Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
Más filtros













Base de datos
Intervalo de año de publicación
1.
Nutrients ; 14(6)2022 Mar 15.
Artículo en Inglés | MEDLINE | ID: mdl-35334899

RESUMEN

A link between obesity and cerebral health is receiving growing recognition. Here, we investigate in the frontal cortex and hippocampus the potential involvement of cholinergic markers in brain alterations previously reported in rats with obesity induced by diet (DIO) after long-term exposure (17 weeks) to a high-fat diet (HFD) in comparison with animals fed with a standard diet (CHOW). The obesity developed after 5 weeks of HFD. Bodyweight, systolic blood pressure, glycemia, and insulin levels were increased in DIO rats compared to the CHOW group. Measurements of malondialdehyde (MDA) provided lipid peroxidation in HFD-fed rats. Western blot and immunohistochemical techniques were performed. Our results showed a higher expression of choline acetyltransferase (ChAT) and vesicular acetylcholine transporter (VAChT) in obese rats but not the VAChT expression in the frontal cortex after 17 weeks of HFD. Furthermore, the acetylcholinesterase (AChE) enzyme was downregulated in HFD both in the frontal cortex and hippocampus. In the brain regions analyzed, it was reported a modulation of certain cholinergic receptors expressed pre- and post-synaptically (alpha7 nicotinic receptor and muscarinic receptor subtype 1). Collectively, these findings point out precise changes of cholinergic markers that can be targeted to prevent cerebral injuries related to obesity.


Asunto(s)
Acetilcolinesterasa , Dieta Alta en Grasa , Acetilcolinesterasa/metabolismo , Animales , Encéfalo/metabolismo , Colinérgicos/metabolismo , Dieta Alta en Grasa/efectos adversos , Obesidad/metabolismo , Ratas
2.
Eur J Histochem ; 65(s1)2021 Nov 23.
Artículo en Inglés | MEDLINE | ID: mdl-34814650

RESUMEN

Evidence suggests that transient receptor potential (TRP) ion channels dysfunction significantly contributes to the physiopathology of metabolic and neurological disorders. Dysregulation in functions and expression in genes encoding the TRP channels cause several inherited diseases in humans (the so-called 'TRP channelopathies'), which affect the cardiovascular, renal, skeletal, and nervous systems. This study aimed to evaluate the expression of ion channels in the forebrain of rats with diet-induced obesity (DIO). DIO rats were studied after 17 weeks under a hypercaloric diet (high-fat diet, HFD) and were compared to the control rats with a standard diet (CHOW). To determine the systemic effects of HFD exposure, we examined food intake, fat mass content, fasting glycemia, insulin levels, cholesterol, and triglycerides. qRT-PCR, Western blot, and immunochemistry analysis were performed in the frontal cortex (FC) and hippocampus (HIP). After 17 weeks of HFD, DIO rats increased their body weight significantly compared to the CHOW rats. In DIO rats, TRPC1 and TRPC6 were upregulated in the HIP, while they were downregulated in the FC. In the case of TRPM2 expression, instead was increased both in the HIP and in the FC. These could be related to the increase of proteins and nucleic acid oxidation. TRPV1 and TRPV2 gene expression showed no differences both in the FC and HIP. In general, qRT-PCR analyses were confirmed by Western blot analysis. Immunohistochemical procedures highlighted the expression of the channels in the cell body of neurons and axons, particularly for the TRPC1 and TRPC6. The alterations of TRP channel expression could be related to the activation of glial cells or the neurodegenerative process presented in the brain of the DIO rat highlighted with post synaptic protein (PSD 95) alterations. The availability of suitable animal models may be useful for studying possible pharmacological treatments to counter obesity-induced brain injury. The identified changes in DIO rats may represent the first insight to characterize the neuronal alterations occurring in obesity. Further investigations are necessary to characterize the role of TRP channels in the regulation of synaptic plasticity and obesity-related cognitive decline.


Asunto(s)
Lóbulo Frontal/metabolismo , Hipocampo/metabolismo , Obesidad/fisiopatología , Canales de Potencial de Receptor Transitorio/metabolismo , Animales , Axones/metabolismo , Dieta Alta en Grasa , Regulación hacia Abajo/fisiología , Lóbulo Frontal/patología , Expresión Génica/fisiología , Hipocampo/patología , Masculino , Obesidad/patología , Estrés Oxidativo/fisiología , Ratas Wistar , Regulación hacia Arriba/fisiología
3.
Molecules ; 26(5)2021 Mar 05.
Artículo en Inglés | MEDLINE | ID: mdl-33807712

RESUMEN

BACKGROUND: Tart cherries (Prunus cerasus L.) are a rich source of anthocyanins. They are phytochemical flavonoids found in red and blue fruits, and vegetables that can reduce hyperlipidemia. Visceral Adipose Tissue (VAT) has emerged as a major player in driving obesity-related inflammatory response. METHODS: This study has investigated the potential positive effects of tart cherries on rats with Diet-Induced Obesity (DIO). In particular, the inflammatory status in retroperitoneal (RPW) and perigonadal (PGW) adipose tissue were studied. Rats were fed ad libitum for 17 weeks with a hypercaloric diet with the supplementation of tart cherries seeds powder (DS) and seeds powder plus tart cherries juice containing 1mg of anthocyanins (DJS). In RPW and PGW, expression of CRP, IL-1 ß, TNF-α, CCL2 and CD36, were measured by qRT-PCR, Western blot and immunohistochemistry techniques. RESULTS: No differences in the weight of RPW and PGW animals were found between DS and DJS groups compared to DIO rats. However, an increase of inflammatory markers was observed in DIO group in comparison with control lean rats. A modulation of these markers was evident upon tart cherry supplementation. CONCLUSION: Study results suggest that tart cherry enriched-diet did not modify the accumulation of visceral fat, but it decreased inflammatory markers in both tissues. Therefore, this supplementation could be useful, in combination with healthy lifestyles, to modify adipose tissue cell metabolism limiting-obesity related organ damage.


Asunto(s)
Biomarcadores/metabolismo , Jugos de Frutas y Vegetales , Grasa Intraabdominal/metabolismo , Obesidad/dietoterapia , Prunus avium/química , Animales , Antígenos CD36/genética , Antígenos CD36/metabolismo , Quimiocina CCL2/genética , Quimiocina CCL2/metabolismo , Dieta Alta en Grasa/efectos adversos , Suplementos Dietéticos , Regulación de la Expresión Génica , Grasa Intraabdominal/efectos de los fármacos , Macrófagos/efectos de los fármacos , Macrófagos/patología , Masculino , Obesidad/etiología , Paniculitis/dietoterapia , Paniculitis/genética , Paniculitis/metabolismo , Ratas Wistar , Semillas
4.
Eur J Nutr ; 60(5): 2695-2707, 2021 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-33386893

RESUMEN

PURPOSE: There is increasing evidence for the involvement of dietary bioactive compounds in the cross-talk modulation of endocannabinoid system and some of the key regulators of transcriptional control for adipogenesis. METHODS: We aimed to characterize the expression of cannabinoid CB1/CB2 receptors and fatty acid amide hydrolase (FAAH) along with selected adipogenesis-related genes (PPARγ, SREBP-1c and PREF-1), adipocyte-secreted factors (leptin and adiponectin), mitochondrial bioenergetic modulators (PGC-1A and UCP-2), and transient receptor potential vanilloid subtype 1 (TRPV1) and 2 (TRPV2) channels in visceral adipose tissue of rats fed with a high-fat diet (HFD) containing either tart cherry seeds alone or tart cherry seeds and juice for 17 weeks. The visceral adipose tissue was weighed and checked the expression of different markers by qRT-PCR, Western blot and immunohistochemistry. RESULTS: Tart cherry supplements were able to downregulate the HFD-induced mRNA expression of CB1 receptor, SREBP-1c, PPARγ, leptin, TRPV1 and TRPV2 resulting in potential anti-adipogenic effects. CONCLUSION: The present study points out that the intake of bioactive constituents of tart cherry may attenuate the effect of adipogenesis by acting directly on the adipose tissue and modulating the interplay between CB1, PPARγ and TRPV channel gene transcription.


Asunto(s)
Prunus avium , Adipogénesis , Tejido Adiposo , Animales , Dieta Alta en Grasa/efectos adversos , Suplementos Dietéticos , Grasa Intraabdominal , Obesidad/genética , ARN Mensajero/genética , Ratas
5.
Nutrients ; 12(5)2020 May 09.
Artículo en Inglés | MEDLINE | ID: mdl-32397542

RESUMEN

Metabolic syndrome (MetS) is an association between obesity, dyslipidemia, hyperglycemia, hypertension, and insulin resistance. A relationship between MetS and vascular dementia was hypothesized. The purpose of this work is to investigate brain microanatomy alterations in obese Zucker rats (OZRs), as a model of MetS, compared to their counterparts lean Zucker rats (LZRs). 12-, 16-, and 20-weeks-old male OZRs and LZRs were studied. General physiological parameters and blood values were measured. Immunochemical and immunohistochemical techniques were applied to analyze the brain alterations. The morphology of nerve cells and axons, astrocytes and microglia were investigated. The blood-brain barrier (BBB) changes occurring in OZRs were assessed as well using aquaporin-4 (AQP4) and glucose transporter protein-1 (GLUT1) as markers. Body weight gain, hypertension, hyperglycemia, and hyperlipidemia were found in OZRs compared to LZRs. In the frontal cortex and hippocampus, a decrease of neurons was noticeable in the older obese rats in comparison to their age-matched lean counterparts. In OZRs, a reduction of neurofilament immunoreaction and gliosis was observed. The BBB of older OZRs revealed an increased expression of AQP4 likely related to the development of edema. A down-regulation of GLUT1 was found in OZRs of 12 weeks of age, whereas it increased in older OZRs. The behavioral analysis revealed cognitive alterations in 20-week-old OZRs. Based on these results, the OZRs may be useful for understanding the mechanisms through which obesity and related metabolic alterations induce neurodegeneration.


Asunto(s)
Envejecimiento/patología , Encéfalo/patología , Síndrome Metabólico/patología , Obesidad/patología , Animales , Astrocitos/patología , Axones/patología , Barrera Hematoencefálica/patología , Encéfalo/citología , Cognición , Modelos Animales de Enfermedad , Transportador de Glucosa de Tipo 1/metabolismo , Masculino , Síndrome Metabólico/metabolismo , Síndrome Metabólico/psicología , Microglía/patología , Enfermedades Neurodegenerativas/etiología , Neuronas/patología , Obesidad/metabolismo , Obesidad/psicología , Ratas Zucker
6.
Nutrients ; 12(5)2020 May 04.
Artículo en Inglés | MEDLINE | ID: mdl-32375317

RESUMEN

The accumulation of adipose tissue increases the risk of several diseases. The fruits-intake, containing phytochemicals, is inversely correlated with their development. This study evaluated the effects of anthocyanin-rich tart cherries in diet-induced obese (DIO) rats. DIO rats were exposed to a high-fat diet with the supplementation of tart cherry seeds powder (DS) and seed powder plus juice (DJS). After 17 weeks, the DIO rats showed an increase of body weight, glycaemia, insulin, and systolic blood pressure. In the DS and DJS groups, there was a decrease of systolic blood pressure, glycaemia, triglycerides, and thiobarbituric reactive substances in the serum. In the DJS rats, computed tomography revealed a decrease in the spleen-to-liver attenuation ratio. Indeed, sections of the DIO rats presented hepatic injury characterized by steatosis, which was lower in the supplemented groups. In the liver of the DIO compared with rats fed with a standard diet (CHOW), a down-regulation of the GRP94 protein expression and a reduction of LC3- II/LC3-I ratio were found, indicating endoplasmic reticulum stress and impaired autophagy flux. Interestingly, tart cherry supplementation enhanced both unfolded protein response (UPR) and autophagy. This study suggests that tart cherry supplementation, although it did not reduce body weight in the DIO rats, prevented its related risk factors and liver steatosis.


Asunto(s)
Antocianinas/administración & dosificación , Dieta Alta en Grasa/efectos adversos , Suplementos Dietéticos , Hígado Graso/etiología , Hígado Graso/prevención & control , Jugos de Frutas y Vegetales , Obesidad/etiología , Obesidad/metabolismo , Fitoquímicos/administración & dosificación , Fitoterapia , Prunus avium , Semillas , Animales , Autofagia , Peso Corporal , Modelos Animales de Enfermedad , Regulación hacia Abajo , Estrés del Retículo Endoplásmico , Hígado Graso/metabolismo , Expresión Génica , Masculino , Glicoproteínas de Membrana/genética , Glicoproteínas de Membrana/metabolismo , Proteínas Asociadas a Microtúbulos/genética , Proteínas Asociadas a Microtúbulos/metabolismo , Pliegue de Proteína , Ratas Wistar
7.
Nutrients ; 12(3)2020 02 27.
Artículo en Inglés | MEDLINE | ID: mdl-32120798

RESUMEN

Evidence suggests that obesity adversely affects brain function. High body mass index, hypertension, dyslipidemia, insulin resistance, and diabetes are risk factors for increasing cognitive decline. Tart cherries (PrunusCerasus L.) are rich in anthocyanins and components that modify lipid metabolism. This study evaluated the effects of tart cherries on the brain in diet-induced obese (DIO) rats. DIO rats were fed with a high-fat diet alone or in association with a tart cherry seeds powder (DS) and juice (DJS). DIO rats were compared to rats fed with a standard diet (CHOW). Food intake, body weight, fasting glycemia, insulin, cholesterol, and triglycerides were measured. Immunochemical and immunohistochemical techniques were performed. Results showed that body weight did not differ among the groups. Blood pressure and glycemia were decreased in both DS and DJS groups when compared to DIO rats. Immunochemical and immunohistochemical techniques demonstrated that in supplemented DIO rats, the glial fibrillary acid protein expression and microglial activation were reduced in both the hippocampus and in the frontal cortex, while the neurofilament was increased. Tart cherry intake modified aquaporin 4 and endothelial inflammatory markers. These findings indicate the potential role of this nutritional supplement in preventing obesity-related risk factors, especially neuroinflammation.


Asunto(s)
Dieta Alta en Grasa/efectos adversos , Lóbulo Frontal , Jugos de Frutas y Vegetales , Hipocampo , Obesidad , Prunus avium , Semillas , Animales , Lóbulo Frontal/metabolismo , Lóbulo Frontal/patología , Hipocampo/metabolismo , Hipocampo/patología , Masculino , Obesidad/inducido químicamente , Obesidad/dietoterapia , Obesidad/metabolismo , Obesidad/patología , Ratas , Ratas Wistar
8.
Int J Mol Sci ; 21(6)2020 Mar 16.
Artículo en Inglés | MEDLINE | ID: mdl-32188150

RESUMEN

Metabolic syndrome (MetS) is a predictor of cardiovascular diseases, commonly associated with oxidative stress and inflammation. However, the pathogenic mechanisms are not yet fully elucidated. The aim of the study is to evaluate the oxidative status and inflammation in the heart of obese Zucker rats (OZRs) and lean Zucker rats (LZRs) at different ages. Morphological and morphometric analyses were performed in the heart. To study the oxidative status, the malondialdehyde (MDA), 4-hydroxynonenal (4-HNE), protein oxidation, and antioxidant enzymes were measured in plasma and heart. To elucidate the inflammatory markers involved, immunohistochemistry and Western blot were performed for cellular adhesion molecules and proinflammatory cytokines. OZRs were characterized by hypertension, hyperlipidemia, hyperglycemia, and insulin resistance. The obesity increased MDA and decreased the activities of superoxide dismutase (SOD) in plasma as well as in the heart, associated with cardiomyocytes hypertrophy. OxyBlot in plasma and in heart showed an increase of oxidativestate proteins in OZRs. Vascular cell adhesion molecule-1, interleukin-6, and tumor necrosis factor-α expressions in OZRs were higher than those of LZRs. However, these processes did not induce apoptosis or necrosis of cardiomyocytes. Thus, MetS induces the lipid peroxidation and decreased antioxidant defense that leads to heart tissue changes and coronary inflammation.


Asunto(s)
Sistema Cardiovascular/metabolismo , Síndrome Metabólico/metabolismo , Obesidad/metabolismo , Aldehídos/metabolismo , Animales , Antioxidantes/farmacología , Sistema Cardiovascular/patología , Sistema Cardiovascular/fisiopatología , Citocinas/metabolismo , Modelos Animales de Enfermedad , Corazón/fisiopatología , Hiperglucemia/complicaciones , Hiperglucemia/fisiopatología , Hiperlipidemias/complicaciones , Hiperlipidemias/fisiopatología , Hipertensión/complicaciones , Hipertensión/fisiopatología , Inflamación , Resistencia a la Insulina , Masculino , Malondialdehído/metabolismo , Síndrome Metabólico/patología , Síndrome Metabólico/fisiopatología , Obesidad/patología , Obesidad/fisiopatología , Estrés Oxidativo , Ratas , Ratas Zucker , Superóxido Dismutasa/metabolismo
10.
Nutrients ; 9(10)2017 Sep 29.
Artículo en Inglés | MEDLINE | ID: mdl-28961195

RESUMEN

Choline is involved in relevant neurochemical processes. In particular, it is the precursor and metabolite of acetylcholine (ACh). Choline is an essential component of different membrane phospholipids that are involved in intraneuronal signal transduction. On the other hand, cholinergic precursors are involved in ACh release and carry out a neuroprotective effect based on an anti-inflammatory action. Based on these findings, the present study was designed to evaluate the effects of choline and choline precursor (Choline alphoscerate, GPC) in the modulation of inflammatory processes in the rat brain. Male Wistar rats were intraperitoneally treated with 87 mg of choline chloride/kg/day (65 mg/kg/day of choline), and at choline-equivalent doses of GPC (150 mg/kg/day) and vehicle for two weeks. The brains were dissected and used for immunochemical and immunohistochemical analysis. Inflammatory cytokines (Interleukin-1ß, IL-1ß; Interleukin-6 , IL-6 and Tumor Necrosis Factor-α, TNF-α) and endothelial adhesion molecules (Intercellular Adhesion Molecule, ICAM-1 and Vascular cell Adhesion Molecule, VCAM-1) were studied in the frontal cortex, hippocampus, and cerebellum. The results clearly demonstrated that treatment with choline or GPC did not affect the expression of the inflammatory markers in the different cerebral areas evaluated. Therefore, choline and GPC did not stimulate the inflammatory processes that we assessed in this study.


Asunto(s)
Antiinflamatorios no Esteroideos/uso terapéutico , Corteza Cerebral/efectos de los fármacos , Colina/uso terapéutico , Encefalitis/prevención & control , Glicerilfosforilcolina/uso terapéutico , Neuronas/efectos de los fármacos , Fármacos Neuroprotectores/uso terapéutico , Animales , Antiinflamatorios no Esteroideos/administración & dosificación , Antiinflamatorios no Esteroideos/efectos adversos , Biomarcadores/metabolismo , Cerebelo/efectos de los fármacos , Cerebelo/inmunología , Cerebelo/metabolismo , Cerebelo/patología , Corteza Cerebral/inmunología , Corteza Cerebral/metabolismo , Corteza Cerebral/patología , Colina/administración & dosificación , Colina/efectos adversos , Citocinas/metabolismo , Encefalitis/inmunología , Encefalitis/metabolismo , Encefalitis/patología , Lóbulo Frontal/efectos de los fármacos , Lóbulo Frontal/inmunología , Lóbulo Frontal/metabolismo , Lóbulo Frontal/patología , Glicerilfosforilcolina/administración & dosificación , Glicerilfosforilcolina/efectos adversos , Hipocampo/efectos de los fármacos , Hipocampo/inmunología , Hipocampo/metabolismo , Hipocampo/patología , Inyecciones Intraperitoneales , Molécula 1 de Adhesión Intercelular/metabolismo , Masculino , Proteínas del Tejido Nervioso/metabolismo , Neuronas/inmunología , Neuronas/metabolismo , Neuronas/patología , Fármacos Neuroprotectores/administración & dosificación , Fármacos Neuroprotectores/efectos adversos , Fármacos Neuroprotectores/líquido cefalorraquídeo , Ratas Wistar , Molécula 1 de Adhesión Celular Vascular/metabolismo
11.
CNS Neurol Disord Drug Targets ; 16(6): 664-676, 2017.
Artículo en Inglés | MEDLINE | ID: mdl-28462694

RESUMEN

BACKGROUND: Worldwide, at least 2.8 million people die each year as a result of being overweight or obese. Obesity leads to metabolic syndrome, a pathological condition characterized by adverse metabolic effects on blood pressure, cholesterol, triglycerides and insulin resistance. Population- based investigations have suggested that obesity and metabolic syndrome may be associated with poorer cognitive performance. METHOD: A structured search of bibliographic source (PubMed) was undertaken. The following terms "inflammation and obesity and brain", "cholinergic system and obesity", "cholinergic system and metabolic syndrome", "Cognitive impairment and obesity" and "metabolic syndrome and brain" were used as search strings. RESULTS: Over 200 papers, mainly published in the past 10 years were analysed. The major results regarded keyword "metabolic syndrome and brain" followed by, "Cognitive impairment and obesity", "inflammation and obesity and brain", "cholinergic system and obesity" and "cholinergic system and metabolic syndrome". Most papers were pre-clinical but, in general, they were inhomogeneous. Therefore, the results were cited according their contribution to clarify the molecular involvement of obesity and/or metabolic syndrome in cholinergic impairment. CONCLUSION: This review focuses on the correlation between brain cholinergic system alterations and high-fat diet, describing the involvement of cholinergic system in inflammatory processes related to metabolic syndrome and obesity, which may lead to cognitive decline. Metabolic syndrome has been suggested as a risk factor for cerebrovascular diseases and has been associated with cognitive impairment in different functional brain domains. Preclinical and clinical studies have identified the cholinergic system as a specific target of metabolic syndrome and obesity. The modifications of cholinergic neurotransmission and its involvement in neuro-inflammation may be related to cognitive impairment that affects obese patients.


Asunto(s)
Encéfalo/metabolismo , Colinérgicos/metabolismo , Trastornos del Conocimiento/etiología , Trastornos del Conocimiento/patología , Síndrome Metabólico/complicaciones , Obesidad/complicaciones , Humanos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA