Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 12 de 12
Filtrar
Más filtros













Base de datos
Intervalo de año de publicación
1.
iScience ; 26(11): 108133, 2023 Nov 17.
Artículo en Inglés | MEDLINE | ID: mdl-37867940

RESUMEN

Systemic sclerosis (SSc) interstitial lung disease (ILD) is among the leading causes of SSc-related morbidity and mortality. Tocilizumab (TCZ, anti-IL6RA) has demonstrated a reduced rate of pulmonary function decline in two phase 2/3 trials (faSScinate and focuSSced) in SSc-ILD patients. We performed transcriptome analysis of skin biopsy samples collected in the studies to decipher gene networks that were potentially associated with clinical responses to TCZ treatment. One module correlated with disease progression showed pharmacodynamic changes with TCZ treatment, and was characterized by plasma cell (PC) genes. PC signature gene expression levels were also significantly increased in both fibrotic SSc and IPF lungs compared to controls. scRNAseq analyses confirmed that PC signature genes were co-expressed in CD38 and CD138 expressing PC subsets in SSc lungs. These data provide insights into the potential role of PC in disease progression and mechanisms of action of TCZ in fibrotic interstitial lung diseases.

2.
Cell Metab ; 34(9): 1377-1393.e8, 2022 09 06.
Artículo en Inglés | MEDLINE | ID: mdl-35987202

RESUMEN

Fibrosis is the major risk factor associated with morbidity and mortality in patients with non-alcoholic steatohepatitis (NASH)-driven chronic liver disease. Although numerous efforts have been made to identify the mediators of the initiation of liver fibrosis, the molecular underpinnings of fibrosis progression remain poorly understood, and therapies to arrest liver fibrosis progression are elusive. Here, we identify a pathway involving WNT1-inducible signaling pathway protein 1 (WISP1) and myocardin-related transcription factor (MRTF) as a central mechanism driving liver fibrosis progression through the integrin-dependent transcriptional reprogramming of myofibroblast cytoskeleton and motility. In mice, WISP1 deficiency protects against fibrosis progression, but not fibrosis onset. Moreover, the therapeutic administration of a novel antibody blocking WISP1 halted the progression of existing liver fibrosis in NASH models. These findings implicate the WISP1-MRTF axis as a crucial determinant of liver fibrosis progression and support targeting this pathway by antibody-based therapy for the treatment of NASH fibrosis.


Asunto(s)
Enfermedad del Hígado Graso no Alcohólico , Factores de Transcripción , Animales , Hígado/metabolismo , Cirrosis Hepática/metabolismo , Ratones , Ratones Endogámicos C57BL , Enfermedad del Hígado Graso no Alcohólico/metabolismo , Proteínas Nucleares , Transducción de Señal , Transactivadores , Factores de Transcripción/metabolismo
3.
Sci Transl Med ; 14(627): eabf8188, 2022 01 12.
Artículo en Inglés | MEDLINE | ID: mdl-35020406

RESUMEN

Exacerbations of symptoms represent an unmet need for people with asthma. Bacterial dysbiosis and opportunistic bacterial infections have been observed in, and may contribute to, more severe asthma. However, the molecular mechanisms driving these exacerbations remain unclear. We show here that bacterial lipopolysaccharide (LPS) induces oncostatin M (OSM) and that airway biopsies from patients with severe asthma present with an OSM-driven transcriptional profile. This profile correlates with activation of inflammatory and mucus-producing pathways. Using primary human lung tissue or human epithelial and mesenchymal cells, we demonstrate that OSM is necessary and sufficient to drive pathophysiological features observed in severe asthma after exposure to LPS or Klebsiella pneumoniae. These findings were further supported through blockade of OSM with an OSM-specific antibody. Single-cell RNA sequencing from human lung biopsies identified macrophages as a source of OSM. Additional studies using Osm-deficient murine macrophages demonstrated that macrophage-derived OSM translates LPS signals into asthma-associated pathologies. Together, these data provide rationale for inhibiting OSM to prevent bacterial-associated progression and exacerbation of severe asthma.


Asunto(s)
Asma , Oncostatina M/metabolismo , Animales , Asma/patología , Humanos , Pulmón/patología , Macrófagos/metabolismo , Ratones , Moco , Oncostatina M/genética
4.
Sci Transl Med ; 13(605)2021 08 04.
Artículo en Inglés | MEDLINE | ID: mdl-34349032

RESUMEN

Transforming growth factor-ß (TGFß) is a key driver of fibrogenesis. Three TGFß isoforms (TGFß1, TGFß2, and TGFß3) in mammals have distinct functions in embryonic development; however, the postnatal pathological roles and activation mechanisms of TGFß2 and TGFß3 have not been well characterized. Here, we show that the latent forms of TGFß2 and TGFß3 can be activated by integrin-independent mechanisms and have lower activation thresholds compared to TGFß1. Unlike TGFB1, TGFB2 and TGFB3 expression is increased in human lung and liver fibrotic tissues compared to healthy control tissues. Thus, TGFß2 and TGFß3 may play a pathological role in fibrosis. Inducible conditional knockout mice and anti-TGFß isoform-selective antibodies demonstrated that TGFß2 and TGFß3 are independently involved in mouse fibrosis models in vivo, and selective TGFß2 and TGFß3 inhibition does not lead to the increased inflammation observed with pan-TGFß isoform inhibition. A cocrystal structure of a TGFß2-anti-TGFß2/3 antibody complex reveals an allosteric isoform-selective inhibitory mechanism. Therefore, inhibiting TGFß2 and/or TGFß3 while sparing TGFß1 may alleviate fibrosis without toxicity concerns associated with pan-TGFß blockade.


Asunto(s)
Factor de Crecimiento Transformador beta2 , Factor de Crecimiento Transformador beta3 , Animales , Modelos Animales de Enfermedad , Femenino , Fibrosis , Humanos , Ratones , Isoformas de Proteínas/metabolismo , Factor de Crecimiento Transformador beta2/metabolismo , Factor de Crecimiento Transformador beta3/metabolismo
5.
EBioMedicine ; 66: 103325, 2021 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-33862585

RESUMEN

BACKGROUND: The transition from normal lung anatomy to minimal and established fibrosis is an important feature of the pathology of idiopathic pulmonary fibrosis (IPF). The purpose of this report is to examine the molecular and cellular mechanisms associated with this transition. METHODS: Pre-operative thoracic Multidetector Computed Tomography (MDCT) scans of patients with severe IPF (n = 9) were used to identify regions of minimal(n = 27) and established fibrosis(n = 27). MDCT, Micro-CT, quantitative histology, and next-generation sequencing were used to compare 24 samples from donor controls (n = 4) to minimal and established fibrosis samples. FINDINGS: The present results extended earlier reports about the transition from normal lung anatomy to minimal and established fibrosis by showing that there are activations of TGFBI, T cell co-stimulatory genes, and the down-regulation of inhibitory immune-checkpoint genes compared to controls. The expression patterns of these genes indicated activation of a field immune response, which is further supported by the increased infiltration of inflammatory immune cells dominated by lymphocytes that are capable of forming lymphoid follicles. Moreover, fibrosis pathways, mucin secretion, surfactant, TLRs, and cytokine storm-related genes also participate in the transitions from normal lung anatomy to minimal and established fibrosis. INTERPRETATION: The transition from normal lung anatomy to minimal and established fibrosis is associated with genes that are involved in the tissue repair processes, the activation of immune responses as well as the increased infiltration of CD4, CD8, B cell lymphocytes, and macrophages. These molecular and cellular events correlate with the development of structural abnormality of IPF and probably contribute to its pathogenesis.


Asunto(s)
Fibrosis Pulmonar Idiopática/diagnóstico , Fibrosis Pulmonar Idiopática/etiología , Pulmón/metabolismo , Pulmón/patología , Anciano , Animales , Biomarcadores , Progresión de la Enfermedad , Susceptibilidad a Enfermedades , Femenino , Expresión Génica , Perfilación de la Expresión Génica , Humanos , Fibrosis Pulmonar Idiopática/metabolismo , Fibrosis Pulmonar Idiopática/cirugía , Inmunohistoquímica , Mediadores de Inflamación/metabolismo , Pulmón/diagnóstico por imagen , Masculino , Ratones , Persona de Mediana Edad , Modelos Biológicos , Periodo Preoperatorio , Tomografía Computarizada por Rayos X
6.
JCI Insight ; 6(8)2021 04 22.
Artículo en Inglés | MEDLINE | ID: mdl-33705361

RESUMEN

Compromised regenerative capacity of lung epithelial cells can lead to cellular senescence, which may precipitate fibrosis. While increased markers of senescence have been reported in idiopathic pulmonary fibrosis (IPF), the origin and identity of these senescent cells remain unclear, and tools to characterize context-specific cellular senescence in human lung are lacking. We observed that the senescent marker p16 is predominantly localized to bronchiolized epithelial structures in scarred regions of IPF and systemic sclerosis-associated interstitial lung disease (SSc-ILD) lung tissue, overlapping with the basal epithelial markers Keratin 5 and Keratin 17. Using in vitro models, we derived transcriptional signatures of senescence programming specific to different types of lung epithelial cells and interrogated these signatures in a single-cell RNA-Seq data set derived from control, IPF, and SSc-ILD lung tissue. We identified a population of basal epithelial cells defined by, and enriched for, markers of cellular senescence and identified candidate markers specific to senescent basal epithelial cells in ILD that can enable future functional studies. Notably, gene expression of these cells significantly overlaps with terminally differentiating cells in stratified epithelia, where it is driven by p53 activation as part of the senescence program.


Asunto(s)
Senescencia Celular/genética , Células Epiteliales/metabolismo , Fibrosis Pulmonar Idiopática/genética , Esclerodermia Sistémica/genética , Anciano , Estudios de Casos y Controles , Inhibidor p16 de la Quinasa Dependiente de Ciclina/metabolismo , Femenino , Humanos , Fibrosis Pulmonar Idiopática/metabolismo , Fibrosis Pulmonar Idiopática/patología , Queratina-17/metabolismo , Queratina-5/metabolismo , Pulmón , Enfermedades Pulmonares Intersticiales/etiología , Enfermedades Pulmonares Intersticiales/genética , Enfermedades Pulmonares Intersticiales/metabolismo , Enfermedades Pulmonares Intersticiales/patología , Masculino , Persona de Mediana Edad , RNA-Seq , Mucosa Respiratoria , Esclerodermia Sistémica/complicaciones , Esclerodermia Sistémica/metabolismo , Esclerodermia Sistémica/patología , Análisis de la Célula Individual , Transcriptoma , Proteína p53 Supresora de Tumor/genética , Proteína p53 Supresora de Tumor/metabolismo
7.
Cell Rep Med ; 1(8): 100140, 2020 11 17.
Artículo en Inglés | MEDLINE | ID: mdl-33294861

RESUMEN

Progressive lung fibrosis is a major cause of mortality in systemic sclerosis (SSc) patients, but the underlying mechanisms remain unclear. We demonstrate that immune complexes (ICs) activate human monocytes to promote lung fibroblast migration partly via osteopontin (OPN) secretion, which is amplified by autocrine monocyte colony stimulating factor (MCSF) and interleukin-6 (IL-6) activity. Bulk and single-cell RNA sequencing demonstrate that elevated OPN expression in SSc lung tissue is enriched in macrophages, partially overlapping with CCL18 expression. Serum OPN is elevated in SSc patients with interstitial lung disease (ILD) and prognosticates future lung function deterioration in SSc cohorts. Serum OPN levels decrease following tocilizumab (monoclonal anti-IL-6 receptor) treatment, confirming the connection between IL-6 and OPN in SSc patients. Collectively, these data suggest a plausible link between autoantibodies and lung fibrosis progression, where circulating OPN serves as a systemic proxy for IC-driven profibrotic macrophage activity, highlighting its potential as a promising biomarker in SSc ILD.


Asunto(s)
Células Mieloides/metabolismo , Osteopontina/metabolismo , Esclerodermia Sistémica/metabolismo , Autoanticuerpos/metabolismo , Biomarcadores/metabolismo , Línea Celular , Quimiocinas CC/metabolismo , Progresión de la Enfermedad , Fibrosis/metabolismo , Humanos , Interleucina-6/metabolismo , Pulmón/metabolismo , Enfermedades Pulmonares Intersticiales/metabolismo , Macrófagos/metabolismo , Monocitos/metabolismo
8.
J Biol Chem ; 294(37): 13580-13592, 2019 09 13.
Artículo en Inglés | MEDLINE | ID: mdl-31285261

RESUMEN

Antigen receptor assembly in lymphocytes involves stringently-regulated coordination of specific DNA rearrangement events across several large chromosomal domains. Previous studies indicate that transcription factors such as paired box 5 (PAX5), Yin Yang 1 (YY1), and CCCTC-binding factor (CTCF) play a role in regulating the accessibility of the antigen receptor loci to the V(D)J recombinase, which is required for these rearrangements. To gain clues about the role of CTCF binding at the murine immunoglobulin heavy chain (IgH) locus, we utilized a computational approach that identified 144 putative CTCF-binding sites within this locus. We found that these CTCF sites share a consensus motif distinct from other CTCF sites in the mouse genome. Additionally, we could divide these CTCF sites into three categories: intergenic sites remote from any coding element, upstream sites present within 8 kb of the VH-leader exon, and recombination signal sequence (RSS)-associated sites characteristically located at a fixed distance (∼18 bp) downstream of the RSS. We noted that the intergenic and upstream sites are located in the distal portion of the VH locus, whereas the RSS-associated sites are located in the DH-proximal region. Computational analysis indicated that the prevalence of CTCF-binding sites at the IgH locus is evolutionarily conserved. In all species analyzed, these sites exhibit a striking strand-orientation bias, with >98% of the murine sites being present in one orientation with respect to VH gene transcription. Electrophoretic mobility shift and enhancer-blocking assays and ChIP-chip analysis confirmed CTCF binding to these sites both in vitro and in vivo.


