RESUMEN
BACKGROUND: Aneurysmal subarachnoid hemorrhage remains one of the most prevalent causes of strokes in the young causing a high socioeconomic damage. Both emergent and elective treatments of intracranial aneurysms remain essential challenges for neurovascular centers. We aim to present conceptual education on clip ligation of middle cerebral artery bifurcation aneurysms in an accessible and structured way to maximize the educational takeaway of residents from aneurysm cases. METHODS: After 30 years of experience of the senior author in cerebrovascular surgery in three centers, we closely reviewed an exemplary case of elective right middle cerebral artery bifurcation aneurysm clipping and contrasted it to an alternative microneurosurgical approach to illustrate key principles of microneurosurgical clip ligation for neurosurgical trainees. RESULTS: Dissection of the sylvian fissure, subfrontal approach to the optic-carotid complex, proximal control, aneurysm dissection, dissection of kissing branches, dissection of aneurysm fundus, temporary and permanent clipping, as well as aneurysm inspection and resection are highlighted as key steps of clip ligation. This proximal-to-distal approach is contrasted to the distal-to-proximal approach. Additionally, general principles of intracranial surgery such as use of retraction, arachnoid dissection, and draining of cerebrospinal fluid are addressed. CONCLUSION: Due to a constantly decreasing case load in the era of neurointerventionalism, the paradox of facing increased complexity with decreased experience must be met with a sophisticated practical and theoretical education of neurosurgical trainees early on and with a low threshold.
Asunto(s)
Aneurisma Intracraneal , Hemorragia Subaracnoidea , Humanos , Aneurisma Intracraneal/cirugía , Aneurisma Intracraneal/patología , Procedimientos Neuroquirúrgicos , Arteria Cerebral Media/cirugía , Arteria Cerebral Media/patología , Hemorragia Subaracnoidea/cirugía , CraneotomíaRESUMEN
CONTEXT: Sexual dimorphism has direct consequences on the incidence and survival of cancer. Early and accurate diagnosis is crucial to improve prognosis. OBJECTIVE: This work aimed to characterized the influence of sex and adrenal asymmetry on the emergence of adrenal tumors. METHODS: We conducted a multicenter, observational study involving 8037 patients with adrenal tumors, including adrenocortical carcinoma (ACC), aldosterone-producing adenoma (APA), cortisol-secreting adrenocortical adenomas (CSAs), non-aldosterone-producing adrenal cortical adenoma (NAPACA), pheochromocytoma (PCC), and neuroblastoma (NB), and investigated tumor lateralization according to sex. Human adrenal tissues (n = 20) were analyzed with a multiomics approach that allows determination of gene expression, catecholamine, and steroid contents in a single sample. In addition, we performed a literature review of computed tomography and magnetic resonance imaging-based studies examining adrenal gland size. RESULTS: ACC (n = 1858); CSA (n = 68), NAPACA (n = 2174), and PCC (n = 1824) were more common in females than in males (female-to-male ratio: 1.1:1-3.8:1), whereas NBs (n = 2320) and APAs (n = 228) were less prevalent in females (0.8:1). ACC, APA, CSA, NAPACA, and NB occurred more frequently in the left than in the right adrenal (left-to-right ratio: 1.1:1-1.8:1), whereas PCC arose more often in the right than in the left adrenal (0.8:1). In both sexes, the left adrenal was larger than the right adrenal; females have smaller adrenals than males. CONCLUSION: Adrenal asymmetry in both sexes may be related to the pathogenesis of adrenal tumors and should be considered during the diagnosis of these tumors.
Asunto(s)
Neoplasias de la Corteza Suprarrenal , Neoplasias de las Glándulas Suprarrenales , Adenoma Corticosuprarrenal , Carcinoma Corticosuprarrenal , Feocromocitoma , Femenino , Humanos , Masculino , Corticoesteroides , Neoplasias de la Corteza Suprarrenal/genética , Glándulas Suprarrenales/diagnóstico por imagen , Glándulas Suprarrenales/metabolismo , Adenoma Corticosuprarrenal/metabolismo , Aldosterona/metabolismo , Feocromocitoma/metabolismo , Caracteres SexualesRESUMEN
BACKGROUND AND PURPOSE: We characterized autonomic pilomotor and sudomotor skin function in early Parkinson's disease (PD) longitudinally. METHODS: We enrolled PD patients (Hoehn and Yahr 1-2) and healthy controls from movement disorder centers in Germany, Hungary, and the United States. We evaluated axon-reflex responses in adrenergic sympathetic pilomotor nerves and in cholinergic sudomotor nerves and assessed sympathetic skin response (SSR), predominantly parasympathetic neurocardiac function via heart rate variability, and disease-related symptoms at baseline, after 2 weeks, and after 1 and 2 years. CLINICALTRIALS: gov: NCT03043768. RESULTS: We included 38 participants: 26 PD (60% females, aged 62.4 ± 7.4 years, mean ± SD) and 12 controls (75% females, aged 59.5 ± 5.8 years). Pilomotor function was reduced in PD compared to controls at baseline when quantified via spatial axon-reflex spread (78 [43-143], median [interquartile range] mm2 vs. 175 [68-200] mm2 , p = 0.01) or erect hair follicle count in the axon-reflex region (8 [6-10] vs. 11 [6-16], p = 0.008) and showed reliability absent any changes from baseline to Week 2 (p = not significant [ns]). Between-group differences increased over the course of 2 years (p < 0.05), although no decline was observed within groups (p = ns). Pilomotor impairment in PD correlated with motor symptoms (rho = -0.59, p = 0.017) and was not lateralized (p = ns). Sudomotor axon-reflex and neurocardiac function did not differ between groups (p = ns), but SSR was reduced in PD (p = 0.0001). CONCLUSIONS: Impairment of adrenergic sympathetic pilomotor function and SSR in evolving PD is not paralleled by changes to cholinergic sudomotor function and parasympathetic neurocardiac function, suggesting a sympathetic pathophysiology. A pilomotor axon-reflex test might be useful to monitor PD-related pathology.
Asunto(s)
Enfermedades del Sistema Nervioso Autónomo , Enfermedad de Parkinson , Femenino , Humanos , Masculino , Enfermedad de Parkinson/diagnóstico , Reproducibilidad de los Resultados , Piel/patología , Sistema Nervioso Autónomo , Enfermedades del Sistema Nervioso Autónomo/etiología , AdrenérgicosRESUMEN
Adenosine-3', 5'-cyclic monophosphate (cAMP) produced by adenylate cyclases (ADCYs) is an established key regulator of cell homoeostasis. However, its role in cell cycle control is still controversially discussed. This study focussed on the impact of soluble HCO3 - -activated ADCY10 on cell cycle progression. Effects are quantified with Bayesian inference integrating a mathematical model and experimental data. The activity of ADCY10 in human umbilical vein endothelial cells (HUVECs) was either pharmacologically inhibited by KH7 or endogenously activated by HCO3 - . Cell numbers of individual cell cycle phases were assessed over time using flow cytometry. Based on these numbers, cell cycle dynamics were analysed using a mathematical model. This allowed precise quantification of cell cycle dynamics with model parameters that describe the durations of individual cell cycle phases. Endogenous inactivation of ADCY10 resulted in prolongation of mean cell cycle times (38.7 ± 8.3 h at 0 mM HCO3 - vs 30.3 ± 2.7 h at 24 mM HCO3 - ), while pharmacological inhibition resulted in functional arrest of cell cycle by increasing mean cell cycle time after G0 /G1 synchronization to 221.0 ± 96.3 h. All cell cycle phases progressed slower due to ADCY10 inactivation. In particular, the G1 -S transition was quantitatively the most influenced by ADCY10. In conclusion, the data of the present study show that ADCY10 is a key regulator in cell cycle progression linked specifically to the G1 -S transition.
Asunto(s)
Adenilil Ciclasas , AMP Cíclico , Humanos , Adenilil Ciclasas/genética , Adenilil Ciclasas/metabolismo , AMP Cíclico/metabolismo , Teorema de Bayes , Ciclo Celular , Células Endoteliales de la Vena Umbilical Humana/metabolismo , Modelos TeóricosRESUMEN
The motility of neutrophils and their ability to sense and to react to chemoattractants in their environment are of central importance for the innate immunity. Neutrophils are guided towards sites of inflammation following the activation of G-protein coupled chemoattractant receptors such as CXCR2 whose signaling strongly depends on the activity of Ca2+ permeable TRPC6 channels. It is the aim of this study to analyze data sets obtained in vitro (murine neutrophils) and in vivo (zebrafish neutrophils) with a stochastic mathematical model to gain deeper insight into the underlying mechanisms. The model is based on the analysis of trajectories of individual neutrophils. Bayesian data analysis, including the covariances of positions for fractional Brownian motion as well as for exponentially and power-law tempered model variants, allows the estimation of parameters and model selection. Our model-based analysis reveals that wildtype neutrophils show pure superdiffusive fractional Brownian motion. This so-called anomalous dynamics is characterized by temporal long-range correlations for the movement into the direction of the chemotactic CXCL1 gradient. Pure superdiffusion is absent vertically to this gradient. This points to an asymmetric 'memory' of the migratory machinery, which is found both in vitro and in vivo. CXCR2 blockade and TRPC6-knockout cause tempering of temporal correlations in the chemotactic gradient. This can be interpreted as a progressive loss of memory, which leads to a marked reduction of chemotaxis and search efficiency of neutrophils. In summary, our findings indicate that spatially differential regulation of anomalous dynamics appears to play a central role in guiding efficient chemotactic behavior.
Asunto(s)
Quimiotaxis , Neutrófilos , Animales , Teorema de Bayes , Factores Quimiotácticos , Quimiotaxis/fisiología , Ratones , Canal Catiónico TRPC6 , Pez CebraRESUMEN
BACKGROUND: Homoeostasis of the autonomic nervous system (ANS) contributes to cognitive functional integrity in learners and can be greatly influenced by emotions and stress. While moderate stress can enhance learning and memory processes, long-term stress compromises learning performance in a face-to-face classroom environment. Integrative online learning and communication tools were shown to be beneficial for visualization and comprehension but their effects on the ANS are poorly understood. We aim to assess the effects of video conference-supported live lectures compared to on-site classroom teaching on autonomic functions and their association with learning performance. METHODS AND DESIGN: Fifty mentally and physically healthy medical students will be enrolled in a randomized two-period crossover study. Subjects will attend a seminar, which is held in face-to-face and simultaneously transmitted via videoconference. Subjects will be allocated in two arms in a randomized sequence determining the order in which both seminar settings will be attended. At baseline and throughout the interactive seminar subjects will undergo detailed autonomic testing comprising neurocardiac (heart rate variability), sudomotor (sympathetic skin response), neurovascular (laser Doppler flowmetry) and pupillomotor (pupillography) function. Furthermore, learning progress will be evaluated using pre- and post-tests on the seminar subject and emotions will be assessed using profile of mood state (POMS) questionnaire. STATISTICAL ANALYSIS: Carryover effects will be handled using a two-way repeated measures (mixed model). Between-group differences (baseline vs face-to-face vs videoconference) will be determined using one-way analysis of variance ANOVA followed by Student-Newman-Keul test. LIMITATIONS AND STRENGTHS: This study may elucidate complex interactions between autonomic and emotional dynamics during conventional on-site and video conference-based teaching, thus providing a basis for customized learning and teaching methods. Understanding and utilizing advanced distance learning strategies is particularly important during the current pandemic, which has been limiting on-site teaching dramatically in nearly all countries of the world.
Asunto(s)
Curriculum , Educación a Distancia/organización & administración , Educación Médica/organización & administración , Neurofisiología/educación , Ensayos Clínicos Controlados Aleatorios como Asunto , Facultades de Medicina , Enseñanza/organización & administración , Sistema Nervioso Autónomo , Estudios Cruzados , Humanos , UniversidadesRESUMEN
PURPOSE: Post-stroke depression (PSD) occurs in one-third of stroke survivors, leading to a substantial decrease in quality of life as well as delayed functional and neurological recovery. Early detection of patients at risk and initiation of tailored preventive measures may reduce the medical and socioeconomic burden associated with PSD. We sought to review the current evidence on pharmacological and non-pharmacological prevention of PSD. MATERIALS AND METHODS: We conducted a systematic review using PubMed/MEDLINE and bibliographies of identified papers following Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) guidelines, including randomized controlled studies. Eligible studies were included when performed within 1 year after the index cerebrovascular event. Animal and basic research studies, studies lacking a control group, review papers, and case reports were excluded. RESULTS: Out of 150 studies screened, 37 met our criteria. Among the strategies identified, administration of antidepressants displayed the most robust evidence for preventing PSD, whereas non-pharmacological interventions such as psychotherapy appear to be the most frequently used approaches to prevent depression after stroke. Research suggests that the efficacy of PSD prevention increases with the duration of preventive treatment. Seven out of 11 studies (63%) that used pharmacological and eight out of 16 (50%) that used non-pharmacological interventions reported a positive preventive effect on PSD. CONCLUSION: Overall, the current literature on PSD prevention shows heterogeneity, substantiating a need for well-designed randomized controlled trials to test the safety and efficacy of pharmacological as well as non-pharmacological and composite prevention regimens to minimize the risk of PSD in stroke survivors. Integrative strategies combining personalized non-pharmacological interventions such as educational, mental, and physical health support, and pharmacological strategies such as SSRIs may be the most promising approach to prevent PSD.
RESUMEN
Mutations that drive the stabilization of hypoxia inducible factor 2α (HIF2α) and downstream pseudohypoxic signaling are known to predispose to the development of pheochromocytomas and paragangliomas (PPGLs). However, any role of HIF2α in predisposition to metastatic disease remains unclear. To assess such a role we combined gene-manipulations in pheochromocytoma cell lines with retrospective analyses of patient data and gene expression profiling in tumor specimens. Among 425 patients with PPGLs identified with mutations in tumor-susceptibility genes, those with tumors due to activation of pseudohypoxic pathways had a higher frequency of metastatic disease than those with tumors due to activation of kinase-signaling pathways, even without inclusion of patients with mutations in SDHB (18.6% vs 4.3% in, P < 0.0001). Three out of nine (33%) patients with gain-of-function mutations in HIF2α had metastatic disease. In cell line studies, elevated expression of HIF2α enhanced cell proliferation and led to increased migration and invasion capacity. Moreover, HIF2α expression in HIF2α-deficient cells resulted in increased cell motility, diffuse cluster formation and emergence of pseudopodia indicating changes in cell adhesion and cytoskeletal remodeling. In a mouse liver metastasis model, Hif2a enhanced the metastatic load. Transcriptomics data revealed alterations in focal adhesion and extracellular matrix-receptor interactions in HIF2α-mutated PPGLs. Our translational findings demonstrate that HIF2α supports pro-metastatic behavior in PPGLs, though other factors remain critical for subsequent transition to metastasis. We identified LAMB1 and COL4A2 as new potential therapeutic targets for HIF2α-driven PPGLs. Identified HIF2α downstream targets might open a new therapeutic window for aggressive HIF2α-expressing tumors.
Asunto(s)
Neoplasias de las Glándulas Suprarrenales/genética , Factores de Transcripción con Motivo Hélice-Asa-Hélice Básico/metabolismo , Paraganglioma/genética , Feocromocitoma/genética , Neoplasias de las Glándulas Suprarrenales/patología , Animales , Movimiento Celular , Proliferación Celular , Transición Epitelial-Mesenquimal , Humanos , Masculino , Ratones , Invasividad Neoplásica , Paraganglioma/patología , Feocromocitoma/patologíaRESUMEN
PURPOSE: The tryptophan-containing dipeptides isoleucine-tryptophan (IW) and tryptophan-leucine (WL) are angiotensin-converting enzyme (ACE)-inhibitors in vitro. These peptides are released by enzymatic hydrolysis of bovine whey protein. To exhibit ACE inhibition in vivo, peptides need to be absorbed into the circulatory system. This study aimed to determine the in vivo ACE-inhibitory potency of a whey protein hydrolysate (MPH), containing IW and WL, and to quantify plasma concentrations of these peptides after oral administration of MPH in healthy volunteers. Additionally, changes in blood pressure were investigated. RESULTS: After intake of 5 and 50 g MPH, plasma ACE activity was reduced to 86.4 ± 5.9 and 75.1 ± 6.9% of baseline activity, respectively. Although a clear ACE inhibition was measured, no effect on blood pressure was seen. Basal plasma concentrations of the tryptophan-containing dipeptides were 2.8 ± 0.7 nM for IW and 10.1 ± 1.8 nM for WL. After intake of 5-50 g MPH, peptide concentrations were dose dependently elevated to values between 12.5 ± 8.4 and 99.1 ± 58.7 nM for IW and 15.0 ± 4.3-34.9 ± 19.4 nM for WL. Administration of intact whey protein showed a minor ACE inhibition, probably caused by release of inhibitory peptides during gastrointestinal digestion. The increase of WL in plasma after intake of intact protein was similar to that determined after intake of MPH. In contrast, resulting IW concentrations were much lower after intake of intact whey protein when compared to MPH administration. CONCLUSION: After intake of MPH, plasma ACE activity decreased in parallel to the increase of IW and WL plasma concentrations. However, the resulting peptide concentrations cannot fully explain the reduction of ACE activity in plasma with a direct enzyme inhibition. Therefore, this study points to a gap in the understanding of the inhibitory action of these peptides in vivo. Thus, to further develop innovative food additives with ACE activity diminishing capabilities, it appears mandatory to better characterize the mode of action of these peptides.