Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Más filtros













Base de datos
Intervalo de año de publicación
2.
Cytotherapy ; 26(2): 201-209, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-38085197

RESUMEN

BACKGROUND AIMS: Accurate assessment of cell viability is crucial in cellular product manufacturing, yet selecting the appropriate viability assay presents challenges due to various factors. This study compares and evaluates different viability assays on fresh and cryopreserved cellular products, including peripheral blood stem cell (PBSC) and peripheral blood mononuclear cell (PBMC) apheresis products, purified PBMCs and cultured chimeric antigen receptor and T-cell receptor-engineered T-cell products. METHODS: Viability assays, including manual Trypan Blue exclusion, flow cytometry-based assays using 7-aminoactinomycin D (7-AAD) or propidium iodide (PI) direct staining or cell surface marker staining in conjunction with 7-AAD, Cellometer (Nexcelom Bioscience LLC, Lawrence, MA, USA) Acridine Orange/PI staining and Vi-CELL BLU Cell Viability Analyzer (Beckman Coulter, Inc, Brea, CA, USA), were evaluated. A viability standard was established using live and dead cell mixtures to assess the accuracy of these assays. Furthermore, precision assessment was conducted to determine the reproducibility of the viability assays. Additionally, the viability of individual cell populations from cryopreserved PBSC and PBMC apheresis products was examined. RESULTS: All methods provided accurate viability measurements and generated consistent and reproducible viability data. The assessed viability assays were demonstrated to be reliable alternatives when evaluating the viability of fresh cellular products. However, cryopreserved products exhibited variability among the tested assays. Additionally, analyzing the viability of each subset of the cryopreserved PBSC and PBMC apheresis products revealed that T cells and granulocytes were more susceptible to the freeze-thaw process, showing decreased viability. CONCLUSIONS: The study demonstrates the importance of careful assay selection, validation and standardization, particularly for assessing the viability of cryopreserved products. Given the complexity of cellular products, choosing a fit-for-purpose viability assay is essential.


Asunto(s)
Leucocitos Mononucleares , Azul de Tripano , Reproducibilidad de los Resultados , Supervivencia Celular , Criopreservación/métodos , Citometría de Flujo/métodos
3.
Cell Rep Med ; 4(10): 101212, 2023 10 17.
Artículo en Inglés | MEDLINE | ID: mdl-37774704

RESUMEN

Pediatric patients with relapsed or refractory rhabdomyosarcoma (RMS) have dismal cure rates, and effective therapy is urgently needed. The oncogenic receptor tyrosine kinase fibroblast growth factor receptor 4 (FGFR4) is highly expressed in RMS and lowly expressed in healthy tissues. Here, we describe a second-generation FGFR4-targeting chimeric antigen receptor (CAR), based on an anti-human FGFR4-specific murine monoclonal antibody 3A11, as an adoptive T cell treatment for RMS. The 3A11 CAR T cells induced robust cytokine production and cytotoxicity against RMS cell lines in vitro. In contrast, a panel of healthy human primary cells failed to activate 3A11 CAR T cells, confirming the selectivity of 3A11 CAR T cells against tumors with high FGFR4 expression. Finally, we demonstrate that 3A11 CAR T cells are persistent in vivo and can effectively eliminate RMS tumors in two metastatic and two orthotopic models. Therefore, our study credentials CAR T cell therapy targeting FGFR4 to treat patients with RMS.


Asunto(s)
Receptores Quiméricos de Antígenos , Rabdomiosarcoma , Animales , Niño , Humanos , Ratones , Línea Celular Tumoral , Inmunoterapia Adoptiva , Receptor Tipo 4 de Factor de Crecimiento de Fibroblastos/genética , Receptor Tipo 4 de Factor de Crecimiento de Fibroblastos/metabolismo , Receptores Quiméricos de Antígenos/genética , Rabdomiosarcoma/tratamiento farmacológico
4.
Cytotherapy ; 25(4): 442-450, 2023 04.
Artículo en Inglés | MEDLINE | ID: mdl-36710226

RESUMEN

BACKGROUND AIMS: Hematopoietic stem cell transplantation using bone marrow as the graft source is a common treatment for hematopoietic malignancies and disorders. For allogeneic transplants, processing of bone marrow requires the depletion of ABO-mismatched red blood cells (RBCs) to avoid transfusion reactions. Here the authors tested the use of an automated closed system for depleting RBCs from bone marrow and compared the results to a semi-automated platform that is more commonly used in transplant centers today. The authors found that fully automated processing using the Sepax instrument (Cytiva, Marlborough, MA, USA) resulted in depletion of RBCs and total mononuclear cell recovery that were comparable to that achieved with the COBE 2991 (Terumo BCT, Lakewood, CO, USA) semi-automated process. METHODS: The authors optimized the fully automated and closed Sepax SmartRedux (Cytiva) protocol. Three reduction folds (10×, 12× and 15×) were tested on the Sepax. Each run was compared with the standard processing performed in the authors' center on the COBE 2991. Given that bone marrow is difficult to acquire for these purposes, the authors opted to create a surrogate that is more easily obtainable, which consisted of cryopreserved peripheral blood stem cells that were thawed and mixed with RBCs and supplemented with Plasma-Lyte A (Baxter, Deerfield, IL, USA) and 4% human serum albumin (Baxalta, Westlake Village, CA, USA). This "bone marrow-like" product was split into two starting products of approximately 600 mL, and these were loaded onto the COBE and Sepax for direct comparison testing. Samples were taken from the final products for cell counts and flow cytometry. The authors also tested a 10× Sepax reduction using human bone marrow supplemented with human liquid plasma and RBCs. RESULTS: RBC reduction increased as the Sepax reduction rate increased, with an average of 86.06% (range of 70.85-96.39%) in the 10×, 98.80% (range of 98.1-99.5%) in the 12× and 98.89% (range of 98.80-98.89%) in the 15×. The reduction rate on the COBE ranged an average of 69.0-93.15%. However, white blood cell (WBC) recovery decreased as the Sepax reduction rate increased, with an average of 47.65% (range of 38.9-62.35%) in the 10×, 14.56% (range of 14.34-14.78%) in the 12× and 27.97% (range of 24.7-31.23%) in the 15×. COBE WBC recovery ranged an average of 53.17-76.12%. Testing a supplemented human bone marrow sample using a 10× Sepax reduction resulted in an average RBC reduction of 84.22% (range of 84.0-84.36%) and WBC recovery of 43.37% (range of 37.48-49.26%). Flow cytometry analysis also showed that 10× Sepax reduction resulted in higher purity and better recovery of CD34+, CD3+ and CD19+ cells compared with 12× and 15× reduction. Therefore, a 10× reduction rate was selected for the Sepax process. CONCLUSIONS: The fully automated and closed SmartRedux program on the Sepax was shown to be effective at reducing RBCs from "bone marrow-like" products and a supplemented bone marrow product using a 10× reduction rate.


Asunto(s)
Médula Ósea , Trasplante de Células Madre Hematopoyéticas , Humanos , Eritrocitos , Trasplante de Células Madre Hematopoyéticas/métodos , Trasplante de Médula Ósea , Citometría de Flujo
5.
J Transl Med ; 19(1): 523, 2021 12 24.
Artículo en Inglés | MEDLINE | ID: mdl-34952597

RESUMEN

BACKGROUND: Chimeric antigen receptor (CAR) or T-cell receptor (TCR) engineered T-cell therapy has recently emerged as a promising adoptive immunotherapy approach for the treatment of hematologic malignancies and solid tumors. Multiparametric flow cytometry-based assays play a critical role in monitoring cellular manufacturing steps. Since manufacturing CAR/TCR T-cell products must be in compliance with current good manufacturing practices (cGMP), a standard or quality control for flow cytometry assays should be used to ensure the accuracy of flow cytometry results, but none is currently commercially available. Therefore, we established a procedure to generate an in-house cryopreserved CAR/TCR T-cell products for use as a flow cytometry quality control and validated their use. METHODS: Two CAR T-cell products: CD19/CD22 bispecific CAR T-cells and FGFR4 CAR T-cells and one TCR-engineered T-cell product: KK-LC-1 TCR T-cells were manufactured in Center for Cellular Engineering (CCE), NIH Clinical Center. The products were divided in aliquots, cryopreserved and stored in the liquid nitrogen. The cryopreserved flow cytometry quality controls were tested in flow cytometry assays which measured post-thaw viability, CD3, CD4 and CD8 frequencies as well as the transduction efficiency and vector identity. The long-term stability and shelf-life of cryopreserved quality control cells were evaluated. In addition, the sensitivity as well as the precision assay were also assessed on the cryopreserved quality control cells. RESULTS: After thawing, the viability of the cryopreserved CAR/TCR T-cell controls was found to be greater than 50%. The expression of transduction efficiency and vector identity markers by the cryopreserved control cells were stable for at least 1 year; with post-thaw values falling within ± 20% range of the values measured at time of cryopreservation. After thawing and storage at room temperature, the stability of these cryopreserved cells lasted at least 6 h. In addition, our cryopreserved CAR/TCR-T cell quality controls showed a strong correlation between transduction efficiency expression and dilution factors. Furthermore, the results of flow cytometric analysis of the cryopreserved cells among different laboratory technicians and different flow cytometry instruments were comparable, highlighting the reproducibility and reliability of these quality control cells. CONCLUSION: We developed and validated a feasible and reliable procedure to establish a bank of cryopreserved CAR/TCR T-cells for use as flow cytometry quality controls, which can serve as a quality control standard for in-process and lot-release testing of CAR/TCR T-cell products.


Asunto(s)
Receptores Quiméricos de Antígenos , Criopreservación/métodos , Citometría de Flujo/métodos , Inmunoterapia Adoptiva/métodos , Control de Calidad , Receptores de Antígenos de Linfocitos T , Reproducibilidad de los Resultados , Linfocitos T
6.
J Transl Med ; 19(1): 474, 2021 11 24.
Artículo en Inglés | MEDLINE | ID: mdl-34819105

RESUMEN

BACKGROUND: Gene transfer is an important tool for cellular therapies. Lentiviral vectors are most effectively transferred into lymphocytes or hematopoietic progenitor cells using spinoculation. To enable cGMP (current Good Manufacturing Practice)-compliant cell therapy production, we developed and compared a closed-system spinoculation method that uses cell culture bags, and an automated closed system spinoculation method to decrease technician hands on time and reduce the likelihood for microbial contamination. METHODS: Sepax spinoculation, bag spinoculation, and static bag transduction without spinoculation were compared for lentiviral gene transfer in lymphocytes collected by apheresis. The lymphocytes were transduced once and cultured for 9 days. The lentiviral vectors tested encoded a CD19/CD22 Bispecific Chimeric Antigen Receptor (CAR), a FGFR4-CAR, or a CD22-CAR. Sepax spinoculation times were evaluated by testing against bag spinoculation and static transduction to optimize the Sepax spin time. The Sepax spinoculation was then used to test the transduction of different CAR vectors. The performance of the process using healthy donor and a patient sample was evaluated. Functional assessment was performed of the CD19/22 and CD22 CAR T-cells using killing assays against the NALM6 tumor cell line and cytokine secretion analysis. Finally, gene expression of the transduced T-cells was examined to determine if there were any major changes that may have occurred as a result of the spinoculation process. RESULTS: The process of spinoculation lead to significant enhancement in gene transfer. Sepax spinoculation using a 1-h spin time showed comparable transduction efficiency to the bag spinoculation, and much greater than the static bag transduction method (83.4%, 72.8%, 35.7% n = 3). The performance of three different methods were consistent for all lentiviral vectors tested and no significant difference was observed when using starting cells from healthy donor versus a patient sample. Sepax spinoculation does not affect the function of the CAR T-cells against tumor cells, as these cells appeared to kill target cells equally well. Spinoculation also does not appear to affect gene expression patterns that are necessary for imparting function on the cell. CONCLUSIONS: Closed system-bag spinoculation resulted in more efficient lymphocyte gene transfer than standard bag transductions without spinoculation. This method is effective for both retroviral and lentiviral vector gene transfer in lymphocytes and may be a feasible approach for gene transfer into other cell types including hematopoietic and myeloid progenitors. Sepax spinoculation further improved upon the process by offering an automated, closed system approach that significantly decreased hands-on time while also decreasing the risk of culture bag tears and microbial contamination.


Asunto(s)
Receptores Quiméricos de Antígenos , Antígenos CD19 , Terapia Genética , Humanos , Inmunoterapia Adoptiva , Linfocitos T , Transducción Genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA