Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Nature ; 606(7914): 570-575, 2022 06.
Artículo en Inglés | MEDLINE | ID: mdl-35614218

RESUMEN

The lineage and developmental trajectory of a cell are key determinants of cellular identity. In the vascular system, endothelial cells (ECs) of blood and lymphatic vessels differentiate and specialize to cater to the unique physiological demands of each organ1,2. Although lymphatic vessels were shown to derive from multiple cellular origins, lymphatic ECs (LECs) are not known to generate other cell types3,4. Here we use recurrent imaging and lineage-tracing of ECs in zebrafish anal fins, from early development to adulthood, to uncover a mechanism of specialized blood vessel formation through the transdifferentiation of LECs. Moreover, we demonstrate that deriving anal-fin vessels from lymphatic versus blood ECs results in functional differences in the adult organism, uncovering a link between cell ontogeny and functionality. We further use single-cell RNA-sequencing analysis to characterize the different cellular populations and transition states involved in the transdifferentiation process. Finally, we show that, similar to normal development, the vasculature is rederived from lymphatics during anal-fin regeneration, demonstrating that LECs in adult fish retain both potency and plasticity for generating blood ECs. Overall, our research highlights an innate mechanism of blood vessel formation through LEC transdifferentiation, and provides in vivo evidence for a link between cell ontogeny and functionality in ECs.


Asunto(s)
Vasos Sanguíneos , Transdiferenciación Celular , Vasos Linfáticos , Aletas de Animales/citología , Animales , Vasos Sanguíneos/citología , Linaje de la Célula , Células Endoteliales/citología , Vasos Linfáticos/citología , Pez Cebra
2.
JCI Insight ; 6(13)2021 07 08.
Artículo en Inglés | MEDLINE | ID: mdl-34236046

RESUMEN

Apolipoprotein B (ApoB) is the primary protein of chylomicrons, VLDLs, and LDLs and is essential for their production. Defects in ApoB synthesis and secretion result in several human diseases, including abetalipoproteinemia and familial hypobetalipoproteinemia (FHBL1). In addition, ApoB-related dyslipidemia is linked to nonalcoholic fatty liver disease (NAFLD), a silent pandemic affecting billions globally. Due to the crucial role of APOB in supplying nutrients to the developing embryo, ApoB deletion in mammals is embryonic lethal. Thus, a clear understanding of the roles of this protein during development is lacking. Here, we established zebrafish mutants for 2 apoB genes: apoBa and apoBb.1. Double-mutant embryos displayed hepatic steatosis, a common hallmark of FHBL1 and NAFLD, as well as abnormal liver laterality, decreased numbers of goblet cells in the gut, and impaired angiogenesis. We further used these mutants to identify the domains within ApoB responsible for its functions. By assessing the ability of different truncated forms of human APOB to rescue the mutant phenotypes, we demonstrate the benefits of this model for prospective therapeutic screens. Overall, these zebrafish models uncover what are likely previously undescribed functions of ApoB in organ development and morphogenesis and shed light on the mechanisms underlying hypolipidemia-related diseases.


Asunto(s)
Apolipoproteínas B , Desarrollo Embrionario/genética , Hígado Graso , Intestinos , Neovascularización Patológica , Animales , Apolipoproteínas B/biosíntesis , Apolipoproteínas B/genética , Apolipoproteínas B/metabolismo , Células Endoteliales , Hígado Graso/embriología , Hígado Graso/genética , Células Caliciformes , Intestinos/embriología , Intestinos/patología , Modelos Biológicos , Mutación , Neovascularización Patológica/embriología , Neovascularización Patológica/genética , Remodelación Vascular/genética , Pez Cebra , Proteínas de Pez Cebra/genética
3.
Cell Rep ; 35(11): 109255, 2021 06 15.
Artículo en Inglés | MEDLINE | ID: mdl-34133928

RESUMEN

The formation of new vessels requires a tight synchronization between proliferation, differentiation, and sprouting. However, how these processes are differentially activated, often by neighboring endothelial cells (ECs), remains unclear. Here, we identify cell cycle progression as a regulator of EC sprouting and differentiation. Using transgenic zebrafish illuminating cell cycle stages, we show that venous and lymphatic precursors sprout from the cardinal vein exclusively in G1 and reveal that cell-cycle arrest is induced in these ECs by overexpression of p53 and the cyclin-dependent kinase (CDK) inhibitors p27 and p21. We further demonstrate that, in vivo, forcing G1 cell-cycle arrest results in enhanced vascular sprouting. Mechanistically, we identify the mitogenic VEGFC/VEGFR3/ERK axis as a direct inducer of cell-cycle arrest in ECs and characterize the cascade of events that render "sprouting-competent" ECs. Overall, our results uncover a mechanism whereby mitogen-controlled cell-cycle arrest boosts sprouting, raising important questions about the use of cell cycle inhibitors in pathological angiogenesis and lymphangiogenesis.


Asunto(s)
Puntos de Control del Ciclo Celular , Células Endoteliales , Vasos Linfáticos , Neovascularización Fisiológica , Factor C de Crecimiento Endotelial Vascular , Venas , Proteínas de Pez Cebra , Animales , Animales Modificados Genéticamente , Puntos de Control del Ciclo Celular/efectos de los fármacos , Diferenciación Celular , Células Endoteliales/citología , Células Endoteliales/efectos de los fármacos , Células Endoteliales/metabolismo , Fase G1 , Vasos Linfáticos/citología , Sistema de Señalización de MAP Quinasas , Neovascularización Fisiológica/efectos de los fármacos , Roscovitina/farmacología , Factor C de Crecimiento Endotelial Vascular/metabolismo , Receptor 3 de Factores de Crecimiento Endotelial Vascular/metabolismo , Venas/citología , Pez Cebra , Proteínas de Pez Cebra/metabolismo
4.
Elife ; 82019 11 08.
Artículo en Inglés | MEDLINE | ID: mdl-31702554

RESUMEN

In recent years, there has been increasing interest in the role of lymphatics in organ repair and regeneration, due to their importance in immune surveillance and fluid homeostasis. Experimental approaches aimed at boosting lymphangiogenesis following myocardial infarction in mice, were shown to promote healing of the heart. Yet, the mechanisms governing cardiac lymphatic growth remain unclear. Here, we identify two distinct lymphatic populations in the hearts of zebrafish and mouse, one that forms through sprouting lymphangiogenesis, and the other by coalescence of isolated lymphatic cells. By tracing the development of each subset, we reveal diverse cellular origins and differential response to signaling cues. Finally, we show that lymphatic vessels are required for cardiac regeneration in zebrafish as mutants lacking lymphatics display severely impaired regeneration capabilities. Overall, our results provide novel insight into the mechanisms underlying lymphatic formation during development and regeneration, opening new avenues for interventions targeting specific lymphatic populations.


Asunto(s)
Corazón/fisiología , Linfangiogénesis/fisiología , Vasos Linfáticos/fisiología , Miocardio/metabolismo , Regeneración/fisiología , Transducción de Señal/fisiología , Animales , Animales Modificados Genéticamente , Corazón/embriología , Corazón/crecimiento & desarrollo , Linfangiogénesis/genética , Sistema Linfático/citología , Sistema Linfático/metabolismo , Sistema Linfático/fisiología , Vasos Linfáticos/metabolismo , Ratones Noqueados , Ratones Transgénicos , Mutación , Infarto del Miocardio/fisiopatología , Regeneración/genética , Transducción de Señal/genética , Pez Cebra
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...