RESUMEN
BACKGROUND: Deficiency of adenosine deaminase 2 (DADA2) is a complex monogenic disease caused by recessive mutations in the ADA2 gene. DADA2 exhibits a broad clinical spectrum encompassing vasculitis, immunodeficiency, and hematologic abnormalities. Yet, the impact of DADA2 on the bone marrow (BM) microenvironment is largely unexplored. OBJECTIVE: This study comprehensively examined the BM and peripheral blood of pediatric and adult patients with DADA2 presenting with rheumatologic/immunologic symptoms or severe hematologic manifestations. METHODS: Immunophenotyping of hematopoietic stem cells (HSCs), progenitor cells, and mature cell populations was performed for 18 patients with DADA2. We also conducted a characterization of mesenchymal stromal cells. RESULTS: Our study revealed a significant decrease in primitive HSCs and progenitor cells, alongside their reduced clonogenic capacity and multilineage differentiation potential. These BM defects were evident in patients with both severe and nonsevere hematologic manifestations, including pediatric patients, demonstrating that BM disruption can emerge silently and early on, even in patients who do not show obvious hematologic symptoms. Beyond stem cells, there was a reduction in mature cell populations in the BM and peripheral blood, affecting myeloid, erythroid, and lymphoid populations. Furthermore, BM mesenchymal stromal cells in patients with DADA2 exhibited reduced clonogenic and proliferation capabilities and were more prone to undergo cellular senescence marked by elevated DNA damage. CONCLUSIONS: Our exploration into the BM landscape of patients with DADA2 sheds light on the critical hematologic dimension of the disease and emphasizes the importance of vigilant monitoring, even in the case of subclinical presentation.
RESUMEN
Deficiency of adenosine deaminase 2 (DADA2) is an inborn error of immunity caused by loss-of-function mutations in the adenosine deaminase 2 (ADA2) gene. Clinical manifestations of DADA2 include vasculopathy and immuno-hematological abnormalities, culminating in bone marrow failure. A major gap exists in our knowledge of the regulatory functions of ADA2 during inflammation and hematopoiesis, mainly due to the absence of an ADA2 orthologue in rodents. Exploring these mechanisms is essential for understanding disease pathology and developing new treatments. Zebrafish possess two ADA2 orthologues, cecr1a and cecr1b, with the latter showing functional conservation with human ADA2. We establish a cecr1b-loss-of-function zebrafish model that recapitulates the immuno-hematological and vascular manifestations observed in humans. Loss of Cecr1b disrupts hematopoietic stem cell specification, resulting in defective hematopoiesis. This defect is caused by induced inflammation in the vascular endothelium. Blocking inflammation, pharmacological modulation of the A2r pathway, or the administration of the recombinant human ADA2 corrects these defects, providing insights into the mechanistic link between ADA2 deficiency, inflammation and immuno-hematological abnormalities. Our findings open up potential therapeutic avenues for DADA2 patients.
Asunto(s)
Adenosina Desaminasa , Hematopoyesis , Células Madre Hematopoyéticas , Inflamación , Pez Cebra , Animales , Pez Cebra/genética , Adenosina Desaminasa/genética , Adenosina Desaminasa/metabolismo , Adenosina Desaminasa/deficiencia , Células Madre Hematopoyéticas/metabolismo , Inflamación/genética , Inflamación/metabolismo , Hematopoyesis/genética , Proteínas de Pez Cebra/genética , Proteínas de Pez Cebra/metabolismo , Humanos , Transducción de Señal , Péptidos y Proteínas de Señalización Intercelular/genética , Péptidos y Proteínas de Señalización Intercelular/metabolismoRESUMEN
The inflammasome components NLRP3 and ASC are cytosolic proteins, which upon sensing endotoxins or danger cues, form multimeric complexes to process interleukin (IL)-1ß for secretion. Here we found that antigen (Ag)-triggered degranulation of IgE-sensitized mast cells (MCs) was mediated by NLRP3 and ASC. IgE-Ag stimulated NEK7 and Pyk2 kinases in MCs to induce the deposition of NLRP3 and ASC on granules and form a distinct protein complex (granulosome) that chaperoned the granules to the cell surface. MCs deficient in NLRP3 or ASC did not form granulosomes, degranulated poorly in vitro and did not evoke systemic anaphylaxis in mice. IgE-Ag-triggered anaphylaxis was prevented by an NLRP3 inhibitor. In endotoxin-primed MCs, pro-IL-1ß was rapidly packaged into granules after IgE-Ag stimulation and processed within granule remnants by proteases after degranulation, causing lethal anaphylaxis in mice. During IgE-Ag-mediated degranulation of endotoxin-primed MCs, granulosomes promoted degranulation, combined with exteriorization and processing of IL-1ß, resulting in severe inflammation.
Asunto(s)
Anafilaxia , Inflamasomas , Ratones , Animales , Proteína con Dominio Pirina 3 de la Familia NLR/metabolismo , Mastocitos , Anafilaxia/metabolismo , Inmunoglobulina E/metabolismo , Endotoxinas/metabolismo , Degranulación de la CélulaRESUMEN
Inflammatory diseases are conditions characterized by abnormal and often excessive immune responses, leading to tissue and organ inflammation. The complexity of these disorders arises from the intricate interplay of genetic factors and immune responses, which challenges conventional therapeutic approaches. However, the field of genetic manipulation has sparked unprecedented optimism in addressing these complex disorders. This review aims to comprehensively explore the application of gene therapy and gene editing in the context of inflammatory diseases, offering solutions that range from correcting genetic defects to precise immune modulation. These therapies have exhibited remarkable potential in ameliorating symptoms, improving quality of life, and even achieving disease remission. As we delve into recent breakthroughs and therapeutic applications, we illustrate how these advancements offer novel and transformative solutions for conditions that have traditionally eluded conventional treatments. By examining successful case studies and preclinical research, we emphasize the favorable results and substantial transformative impacts that gene-based interventions have demonstrated in patients and animal models of inflammatory diseases such as chronic granulomatous disease, cryopyrin-associated syndromes, and adenosine deaminase 2 deficiency, as well as those of multifactorial origins such as arthropathies (osteoarthritis, rheumatoid arthritis) and inflammatory bowel disease. In conclusion, gene therapy and gene editing offer transformative opportunities to address the underlying causes of inflammatory diseases, ushering in a new era of precision medicine and providing hope for personalized, targeted treatments.
Asunto(s)
Edición Génica , Inmunodeficiencia Combinada Grave , Animales , Humanos , Edición Génica/métodos , Calidad de Vida , Terapia Genética/métodos , Ingeniería Genética , Sistemas CRISPR-CasRESUMEN
Pancreatic ductal adenocarcinoma (PDAC) is a lethal disease with high resistance to therapies1. Inflammatory and immunomodulatory signals co-exist in the pancreatic tumour microenvironment, leading to dysregulated repair and cytotoxic responses. Tumour-associated macrophages (TAMs) have key roles in PDAC2, but their diversity has prevented therapeutic exploitation. Here we combined single-cell and spatial genomics with functional experiments to unravel macrophage functions in pancreatic cancer. We uncovered an inflammatory loop between tumour cells and interleukin-1ß (IL-1ß)-expressing TAMs, a subset of macrophages elicited by a local synergy between prostaglandin E2 (PGE2) and tumour necrosis factor (TNF). Physical proximity with IL-1ß+ TAMs was associated with inflammatory reprogramming and acquisition of pathogenic properties by a subset of PDAC cells. This occurrence was an early event in pancreatic tumorigenesis and led to persistent transcriptional changes associated with disease progression and poor outcomes for patients. Blocking PGE2 or IL-1ß activity elicited TAM reprogramming and antagonized tumour cell-intrinsic and -extrinsic inflammation, leading to PDAC control in vivo. Targeting the PGE2-IL-1ß axis may enable preventive or therapeutic strategies for reprogramming of immune dynamics in pancreatic cancer.
Asunto(s)
Inflamación , Interleucina-1beta , Neoplasias Pancreáticas , Macrófagos Asociados a Tumores , Humanos , Carcinogénesis , Carcinoma Ductal Pancreático/complicaciones , Carcinoma Ductal Pancreático/inmunología , Carcinoma Ductal Pancreático/patología , Dinoprostona/metabolismo , Progresión de la Enfermedad , Regulación Neoplásica de la Expresión Génica , Inflamación/complicaciones , Inflamación/inmunología , Inflamación/patología , Interleucina-1beta/inmunología , Interleucina-1beta/metabolismo , Neoplasias Pancreáticas/complicaciones , Neoplasias Pancreáticas/inmunología , Neoplasias Pancreáticas/patología , Microambiente Tumoral , Factores de Necrosis Tumoral/metabolismo , Macrófagos Asociados a Tumores/inmunología , Macrófagos Asociados a Tumores/metabolismo , Macrófagos Asociados a Tumores/patologíaRESUMEN
Inflammasome complexes and their integral receptor proteins have essential roles in regulating the innate immune response and inflammation at the post-translational level. Yet despite their protective role, aberrant activation of inflammasome proteins and gain of function mutations in inflammasome component genes seem to contribute to the development and progression of human autoimmune and autoinflammatory diseases. In the past decade, our understanding of inflammasome biology and activation mechanisms has greatly progressed. We therefore provide an up-to-date overview of the various inflammasomes and their known mechanisms of action. In addition, we highlight the involvement of various inflammasomes and their pathogenic mechanisms in common autoinflammatory, autoimmune and neurodegenerative diseases, including atherosclerosis, rheumatoid arthritis, systemic lupus erythematosus, inflammatory bowel disease, Alzheimer's disease, Parkinson's disease, and multiple sclerosis. We conclude by speculating on the future avenues of research needed to better understand the roles of inflammasomes in health and disease.
Asunto(s)
Artritis Reumatoide , Enfermedades Autoinmunes , Humanos , Inflamasomas/metabolismo , Inmunidad Innata , InflamaciónRESUMEN
Dysregulation of the interleukin-1 (IL-1) pathway leads to immune diseases that can result in chronic tissue and organ inflammation. Although IL-1 blockade has shown promise in ameliorating these symptoms and improving patients' quality of life, there is an urgent need for more effective, long-lasting treatments. We developed a lentivirus (LV)-mediated gene transfer strategy using transplanted autologous hematopoietic stem/progenitor cells (HSPCs) as a source of IL-1 receptor antagonist (IL-1RA) for systemic delivery to tissues and organs. Transplantation of mouse and human HSPCs transduced with an IL-1RA-encoding LV ensured stable IL-1RA production while maintaining the clonogenic and differentiation capacities of HSPCs in vivo. We examined the efficacy of cell-mediated IL-1RA delivery in three models of IL-1-dependent inflammation, for which treatment hindered neutrophil recruitment in an inducible model of gout, prevented systemic and multi-tissue inflammation in a genetic model of cryopyrin-associated periodic syndromes, and reduced disease severity in an experimental autoimmune encephalomyelitis model of multiple sclerosis. Our findings demonstrate HSPC-mediated IL-1RA delivery as a potential therapeutic modality that can be exploited to suppress tissue and organ inflammation in diverse immune-related diseases involving IL-1-driven inflammation.
Asunto(s)
Encefalomielitis Autoinmune Experimental , Proteína Antagonista del Receptor de Interleucina 1 , Animales , Humanos , Encefalomielitis Autoinmune Experimental/terapia , Inflamación/terapia , Interleucina-1 , Lentivirus , Calidad de Vida , RatonesRESUMEN
Deficiency of adenosine deaminase 2 (DADA2) is an autosomal recessive disease associated with a highly variable clinical presentation, including vasculitis, immunodeficiency, and hematologic manifestations, potentially progressing over time. The present study describes the long-term evolution of the immuno-hematological features and therapeutic challenge of two identical adult twin sisters affected by DADA2. The absence of plasmatic adenosine deaminase 2 (ADA2) activity in both twins suggested the diagnosis of DADA2, then confirmed by genetic analysis. Exon sequencing revealed a missense (p.Leu188Pro) mutation on the paternal ADA2 allele. While, whole genome sequencing identified an unreported deletion (IVS6_IVS7del*) on the maternal allele predicted to produce a transcript missing exon 7. The patients experienced the disease onset during childhood with early strokes (Patient 1 at two years, Patient 2 at eight years of age), subsequently followed by other shared DADA2-associated features, including neutropenia, hypogammaglobulinemia, reduced switched memory B cells, inverted CD4:CD8 ratio, increased naïve T cells, reduced follicular regulatory T cells, the almost complete absence of NK cells, T-large granular cell leukemia, and osteoporosis. Disease evolution differed: clinical manifestations presented several years earlier and were more pronounced in Patient 1 than in Patient 2. Due to G-CSF refractory life-threatening neutropenia, Patient 1 successfully underwent an urgent hematopoietic stem cell transplantation (HSCT) from a 9/10 matched unrelated donor. Patient 2 experienced a similar, although delayed, disease evolution and is currently on anti-TNF therapy and anti-infectious prophylaxis. The unique cases confirmed that heterozygous patients with null ADA2 activity deserve deep investigation for possible structural variants on a single allele. Moreover, this report emphasizes the importance of timely recognizing DADA2 at the onset to allow adequate follow-up and detection of disease progression. Finally, the therapeutic management in these identical twins raises significant concerns as they share a similar phenotype, with a delayed but almost predictable disease evolution in one of them, who could benefit from a prompt definitive treatment like elective allogeneic HSCT. Additional data are required to assess whether the absence of enzymatic activity at diagnosis is associated with hematological involvement and is also predictive of bone marrow dysfunction, encouraging early HSCT to improve functional outcomes.
Asunto(s)
Agammaglobulinemia , Neutropenia , Poliarteritis Nudosa , Adenosina Desaminasa/genética , Agammaglobulinemia/diagnóstico , Agammaglobulinemia/genética , Factor Estimulante de Colonias de Granulocitos , Humanos , Péptidos y Proteínas de Señalización Intercelular , Inmunodeficiencia Combinada Grave , Inhibidores del Factor de Necrosis Tumoral , Gemelos Monocigóticos/genéticaRESUMEN
Gasdermins (GSDMs) are a class of pore-forming proteins related to pyroptosis, a programmed cell death pathway that is induced by a range of inflammatory stimuli. Small-scale GSDM activation and pore formation allow the passive release of cytokines, such as IL-1ß and IL-18, and alarmins, but, whenever numerous GSDM pores are assembled, osmotic lysis and cell death occur. Such GSDM-mediated pyroptosis promotes pathogen clearance and can help restore homeostasis, but recent studies have revealed that dysregulated pyroptosis is at the root of many inflammation-mediated disease conditions. Moreover, new homeostatic functions for gasdermins are beginning to be revealed. Here, we review the newly discovered mechanisms of GSDM activation and their prominent roles in host defense and human diseases associated with chronic inflammation. We also highlight the potential of targeting GSDMs as a new therapeutic approach to combat chronic inflammatory diseases and cancer and how we might overcome the current obstacles to realize this potential.
Asunto(s)
Inflamasomas , Neoplasias , Humanos , Inflamasomas/metabolismo , Inflamación/metabolismo , Proteínas de Neoplasias/metabolismo , Neoplasias/tratamiento farmacológico , Piroptosis/fisiologíaRESUMEN
Adenosine deaminase 2 deficiency (DADA2) is a rare inherited disorder that is caused by autosomal recessive mutations in the ADA2 gene. Clinical manifestations include early-onset lacunar strokes, vasculitis/vasculopathy, systemic inflammation, immunodeficiency, and hematologic defects. Anti-tumor necrosis factor therapy reduces strokes and systemic inflammation. Allogeneic hematopoietic stem/progenitor cell (HSPC) transplantation can ameliorate most disease manifestations, but patients are at risk for complications. Autologous HSPC gene therapy may be an alternative curative option for patients with DADA2. We designed a lentiviral vector encoding ADA2 (LV-ADA2) to genetically correct HSPCs. Lentiviral transduction allowed efficient delivery of the functional ADA2 enzyme into HSPCs from healthy donors. Supranormal ADA2 expression in human and mouse HSPCs did not affect their multipotency and engraftment potential in vivo. The LV-ADA2 induced stable ADA2 expression and corrected the enzymatic defect in HSPCs derived from DADA2 patients. Patients' HSPCs re-expressing ADA2 retained their potential to differentiate into erythroid and myeloid cells. Delivery of ADA2 enzymatic activity in patients' macrophages led to a complete rescue of the exaggerated inflammatory cytokine production. Our data indicate that HSPCs ectopically expressing ADA2 retain their multipotent differentiation ability, leading to functional correction of macrophage defects. Altogether, these findings support the implementation of HSPC gene therapy for DADA2.
Asunto(s)
Adenosina Desaminasa , Vasculitis , Adenosina Desaminasa/genética , Animales , Humanos , Inflamación , Péptidos y Proteínas de Señalización Intercelular , Macrófagos , RatonesRESUMEN
Inflammation in the tumor microenvironment has been shown to promote disease progression in pancreatic ductal adenocarcinoma (PDAC); however, the role of macrophage metabolism in promoting inflammation is unclear. Using an orthotopic mouse model of PDAC, we demonstrate that macrophages from tumor-bearing mice exhibit elevated glycolysis. Macrophage-specific deletion of Glucose Transporter 1 (GLUT1) significantly reduced tumor burden, which was accompanied by increased Natural Killer and CD8+ T cell activity and suppression of the NLRP3-IL1ß inflammasome axis. Administration of mice with a GLUT1-specific inhibitor reduced tumor burden, comparable with gemcitabine, the current standard-of-care. In addition, we observe that intra-tumoral macrophages from human PDAC patients exhibit a pronounced glycolytic signature, which reliably predicts poor survival. Our data support a key role for macrophage metabolism in tumor immunity, which could be exploited to improve patient outcomes.
Asunto(s)
Adenocarcinoma/patología , Carcinoma Ductal Pancreático/patología , Citoprotección , Glucólisis , Macrófagos/metabolismo , Neoplasias Pancreáticas/patología , Adenocarcinoma/inmunología , Animales , Carcinoma Ductal Pancreático/inmunología , Proliferación Celular/efectos de los fármacos , Citoprotección/efectos de los fármacos , Resistencia a Antineoplásicos/efectos de los fármacos , Transportador de Glucosa de Tipo 1/metabolismo , Glucólisis/efectos de los fármacos , Humanos , Hidroxibenzoatos/farmacología , Inflamación/patología , Interleucina-1beta/metabolismo , Células Asesinas Naturales/efectos de los fármacos , Células Asesinas Naturales/inmunología , Macrófagos/efectos de los fármacos , Ratones Endogámicos C57BL , Proteína con Dominio Pirina 3 de la Familia NLR/metabolismo , Neoplasias Pancreáticas/inmunología , Análisis de Supervivencia , Linfocitos T Citotóxicos/efectos de los fármacos , Linfocitos T Citotóxicos/inmunología , Carga Tumoral/efectos de los fármacos , Neoplasias PancreáticasRESUMEN
Chronic granulomatous disease (CGD) is a rare inherited disorder due to loss-of-function mutations in genes encoding the NADPH oxidase subunits. Hematopoietic stem and progenitor cell (HSPC) gene therapy (GT) using regulated lentiviral vectors (LVs) has emerged as a promising therapeutic option for CGD patients. We performed non-clinical Good Laboratory Practice (GLP) and laboratory-grade studies to assess the safety and genotoxicity of LV targeting myeloid-specific Gp91phox expression in X-linked chronic granulomatous disease (XCGD) mice. We found persistence of gene-corrected cells for up to 1 year, restoration of Gp91phox expression and NADPH oxidase activity in XCGD phagocytes, and reduced tissue inflammation after LV-mediated HSPC GT. Although most of the mice showed no hematological or biochemical toxicity, a small subset of XCGD GT mice developed T cell lymphoblastic lymphoma (2.94%) and myeloid leukemia (5.88%). No hematological malignancies were identified in C57BL/6 mice transplanted with transduced XCGD HSPCs. Integration pattern analysis revealed an oligoclonal composition with rare dominant clones harboring vector insertions near oncogenes in mice with tumors. Collectively, our data support the long-term efficacy of LV-mediated HSPC GT in XCGD mice and provide a safety warning because the chronic inflammatory XCGD background may contribute to oncogenesis.
Asunto(s)
Terapia Genética , Vectores Genéticos/genética , Enfermedad Granulomatosa Crónica/complicaciones , Enfermedad Granulomatosa Crónica/terapia , Neoplasias Hematológicas/etiología , Lentivirus/genética , Animales , Modelos Animales de Enfermedad , Terapia Genética/efectos adversos , Terapia Genética/métodos , Vectores Genéticos/administración & dosificación , Enfermedad Granulomatosa Crónica/genética , Humanos , Ratones , NADPH Oxidasa 2/genética , NADPH Oxidasa 2/metabolismo , Factores de Tiempo , Resultado del TratamientoRESUMEN
Gene transfer into autologous hematopoietic stem progenitor cells (HSPCs) has the potential to cure monogenic inherited disorders caused by an altered development and/or function of the blood system, such as immune deficiencies and red blood cell and platelet disorders. Gene-corrected HSPCs and their progeny can also be exploited as cell vehicles to deliver molecules into the circulation and tissues, including the central nervous system. In this review, we focus on the progress of clinical development of medicinal products based on HSPCs engineered and modified by integrating viral vectors for the treatment of monogenic blood disorders and metabolic diseases. Two products have reached the stage of market approval in the EU, and more are foreseen to be approved in the near future. Despite these achievements, several challenges remain for HSPC gene therapy (HSPC-GT) precluding a wider application of this type of gene therapy to a wider set of diseases while gene-editing approaches are entering the clinical arena.
Asunto(s)
Enfermedades Genéticas Congénitas/genética , Enfermedades Genéticas Congénitas/terapia , Terapia Genética , Trasplante de Células Madre Hematopoyéticas , Células Madre Hematopoyéticas , Animales , Manejo de la Enfermedad , Susceptibilidad a Enfermedades , Técnicas de Transferencia de Gen , Terapia Genética/métodos , Vectores Genéticos/administración & dosificación , Vectores Genéticos/genética , Trasplante de Células Madre Hematopoyéticas/métodos , Células Madre Hematopoyéticas/metabolismo , Humanos , Lentivirus/genética , Transducción GenéticaRESUMEN
The inflammasome is a multi-protein complex that mediates proteolytic cleavage and release of the pro-inflammatory cytokines IL-1ß and IL-18, and pyroptosis-a form of cell death induced by various pathogenic bacteria. Apoptosis-associated speck-like protein containing a CARD (ASC) has a pivotal role in inflammasome assembly and activation. While ASC function has been primarily implicated in innate immune cells, its contribution to lymphocyte biology is unclear. Here we report that ASC is constitutively expressed in naïve CD4+ T cells together with the inflammasome sensor NLRP3 and caspase-1. When adoptively transferred in immunocompromised Rag1-/- mice, Asc-/- CD4+ T cells exacerbate T-cell-mediated autoimmune colitis. Asc-/- CD4+ T cells exhibit a higher proliferative capacity in vitro than wild-type CD4+ T cells. The increased expansion of Asc-/- CD4+ T cells in vivo correlated with robust TCR-mediated activation, inflammatory activity, and higher metabolic profile toward a highly glycolytic phenotype. These findings identify ASC as a crucial intrinsic regulator of CD4+ T-cell expansion that serves to maintain intestinal homeostasis.
Asunto(s)
Proteínas Adaptadoras de Señalización CARD/inmunología , Linfocitos T CD4-Positivos/inmunología , Proliferación Celular , Homeostasis/inmunología , Intestinos/inmunología , Animales , Apoptosis/genética , Apoptosis/inmunología , Proteínas Adaptadoras de Señalización CARD/genética , Proteínas Adaptadoras de Señalización CARD/metabolismo , Linfocitos T CD4-Positivos/citología , Linfocitos T CD4-Positivos/metabolismo , Caspasa 1/genética , Caspasa 1/inmunología , Caspasa 1/metabolismo , Células Cultivadas , Colitis/genética , Colitis/inmunología , Colitis/metabolismo , Homeostasis/genética , Inflamasomas/genética , Inflamasomas/inmunología , Activación de Linfocitos/genética , Activación de Linfocitos/inmunología , Ratones Endogámicos C57BL , Ratones Endogámicos , Ratones Noqueados , Proteína con Dominio Pirina 3 de la Familia NLR/genética , Proteína con Dominio Pirina 3 de la Familia NLR/inmunología , Proteína con Dominio Pirina 3 de la Familia NLR/metabolismoRESUMEN
The inflammasome is an intracellular multi-protein complex that orchestrates the release of the pro-inflammatory cytokines IL-1ß and IL-18, and a form of cell death known as pyroptosis. Tyrosine phosphorylation of the inflammasome sensors NLRP3, AIM2, NLRC4, and the adaptor protein, apoptosis-associated speck-like protein (ASC) has previously been demonstrated to be essential in the regulation of the inflammasome. By using the pharmacological protein tyrosine phosphatase (PTPase) inhibitor, phenylarsine oxide (PAO), we have demonstrated that tyrosine dephosphorylation is an essential step for the activation of the NLRP3 and AIM2 inflammasomes in human and murine macrophages. We have also shown that PTPase activity is required for ASC nucleation leading to caspase-1 activation, IL-1ß, and IL-18 processing and release, and cell death. Furthermore, by site-directed mutagenesis of ASC tyrosine residues, we have identified the phosphorylation of tyrosine Y60 and Y137 of ASC as critical for inflammasome assembly and function. Therefore, we report that ASC tyrosine dephosphorylation and phosphorylation are crucial events for inflammasome activation.
Asunto(s)
Proteínas Adaptadoras de Señalización CARD/metabolismo , Proteínas de Unión al ADN/metabolismo , Inflamasomas/metabolismo , Proteína con Dominio Pirina 3 de la Familia NLR/metabolismo , Fosforilación/fisiología , Tirosina/metabolismo , Animales , Caspasa 1/metabolismo , Línea Celular , Citocinas/metabolismo , Células HEK293 , Humanos , Ratones , Ratones Endogámicos C57BL , Proteínas Tirosina Fosfatasas/metabolismo , Células TH1RESUMEN
Interleukin-1ß (IL-1ß) is a major cytokine that initiates and enhances inflammatory responses. Excessive IL-1ß production is a characteristic of most chronic inflammatory diseases, including atherosclerosis, type 2 diabetes, and obesity, which affect a large proportion of the global population. The production of bioactive IL-1ß is mediated by a caspase-1-activating complex known as an 'inflammasome'. The NLRP3 inflammasome has been associated with several human inflammatory and autoimmune diseases and represents a potential therapeutic target for disrupting IL-1ß production. We used molecular modeling guided by molecular dynamics simulations to design α-helical stapled peptides targeting the pyrin domain of the adaptor protein ASC to interrupt the development of its filament, which is crucial for NLRP3 inflammasome formation. The peptides were effectively internalized by human monocytic cells and efficiently suppressed the release of the inflammasome-regulated cytokines IL-1ß and IL-18, following exogenous activation of the NLRP3 inflammasome. The peptides reduced ASC speck formation and caspase-1 processing thereby suppressing pro-IL-1ß processing and release of active IL-1ß. This is the first demonstration of the successful use of stapled peptides designed to target the adaptor protein ASC, and can be extended to other inflammatory pathways to disrupt excessive IL-1ß production.
Asunto(s)
Proteínas Adaptadoras de Señalización CARD/química , Péptidos de Penetración Celular/farmacología , Inflamasomas/efectos de los fármacos , Interleucina-1beta/química , Proteína con Dominio Pirina 3 de la Familia NLR/química , Sitios de Unión , Proteínas Adaptadoras de Señalización CARD/antagonistas & inhibidores , Proteínas Adaptadoras de Señalización CARD/genética , Proteínas Adaptadoras de Señalización CARD/inmunología , Péptidos de Penetración Celular/química , Regulación de la Expresión Génica , Humanos , Interacciones Hidrofóbicas e Hidrofílicas , Inflamasomas/inmunología , Inflamasomas/metabolismo , Interleucina-18/genética , Interleucina-18/inmunología , Interleucina-1beta/antagonistas & inhibidores , Interleucina-1beta/genética , Interleucina-1beta/inmunología , Lipopolisacáridos/farmacología , Modelos Moleculares , FN-kappa B/genética , FN-kappa B/inmunología , Proteína con Dominio Pirina 3 de la Familia NLR/antagonistas & inhibidores , Proteína con Dominio Pirina 3 de la Familia NLR/genética , Proteína con Dominio Pirina 3 de la Familia NLR/inmunología , Nigericina/farmacología , Prueba de Estudio Conceptual , Unión Proteica , Conformación Proteica en Hélice alfa , Dominios y Motivos de Interacción de Proteínas , Especies Reactivas de Oxígeno/inmunología , Especies Reactivas de Oxígeno/metabolismo , Transducción de Señal , Células THP-1 , TermodinámicaRESUMEN
Calcineurin (Cn) is a protein phosphatase that regulates the activation of the nuclear factor of activated T-cells (NFAT) family of transcription factors, which are key regulators of T-cell development and function. Here, we generated a conditional Cnb1 mouse model in which Cnb1 was specifically deleted in CD4+ T cells (Cnb1CD4 mice) to delineate the role of the Cn-NFAT pathway in immune homeostasis of the intestine. The Cnb1CD4 mice developed severe, spontaneous colitis characterized at the molecular level by an increased T helper-1-cell response but an unaltered regulatory T-cell compartment. Antibiotic treatment ameliorated the intestinal inflammation observed in Cnb1CD4 mice, suggesting that the microbiota contributes to the onset of colitis. CD4+ T cells isolated from Cnb1CD4 mice produced high levels of IFNγ due to increased activation of the JAK2/STAT4 pathway induced by IL-12. Our data highlight that Cn signaling in CD4+ T cells is critical for intestinal immune homeostasis in part by inhibiting IL-12 responsiveness of CD4+ T cells.
Asunto(s)
Enfermedades Autoinmunes/inmunología , Linfocitos T CD4-Positivos/inmunología , Calcineurina/metabolismo , Colitis/inmunología , Enfermedades Inflamatorias del Intestino/inmunología , Intestinos/inmunología , Animales , Calcineurina/genética , Diferenciación Celular , Células Cultivadas , Modelos Animales de Enfermedad , Microbioma Gastrointestinal/inmunología , Homeostasis , Humanos , Interferón gamma/metabolismo , Interleucina-12/metabolismo , Janus Quinasa 2/metabolismo , Activación de Linfocitos , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Factor de Transcripción STAT4/metabolismo , Transducción de SeñalRESUMEN
The intestinal immune system can respond to invading pathogens yet maintain immune tolerance to self-antigens and microbiota. Myeloid cells are central to these processes, but the signaling pathways that underlie tolerance versus inflammation are unclear. Here we show that mice lacking Calcineurin B in CD11chighMHCII+ cells (Cnb1 CD11c mice) spontaneously develop intestinal inflammation and are susceptible to induced colitis. In these mice, colitis is associated with expansion of T helper type 1 (Th1) and Th17 cell populations and a decrease in the number of FoxP3+ regulatory T (Treg) cells, and the pathology is linked to the inability of intestinal Cnb1-deficient CD11chighMHCII+ cells to express IL-2. Deleting IL-2 in CD11chighMHCII+ cells induces spontaneous colitis resembling human inflammatory bowel disease. Our findings identify that the calcineurin-NFAT-IL-2 pathway in myeloid cells is a critical regulator of intestinal homeostasis by influencing the balance of inflammatory and regulatory responses in the mouse intestine.