Asunto(s)
Factor de Unión a CCCTC/metabolismo , Cadenas Pesadas de Inmunoglobulina/genética , Inmunidad Adaptativa/genética , Animales , Sitios de Unión , Factor de Unión a CCCTC/genética , Cromatina/genética , Cromatina/metabolismo , Proteínas de Unión al ADN/genética , Reordenamiento Génico , Humanos , Cadenas Pesadas de Inmunoglobulina/metabolismo , Región Variable de Inmunoglobulina , Células K562 , Ratones , Ratones Noqueados , Células 3T3 NIH , Motivos de Nucleótidos , Secuencias Reguladoras de Ácidos Nucleicos , Proteínas Represoras/metabolismo
11.
Proc Natl Acad Sci U S A ; 100(20): 11577-82, 2003 Sep 30.
Artículo en Inglés | MEDLINE | ID: mdl-14500909

RESUMEN

In the earliest stages of antigen receptor assembly, D and J segments of the Ig heavy chain and T cell receptor beta loci are recombined in B and T cells, respectively, whereas the V segments are not. Distinct distribution patterns of various histone modifications and the nucleosome-remodeling factor BRG1 are found at "active" (DJ) and "inactive" (V) regions. Striking "hotspots" of histone H3 dimethylated at lysine 4 (di-Me H3-K4) are localized at the ends of the active DJ domains of both the Ig heavy chain and T cell receptor beta loci. BRG1 is not localized to specific sequences, as it is with transcriptional initiation, but rather associates with the entire active locus in a pattern that mirrors acetylation of histone H3. Within some inactive loci marked by H3-K9 dimethylation, two distinct levels of methylation are found in a nonrandom gene-segment-specific pattern. We suggest that the hotspots of di-Me H3-K4 are important marks for locus accessibility. The specific patterns of modification imply that the regulation of V(D)J recombination involves recruitment of specific methyltransferases in a localized manner.


Asunto(s)
Histonas/metabolismo , Lisina/metabolismo , Proteínas Nucleares/inmunología , Receptores de Antígenos de Linfocitos T/inmunología , Factores de Transcripción/inmunología , VDJ Recombinasas/genética , Animales , ADN Helicasas , Histonas/química , Metilación , Ratones , Proteínas Nucleares/metabolismo , Fosforilación , Reacción en Cadena de la Polimerasa , Receptores de Antígenos de Linfocitos T/metabolismo , Factores de Transcripción/metabolismo , Células Tumorales Cultivadas
12.
Proc Natl Acad Sci U S A ; 100(4): 1820-5, 2003 Feb 18.
Artículo en Inglés | MEDLINE | ID: mdl-12574507

RESUMEN

Methylation of lysine-79 (K79) within the globular domain of histone H3 by Dot1 methylase is important for transcriptional silencing and for association of the Sir silencing proteins in yeast. Here, we show that the level of H3-K79 methylation is low at all Sir-dependent silenced loci but not at other transcriptionally repressed regions. Hypomethylation of H3-K79 at the telomeric and silent mating-type loci, but not the ribosomal DNA, requires the Sir proteins. Overexpression of Sir3 concomitantly extends the domain of Sir protein association and H3-K79 hypomethylation at telomeres. In mammalian cells, H3-K79 methylation is found at loci that are active for V(D)J recombination, but not at recombinationally inactive loci that are heterochromatic. These results suggest that H3-K79 methylation is an evolutionarily conserved marker of active chromatin regions, and that silencing proteins block the ability of Dot1 to methylate histone H3. Further, they suggest that Sir proteins preferentially bind chromatin with hypomethylated H3-K79 and then block H3-K79 methylation. This positive feedback loop, and the reverse loop in which H3-K79 methylation weakens Sir protein association and leads to further methylation, suggests a model for position-effect variegation.


Asunto(s)
Silenciador del Gen , Histonas/metabolismo , Lisina/metabolismo , Saccharomyces cerevisiae/genética , Acetilación , Animales , Cromatina/metabolismo , ADN Ribosómico/genética , Histonas/química , Histonas/genética , Metilación , Ratones , Transcripción Genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA