Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros













Base de datos
Intervalo de año de publicación
1.
Plants (Basel) ; 11(13)2022 Jun 22.
Artículo en Inglés | MEDLINE | ID: mdl-35807598

RESUMEN

Babaco is a fast-growing herbaceous shrub with great commercial potential because of the organoleptic properties of its fruit. Babaco mosaic virus (BabMV) is a potexvirus in the family Alphaflexiviridae affecting babaco in all the provinces that produce this crop in Ecuador. BabMV was recently described but it has been affecting babaco for decades and, since many potexviruses are serologically indistinguishable, it may have been previously misidentified as papaya mosaic virus. Based on the coat protein (CP) gene, we aimed to study the distribution and epidemiological patterns of BabMV in babaco and chamburo over the years and to model its three-dimensional structure. Sequences of the CP were obtained from thirty-six isolates from plants collected in the main babaco-producing provinces of Ecuador between 2016 and 2021. The evolution rate of BabMV was estimated at 1.21 × 10-3 nucleotide substitutions site-1 year-1 and a time of origin of the most recent common ancestor around 1958.80. From molecular dynamics simulations, compared to other proteins of BabMV-RDRP, TGB1, and Alkb domain-the CP exhibited a higher flexibility with the C and N terminals as the most flexible regions. The reconstructed viral distribution provides dispersion patterns which have implications for control approaches of BabMV.

2.
J Biomol Struct Dyn ; 40(5): 2010-2023, 2022 03.
Artículo en Inglés | MEDLINE | ID: mdl-33084512

RESUMEN

Given the highly contagious nature of SARS-CoV-2, it has resulted in an unprecedented number of COVID-19 infected and dead people worldwide. Since there is currently no vaccine available in the market, the identification of potential drugs is urgently needed to control the pandemic. In this study, 92 phytochemicals from medicinal plants growing in the Andean region were screened against SARS-CoV-2 3 C-like protease (3CLpro) and RNA-dependent RNA polymerase (RdRp) in their active sites through molecular docking. The cutoff values were set from the lowest docking scores of the FDA-approved drugs that are being used to treat COVID-19 patients (remdesivir, lopinavir, and ritonavir). Compounds with docking scores that were lower than cutoff values were validated by molecular dynamics simulation with GROMACS, using root mean square deviation (RMSD), root mean square fluctuation (RMSF), radius of gyration (Rg), and intermolecular hydrogen bonds (H-bonds). Furthermore, binding free energies were estimated using the MM-PBSA method, and ADMET profiles of potential inhibitors were assessed. Computational analyses revealed that the interaction with hesperidin (theoretical binding energies, ΔGbind = -15.18 kcal/mol to 3CLpro and ΔGbind = -9.46 kcal/mol to RdRp) remained stable in both enzymes, unveiling its remarkable potential as a possible multitarget antiviral agent to treat COVID-19. Importantly, lupinifolin with an estimated binding affinity to 3CLpro higher than hesperidin (ΔGbind = -20.93 kcal/mol) is also a potential inhibitor of the 3CLpro. These two compounds displayed suitable pharmacological and structural properties to be drug candidates, demonstrating to be worthy of further research.Communicated by Ramaswamy H. Sarma.


Asunto(s)
Tratamiento Farmacológico de COVID-19 , Plantas Medicinales , Humanos , Simulación del Acoplamiento Molecular , Simulación de Dinámica Molecular , Fitoquímicos/farmacología , ARN Polimerasa Dependiente del ARN , SARS-CoV-2
3.
Virus Genes ; 56(1): 94, 2020 02.
Artículo en Inglés | MEDLINE | ID: mdl-31776850

RESUMEN

The original version of this article unfortunately contained an error in the length of AIMV genome sequence.

4.
Virus Genes ; 56(1): 87-93, 2020 02.
Artículo en Inglés | MEDLINE | ID: mdl-31696416

RESUMEN

Even though alstroemeria mosaic virus (AlMV) is one of the most important viruses affecting alstroemeria plants, its genome is only partially available in public sequence databases. High throughput sequencing (HTS) of RNA from alstroemeria plants with symptoms of mosaic and streaking, collected in Lasso-Ecuador, indicated the presence of AlMV and lily symptomless virus. In this study, we aimed to assemble and characterize the complete genome sequence of AlMV. Reads from Illumina sequencing of ribosomal RNA-depleted total RNA were assembled into contigs that were mapped to the sunflower chlorotic mottle virus genome, revealing the 9774 [corrected] bp complete genome sequence of AlMV. Multiple sequence alignment of the AlMV polyprotein with close homologs allowed the identification of ten mature proteins P1, HC-Pro, P3, 6K1, CI, 6K2, NIa-VPg, NIa-Pro, NIb and CP. Furthermore, several potyvirus motifs were identified in the AlMV polyprotein including those related to potyvirus aphid transmission 334KMTC337, 592PTK594 and 2800DAG2802. Phylogenetic analysis based in the polyprotein showed that AlMV belongs to the potato virus Y clade and its closest relative is sunflower ring blotch virus. This study describes the first complete genome of AlMV and its placement within the genus Potyvirus, providing valuable information for future studies on this economically important virus.


Asunto(s)
Genoma Viral , Potyvirus/genética , Alstroemeria/virología , Secuencia de Bases , Filogenia , Enfermedades de las Plantas/virología , Potyvirus/clasificación , Potyvirus/aislamiento & purificación , Proteínas Virales/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA