca/fisiología , Medición de Riesgo/métodos , SARS-CoV-2 , Troponina T/sangre , Fibrilación Atrial/sangre , Fibrilación Atrial/epidemiología , Biomarcadores/sangre , COVID-19/sangre , Comorbilidad , Femenino , Estudios de Seguimiento , Humanos , Masculino , Persona de Mediana Edad , Ciudad de Nueva York/epidemiología , Pronóstico , Estudios Retrospectivos , Factores de Riesgo
12.
Mayo Clin Proc ; 95(10): 2099-2109, 2020 10.
Artículo en Inglés | MEDLINE | ID: mdl-33012341

RESUMEN

OBJECTIVE: To study whether combining vital signs and electrocardiogram (ECG) analysis can improve early prognostication. METHODS: This study analyzed 1258 adults with coronavirus disease 2019 who were seen at three hospitals in New York in March and April 2020. Electrocardiograms at presentation to the emergency department were systematically read by electrophysiologists. The primary outcome was a composite of mechanical ventilation or death 48 hours from diagnosis. The prognostic value of ECG abnormalities was assessed in a model adjusted for demographics, comorbidities, and vital signs. RESULTS: At 48 hours, 73 of 1258 patients (5.8%) had died and 174 of 1258 (13.8%) were alive but receiving mechanical ventilation with 277 of 1258 (22.0%) patients dying by 30 days. Early development of respiratory failure was common, with 53% of all intubations occurring within 48 hours of presentation. In a multivariable logistic regression, atrial fibrillation/flutter (odds ratio [OR], 2.5; 95% CI, 1.1 to 6.2), right ventricular strain (OR, 2.7; 95% CI, 1.3 to 6.1), and ST segment abnormalities (OR, 2.4; 95% CI, 1.5 to 3.8) were associated with death or mechanical ventilation at 48 hours. In 108 patients without these ECG abnormalities and with normal respiratory vitals (rate <20 breaths/min and saturation >95%), only 5 (4.6%) died or required mechanical ventilation by 48 hours versus 68 of 216 patients (31.5%) having both ECG and respiratory vital sign abnormalities. CONCLUSION: The combination of abnormal respiratory vital signs and ECG findings of atrial fibrillation/flutter, right ventricular strain, or ST segment abnormalities accurately prognosticates early deterioration in patients with coronavirus disease 2019 and may assist with patient triage.


Asunto(s)
Arritmias Cardíacas/diagnóstico por imagen , Infecciones por Coronavirus/fisiopatología , Electrocardiografía/estadística & datos numéricos , Servicio de Urgencia en Hospital/estadística & datos numéricos , Neumonía Viral/fisiopatología , Tiempo de Tratamiento/estadística & datos numéricos , Adulto , Betacoronavirus , COVID-19 , Femenino , Humanos , Masculino , Persona de Mediana Edad , Pandemias , Pronóstico , SARS-CoV-2
13.
J Cardiovasc Electrophysiol ; 31(12): 3086-3096, 2020 12.
Artículo en Inglés | MEDLINE | ID: mdl-33022765

RESUMEN

INTRODUCTION: Electrocardiographic characteristics in COVID-19-related mortality have not yet been reported, particularly in racial/ethnic minorities. METHODS AND RESULTS: We reviewed demographics, laboratory and cardiac tests, medications, and cardiac rhythm proximate to death or initiation of comfort care for patients hospitalized with a positive SARS-CoV-2 reverse-transcriptase polymerase chain reaction in three New York City hospitals between March 1 and April 3, 2020 who died. We described clinical characteristics and compared factors contributing toward arrhythmic versus nonarrhythmic death. Of 1258 patients screened, 133 died and were enrolled. Of these, 55.6% (74/133) were male, 69.9% (93/133) were racial/ethnic minorities, and 88.0% (117/133) had cardiovascular disease. The last cardiac rhythm recorded was VT or fibrillation in 5.3% (7/133), pulseless electrical activity in 7.5% (10/133), unspecified bradycardia in 0.8% (1/133), and asystole in 26.3% (35/133). Most 74.4% (99/133) died receiving comfort measures only. The most common abnormalities on admission electrocardiogram included abnormal QRS axis (25.8%), atrial fibrillation/flutter (14.3%), atrial ectopy (12.0%), and right bundle branch block (11.9%). During hospitalization, an additional 17.6% developed atrial ectopy, 14.7% ventricular ectopy, 10.1% atrial fibrillation/flutter, and 7.8% a right ventricular abnormality. Arrhythmic death was confirmed or suspected in 8.3% (11/133) associated with age, coronary artery disease, asthma, vasopressor use, longer admission corrected QT interval, and left bundle branch block (LBBB). CONCLUSIONS: Conduction, rhythm, and electrocardiographic abnormalities were common during COVID-19-related hospitalization. Arrhythmic death was associated with age, coronary artery disease, asthma, longer admission corrected QT interval, LBBB, ventricular ectopy, and usage of vasopressors. Most died receiving comfort measures.


Asunto(s)
Arritmias Cardíacas/mortalidad , COVID-19/mortalidad , Mortalidad Hospitalaria , Anciano , Anciano de 80 o más Años , Arritmias Cardíacas/diagnóstico , Arritmias Cardíacas/etnología , Arritmias Cardíacas/terapia , COVID-19/diagnóstico , COVID-19/etnología , COVID-19/terapia , Causas de Muerte , Comorbilidad , Electrocardiografía , Femenino , Factores de Riesgo de Enfermedad Cardiaca , Mortalidad Hospitalaria/etnología , Hospitalización , Humanos , Masculino , Persona de Mediana Edad , Ciudad de Nueva York/epidemiología , Pronóstico , Factores Raciales , Estudios Retrospectivos , Medición de Riesgo , Factores de Tiempo
14.
Antioxidants (Basel) ; 9(10)2020 Oct 19.
Artículo en Inglés | MEDLINE | ID: mdl-33086602

RESUMEN

Cardiac arrhythmias are responsible for many cardiovascular disease-related deaths worldwide. While arrhythmia pathogenesis is complex, there is increasing evidence for metabolic causes. Obesity, diabetes, and chronically consuming high-fat foods significantly increase the likelihood of developing arrhythmias. Although these correlations are well established, mechanistic explanations connecting a high-fat diet (HFD) to arrhythmogenesis are incomplete, although oxidative stress appears to be critical. This review investigates the metabolic changes that occur in obesity and after HFD. Potential therapies to prevent or treat arrhythmias are discussed, including antioxidants.

15.
Indian Pacing Electrophysiol J ; 20(6): 250-256, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-32861812

RESUMEN

BACKGROUND: The COVID-19 pandemic has greatly altered the practice of cardiac electrophysiology around the world for the foreseeable future. Professional organizations have provided guidance for practitioners, but real-world examples of the consults and responsibilities cardiac electrophysiologists face during a surge of COVID-19 patients is lacking. METHODS: In this observational case series we report on 29 consecutive inpatient electrophysiology consultations at a major academic medical center in New York City, the epicenter of the pandemic in the United States, during a 2 week period from March 30-April 12, 2020, when 80% of hospital beds were occupied by COVID-19 patients, and the New York City metropolitan area accounted for 10% of COVID-19 cases worldwide. RESULTS: Reasons for consultation included: Atrial tachyarrhythmia (31%), cardiac implantable electronic device management (28%), bradycardia (14%), QTc prolongation (10%), ventricular arrhythmia (7%), post-transcatheter aortic valve replacement conduction abnormality (3.5%), ventricular pre-excitation (3.5%), and paroxysmal supraventricular tachycardia (3.5%). Twenty-four patients (86%) were positive for COVID-19 by nasopharyngeal swab. All elective procedures were canceled, and only one urgent device implantation was performed. Thirteen patients (45%) required in-person evaluation and the remainder were managed remotely. CONCLUSION: Our experience shows that the application of a massive alteration in workflow and personnel forced by the pandemic allowed our team to efficiently address the intersection of COVID-19 with a range of electrophysiology issues. This experience will prove useful as guidance for emerging hot spots or areas affected by future waves of the pandemic.

16.
Biochem Biophys Res Commun ; 527(4): 979-984, 2020 07 05.
Artículo en Inglés | MEDLINE | ID: mdl-32439159

RESUMEN

Hepatic γ-secretase regulates low-density lipoprotein receptor (LDLR) cleavage and degradation, affecting clearance of plasma triglyceride (TG)-rich lipoproteins (TRLs). In this study, we investigated whether γ-secretase inhibition modulates risk of Western (high-fat/sucrose and high-cholesterol)-type diet (WTD)-induced hepatic steatosis, dyslipidemia and atherosclerosis. We evaluated liver and plasma lipids in WTD-fed mice with hepatocyte-specific ablation of the non-redundant γ-secretase-targeting subunit Nicastrin (L-Ncst). In parallel, we investigated the effect of liver-selective Ncst antisense oligonucleotides (ASO) on lipid metabolism and atherosclerosis in wildtype (WT) and ApoE knockout (ApoE-/-) mice fed normal chow or WTD. WTD-fed L-Ncst and Ncst ASO-treated WT mice showed reduced total cholesterol and LDL-cholesterol (LDL-C), as well as reduced hepatic lipid content as compared to Cre- and control ASO-treated WT mice. Treatment of WTD-fed ApoE-/- mice with Ncst ASO markedly lowered total and LDL cholesterol, hepatic TG and attenuated atherosclerotic lesions in the aorta, as compared to control ASO-treated mice. L-Ncst and Ncst ASO similarly showed reduced plasma glucose as compared to control mice. In conclusion, inhibition of hepatic γ-secretase reduces plasma glucose, and attenuates WTD-induced dyslipidemia, hepatic fat accumulation and atherosclerosis, suggesting potential pleiotropic application for diet-induced metabolic dysfunction.


Asunto(s)
Secretasas de la Proteína Precursora del Amiloide/genética , Aterosclerosis/terapia , Dislipidemias/terapia , Hígado Graso/terapia , Glicoproteínas de Membrana/genética , Oligonucleótidos Antisentido/uso terapéutico , Animales , Aterosclerosis/sangre , Aterosclerosis/etiología , Aterosclerosis/genética , Dieta Occidental/efectos adversos , Dislipidemias/sangre , Dislipidemias/etiología , Dislipidemias/genética , Hígado Graso/sangre , Hígado Graso/etiología , Hígado Graso/genética , Técnicas de Inactivación de Genes , Terapia Genética , Lípidos/análisis , Lípidos/sangre , Hígado/metabolismo , Hígado/patología , Masculino , Ratones , Ratones Endogámicos C57BL
17.
Crit Pathw Cardiol ; 19(3): 105-111, 2020 09.
Artículo en Inglés | MEDLINE | ID: mdl-32324622

RESUMEN

The coronavirus disease 2019 crisis is a global pandemic of a novel infectious disease with far-ranging public health implications. With regard to cardiac electrophysiology (EP) services, we discuss the "real-world" challenges and solutions that have been essential for efficient and successful (1) ramping down of standard clinical practice patterns and (2) pivoting of workflow processes to meet the demands of this pandemic. The aims of these recommendations are to outline: (1) essential practical steps to approaching procedures, as well as outpatient and inpatient care of EP patients, with relevant examples, (2) successful strategies to minimize exposure risk to patients and clinical staff while also balancing resource utilization, (3) challenges related to redeployment and restructuring of clinical and support staff, and (4) considerations regarding continued collaboration with clinical and administrative colleagues to implement these changes. While process changes will vary across practices and hospital systems, we believe that these experiences from 4 different EP sections in a large New York City hospital network currently based in the global epicenter of the coronavirus disease 2019 pandemic will prove useful for other EP practices adapting their own practices in preparation for local surges.


Asunto(s)
Atención Ambulatoria/tendencias , Electrofisiología Cardíaca , Infecciones por Coronavirus , Reestructuración Hospitalaria , Control de Infecciones , Pandemias , Manejo de Atención al Paciente , Neumonía Viral , Telemedicina/tendencias , Betacoronavirus/aislamiento & purificación , COVID-19 , Electrofisiología Cardíaca/métodos , Electrofisiología Cardíaca/organización & administración , Electrofisiología Cardíaca/tendencias , Gestión del Cambio , Infecciones por Coronavirus/epidemiología , Infecciones por Coronavirus/terapia , Vías Clínicas/tendencias , Reestructuración Hospitalaria/métodos , Reestructuración Hospitalaria/organización & administración , Hospitalización/tendencias , Hospitales Urbanos/organización & administración , Humanos , Control de Infecciones/métodos , Control de Infecciones/organización & administración , Ciudad de Nueva York , Manejo de Atención al Paciente/métodos , Manejo de Atención al Paciente/organización & administración , Manejo de Atención al Paciente/tendencias , Neumonía Viral/epidemiología , Neumonía Viral/terapia , SARS-CoV-2
18.
J Cardiovasc Electrophysiol ; 31(6): 1249-1254, 2020 06.
Artículo en Inglés | MEDLINE | ID: mdl-32281214

RESUMEN

A global coronavirus (COVID-19) pandemic occurred at the start of 2020 and is already responsible for more than 74 000 deaths worldwide, just over 100 years after the influenza pandemic of 1918. At the center of the crisis is the highly infectious and deadly SARS-CoV-2, which has altered everything from individual daily lives to the global economy and our collective consciousness. Aside from the pulmonary manifestations of disease, there are likely to be several electrophysiologic (EP) sequelae of COVID-19 infection and its treatment, due to consequences of myocarditis and the use of QT-prolonging drugs. Most crucially, the surge in COVID-19 positive patients that have already overwhelmed the New York City hospital system requires conservation of hospital resources including personal protective equipment (PPE), reassignment of personnel, and reorganization of institutions, including the EP laboratory. In this proposal, we detail the specific protocol changes that our EP department has adopted during the COVID-19 pandemic, including performance of only urgent/emergent procedures, after hours/7-day per week laboratory operation, single attending-only cases to preserve PPE, appropriate use of PPE, telemedicine and video chat follow-up appointments, and daily conferences to collectively manage the clinical and ethical dilemmas to come. We discuss also discuss how we perform EP procedures on presumed COVID positive and COVID tested positive patients to highlight issues that others in the EP community may soon face in their own institution as the virus continues to spread nationally and internationally.


Asunto(s)
Centros Médicos Académicos/provisión & distribución , Betacoronavirus , Infecciones por Coronavirus/diagnóstico , Electrofisiología/métodos , Equipo de Protección Personal/normas , Neumonía Viral/diagnóstico , COVID-19 , Humanos , Pandemias , SARS-CoV-2
19.
Am J Physiol Heart Circ Physiol ; 318(4): H778-H786, 2020 04 01.
Artículo en Inglés | MEDLINE | ID: mdl-32142354

RESUMEN

Sepsis-induced cardiomyopathy (SIC) is associated with increased patient mortality. At present, there are no specific therapies for SIC. Previous studies have reported increased reactive oxygen species (ROS) and mitochondrial dysfunction during SIC. However, a unifying mechanism remains to be defined. We hypothesized that PKCδ is required for abnormal calcium handling and cardiac mitochondrial dysfunction during sepsis and that genetic deletion of PKCδ would be protective. Polymicrobial sepsis induced by cecal ligation and puncture (CLP) surgery decreased the ejection fraction of wild-type (WT) mice but not PKCδ knockout (KO) mice. Similarly, WT cardiomyocytes exposed to lipopolysaccharide (LPS) demonstrated decreases in contractility and calcium transient amplitude that were not observed in PKCδ KO cardiomyocytes. LPS treatment decreased sarcoplasmic reticulum calcium stores in WT cardiomyocytes, which correlated with increased ryanodine receptor-2 oxidation in WT hearts but not PKCδ KO hearts after sepsis. LPS exposure increased mitochondrial ROS and decreased mitochondrial inner membrane potential in WT cardiomyocytes. This corresponded to morphologic changes consistent with mitochondrial dysfunction such as decreased overall size and cristae disorganization. Increased cellular ROS and changes in mitochondrial morphology were not observed in PKCδ KO cardiomyocytes. These data show that PKCδ is required in the pathophysiology of SIC by generating ROS and promoting mitochondrial dysfunction. Thus, PKCδ is a potential target for cardiac protection during sepsis.NEW & NOTEWORTHY Sepsis is often complicated by cardiac dysfunction, which is associated with a high mortality rate. Our work shows that the protein PKCδ is required for decreased cardiac contractility during sepsis. Mice with deletion of PKCδ are protected from cardiac dysfunction after sepsis. PKCδ causes mitochondrial dysfunction in cardiac myocytes, and reducing mitochondrial oxidative stress improves contractility in wild-type cardiomyocytes. Thus, PKCδ is a potential target for cardiac protection during sepsis.


Asunto(s)
Cardiomiopatías/genética , Mitocondrias Cardíacas/metabolismo , Proteína Quinasa C-delta/genética , Sepsis/complicaciones , Animales , Señalización del Calcio , Cardiomiopatías/etiología , Cardiomiopatías/metabolismo , Células Cultivadas , Femenino , Eliminación de Gen , Lipopolisacáridos/toxicidad , Masculino , Potencial de la Membrana Mitocondrial , Ratones , Contracción Miocárdica , Miocitos Cardíacos/efectos de los fármacos , Miocitos Cardíacos/metabolismo , Miocitos Cardíacos/fisiología , Estrés Oxidativo , Proteína Quinasa C-delta/metabolismo
20.
Sci Transl Med ; 12(536)2020 03 25.
Artículo en Inglés | MEDLINE | ID: mdl-32213631

RESUMEN

Cardiac arrhythmias are a major cause of morbidity and mortality worldwide. The 12-lead electrocardiogram (ECG) is the current noninvasive clinical tool used to diagnose and localize cardiac arrhythmias. However, it has limited accuracy and is subject to operator bias. Here, we present electromechanical wave imaging (EWI), a high-frame rate ultrasound technique that can noninvasively map with high accuracy the electromechanical activation of atrial and ventricular arrhythmias in adult patients. This study evaluates the accuracy of EWI for localization of various arrhythmias in all four chambers of the heart before catheter ablation. Fifty-five patients with an accessory pathway (AP) with Wolff-Parkinson-White (WPW) syndrome, premature ventricular complexes (PVCs), atrial tachycardia (AT), or atrial flutter (AFL) underwent transthoracic EWI and 12-lead ECG. Three-dimensional (3D) rendered EWI isochrones and 12-lead ECG predictions by six electrophysiologists were applied to a standardized segmented cardiac model and subsequently compared to the region of successful ablation on 3D electroanatomical maps generated by invasive catheter mapping. There was significant interobserver variability among 12-lead ECG reads by expert electrophysiologists. EWI correctly predicted 96% of arrhythmia locations as compared with 71% for 12-lead ECG analyses [unadjusted for arrhythmia type: odds ratio (OR), 11.8; 95% confidence interval (CI), 2.2 to 63.2; P = 0.004; adjusted for arrhythmia type: OR, 12.1; 95% CI, 2.3 to 63.2; P = 0.003]. This double-blinded clinical study demonstrates that EWI can localize atrial and ventricular arrhythmias including WPW, PVC, AT, and AFL. EWI when used with ECG may allow for improved treatment for patients with arrhythmias.


Asunto(s)
Arritmias Cardíacas , Ablación por Catéter , Adulto , Arritmias Cardíacas/diagnóstico por imagen , Diagnóstico por Imagen , Electrocardiografía , Humanos , Ultrasonografía
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...