Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 14 de 14
Filtrar
Más filtros













Base de datos
Intervalo de año de publicación
1.
Nat Protoc ; 16(1): 458-471, 2021 01.
Artículo en Inglés | MEDLINE | ID: mdl-33277629

RESUMEN

Short-read metagenomic sequencing and de novo genome assembly of the human gut microbiome can yield draft bacterial genomes without isolation and culture. However, bacterial genomes assembled from short-read sequencing are often fragmented. Furthermore, these metagenome-assembled genomes often exclude repeated genomic elements, such as mobile genetic elements, compromising our understanding of the contribution of these elements to important bacterial phenotypes. Although long-read sequencing has been applied successfully to the assembly of contiguous bacterial isolate genomes, extraction of DNA of sufficient molecular weight, purity and quantity for metagenomic sequencing from stool samples can be challenging. Here, we present a protocol for the extraction of microgram quantities of high-molecular-weight DNA from human stool samples that are suitable for downstream long-read sequencing applications. We also present Lathe ( www.github.com/bhattlab/lathe ), a computational workflow for long-read basecalling, assembly, consensus refinement with long reads or Illumina short reads and genome circularization. Altogether, this protocol can yield high-quality contiguous or circular bacterial genomes from a complex human gut sample in approximately 10 d, with 2 d of hands-on bench and computational effort.


Asunto(s)
Microbioma Gastrointestinal , Microbiota , Secuenciación de Nanoporos/métodos , Análisis de Secuencia de ADN/métodos , ADN/genética , ADN/aislamiento & purificación , Heces/microbiología , Humanos , Metagenoma
2.
Genome Med ; 12(1): 50, 2020 05 29.
Artículo en Inglés | MEDLINE | ID: mdl-32471482

RESUMEN

BACKGROUND: Populations of closely related microbial strains can be simultaneously present in bacterial communities such as the human gut microbiome. We recently developed a de novo genome assembly approach that uses read cloud sequencing to provide more complete microbial genome drafts, enabling precise differentiation and tracking of strain-level dynamics across metagenomic samples. In this case study, we present a proof-of-concept using read cloud sequencing to describe bacterial strain diversity in the gut microbiome of one hematopoietic cell transplantation patient over a 2-month time course and highlight temporal strain variation of gut microbes during therapy. The treatment was accompanied by diet changes and administration of multiple immunosuppressants and antimicrobials. METHODS: We conducted short-read and read cloud metagenomic sequencing of DNA extracted from four longitudinal stool samples collected during the course of treatment of one hematopoietic cell transplantation (HCT) patient. After applying read cloud metagenomic assembly to discover strain-level sequence variants in these complex microbiome samples, we performed metatranscriptomic analysis to investigate differential expression of antibiotic resistance genes. Finally, we validated predictions from the genomic and metatranscriptomic findings through in vitro antibiotic susceptibility testing and whole genome sequencing of isolates derived from the patient stool samples. RESULTS: During the 56-day longitudinal time course that was studied, the patient's microbiome was profoundly disrupted and eventually dominated by Bacteroides caccae. Comparative analysis of B. caccae genomes obtained using read cloud sequencing together with metagenomic RNA sequencing allowed us to identify differences in substrain populations over time. Based on this, we predicted that particular mobile element integrations likely resulted in increased antibiotic resistance, which we further supported using in vitro antibiotic susceptibility testing. CONCLUSIONS: We find read cloud assembly to be useful in identifying key structural genomic strain variants within a metagenomic sample. These strains have fluctuating relative abundance over relatively short time periods in human microbiomes. We also find specific structural genomic variations that are associated with increased antibiotic resistance over the course of clinical treatment.


Asunto(s)
Bacterias/genética , Microbioma Gastrointestinal/genética , Antiinfecciosos/farmacología , Azacitidina/farmacología , Azitromicina/farmacología , Bacterias/clasificación , Bacterias/efectos de los fármacos , Bacterias/aislamiento & purificación , Ciprofloxacina/farmacología , ADN Bacteriano , Dieta , Heces/microbiología , Microbioma Gastrointestinal/efectos de los fármacos , Genoma Bacteriano , Trasplante de Células Madre Hematopoyéticas , Humanos , Inmunosupresores/farmacología , Masculino , Metagenoma , Persona de Mediana Edad , Síndromes Mielodisplásicos/microbiología , Síndromes Mielodisplásicos/terapia , Mielofibrosis Primaria/microbiología , Mielofibrosis Primaria/terapia , RNA-Seq , Análisis de Secuencia de ADN
3.
Nat Biotechnol ; 38(6): 701-707, 2020 06.
Artículo en Inglés | MEDLINE | ID: mdl-32042169

RESUMEN

Microbial genomes can be assembled from short-read sequencing data, but the assembly contiguity of these metagenome-assembled genomes is constrained by repeat elements. Correct assignment of genomic positions of repeats is crucial for understanding the effect of genome structure on genome function. We applied nanopore sequencing and our workflow, named Lathe, which incorporates long-read assembly and short-read error correction, to assemble closed bacterial genomes from complex microbiomes. We validated our approach with a synthetic mixture of 12 bacterial species. Seven genomes were completely assembled into single contigs and three genomes were assembled into four or fewer contigs. Next, we used our methods to analyze metagenomics data from 13 human stool samples. We assembled 20 circular genomes, including genomes of Prevotella copri and a candidate Cibiobacter sp. Despite the decreased nucleotide accuracy compared with alternative sequencing and assembly approaches, our methods improved assembly contiguity, allowing for investigation of the role of repeat elements in microbial function and adaptation.


Asunto(s)
Microbioma Gastrointestinal/genética , Genoma Bacteriano/genética , Metagenómica/métodos , Secuenciación de Nanoporos/métodos , Análisis de Secuencia de ADN/métodos , Adulto , Animales , ADN Bacteriano/análisis , ADN Bacteriano/genética , Perros , Heces/microbiología , Humanos , Ratones
4.
BMC Bioinformatics ; 20(Suppl 16): 585, 2019 Dec 02.
Artículo en Inglés | MEDLINE | ID: mdl-31787070

RESUMEN

BACKGROUND: Low diversity of the gut microbiome, often progressing to the point of intestinal domination by a single species, has been linked to poor outcomes in patients undergoing hematopoietic cell transplantation (HCT). Our ability to understand how certain organisms attain intestinal domination over others has been restricted in part by current metagenomic sequencing technologies that are typically unable to reconstruct complete genomes for individual organisms present within a sequenced microbial community. We recently developed a metagenomic read cloud sequencing and assembly approach that generates improved draft genomes for individual organisms compared to conventional short-read sequencing and assembly methods. Herein, we applied metagenomic read cloud sequencing to four stool samples collected longitudinally from an HCT patient preceding treatment and over the course of heavy antibiotic exposure. RESULTS: Characterization of microbiome composition by taxonomic classification of reads reveals that that upon antibiotic exposure, the subject's gut microbiome experienced a marked decrease in diversity and became dominated by Escherichia coli. While diversity is restored at the final time point, this occurs without recovery of the original species and strain-level composition. Draft genomes for individual organisms within each sample were generated using both read cloud and conventional assembly. Read clouds were found to improve the completeness and contiguity of genome assemblies compared to conventional assembly. Moreover, read clouds enabled the placement of antibiotic resistance genes present in multiple copies both within a single draft genome and across multiple organisms. The occurrence of resistance genes associates with the timing of antibiotics administered to the patient, and comparative genomic analysis of the various intestinal E. coli strains across time points as well as the bloodstream isolate showed that the subject's E. coli bloodstream infection likely originated from the intestine. The E. coli genome from the initial pre-transplant stool sample harbors 46 known antimicrobial resistance genes, while all other species from the pre-transplant sample each contain at most 5 genes, consistent with a model of heavy antibiotic exposure resulting in selective outgrowth of the highly antibiotic-resistant E. coli. CONCLUSION: This study demonstrates the application and utility of metagenomic read cloud sequencing and assembly to study the underlying strain-level genomic factors influencing gut microbiome dynamics under extreme selective pressures in the clinical context of HCT.


Asunto(s)
Microbioma Gastrointestinal , Secuenciación de Nucleótidos de Alto Rendimiento/métodos , Metagenómica/métodos , Selección Genética , Secuencia de Bases , Biodiversidad , Farmacorresistencia Microbiana/genética , Escherichia coli/genética , Microbioma Gastrointestinal/genética , Genes Bacterianos , Humanos , Metagenoma/genética , Microbiota/genética , Análisis de Componente Principal , Sintenía/genética
5.
Nat Biotechnol ; 2018 Oct 15.
Artículo en Inglés | MEDLINE | ID: mdl-30320765

RESUMEN

Although shotgun metagenomic sequencing of microbiome samples enables partial reconstruction of strain-level community structure, obtaining high-quality microbial genome drafts without isolation and culture remains difficult. Here, we present an application of read clouds, short-read sequences tagged with long-range information, to microbiome samples. We present Athena, a de novo assembler that uses read clouds to improve metagenomic assemblies. We applied this approach to sequence stool samples from two healthy individuals and compared it with existing short-read and synthetic long-read metagenomic sequencing techniques. Read-cloud metagenomic sequencing and Athena assembly produced the most comprehensive individual genome drafts with high contiguity (>200-kb N50, fewer than ten contigs), even for bacteria with relatively low (20×) raw short-read-sequence coverage. We also sequenced a complex marine-sediment sample and generated 24 intermediate-quality genome drafts (>70% complete, <10% contaminated), nine of which were complete (>90% complete, <5% contaminated). Our approach allows for culture-free generation of high-quality microbial genome drafts by using a single shotgun experiment.

6.
PLoS One ; 12(8): e0182585, 2017.
Artículo en Inglés | MEDLINE | ID: mdl-28827811

RESUMEN

Immunocompromised individuals are at high risk of developing Clostridium difficile-associated disease (CDAD). Fecal microbiota transplantation (FMT) is a highly effective therapy for refractory or recurrent CDAD and, despite safety concerns, has recently been offered to immunocompromised patients. We investigated the genomics of bacterial composition following FMT in immunocompromised patients over a 1-year period. Metagenomic, strain and gene-level bacterial dynamics were characterized in two CDAD-affected hematopoietic stem cell (HCT) recipients following FMT. We found alterations in gene content, including loss of virulence and antibiotic resistance genes. These alterations were accompanied by long-term bacterial divergence at the species and strain levels. Our findings suggest limited durability of the specific bacterial consortium introduced with FMT and indicate that alterations of the functional potential of the microbiome are more complex than can be inferred by taxonomic information alone. Our observation that FMT alone cannot induce long-term donor-like alterations of the microbiota of HCT recipients suggests that FMT cannot indefinitely supersede environmental and/or host factors in shaping bacterial composition.


Asunto(s)
Enterocolitis Seudomembranosa/terapia , Trasplante de Microbiota Fecal , Huésped Inmunocomprometido , Adulto , Anciano , Bacterias/clasificación , Femenino , Trasplante de Células Madre Hematopoyéticas , Humanos , Masculino , Persona de Mediana Edad , Resultado del Tratamiento
7.
Nature ; 538(7625): 344-349, 2016 Oct 20.
Artículo en Inglés | MEDLINE | ID: mdl-27602946

RESUMEN

Antimalarial drugs have thus far been chiefly derived from two sources-natural products and synthetic drug-like compounds. Here we investigate whether antimalarial agents with novel mechanisms of action could be discovered using a diverse collection of synthetic compounds that have three-dimensional features reminiscent of natural products and are underrepresented in typical screening collections. We report the identification of such compounds with both previously reported and undescribed mechanisms of action, including a series of bicyclic azetidines that inhibit a new antimalarial target, phenylalanyl-tRNA synthetase. These molecules are curative in mice at a single, low dose and show activity against all parasite life stages in multiple in vivo efficacy models. Our findings identify bicyclic azetidines with the potential to both cure and prevent transmission of the disease as well as protect at-risk populations with a single oral dose, highlighting the strength of diversity-oriented synthesis in revealing promising therapeutic targets.


Asunto(s)
Antimaláricos/síntesis química , Antimaláricos/farmacología , Azetidinas/uso terapéutico , Descubrimiento de Drogas , Estadios del Ciclo de Vida/efectos de los fármacos , Malaria Falciparum/tratamiento farmacológico , Plasmodium falciparum/efectos de los fármacos , Plasmodium falciparum/crecimiento & desarrollo , Animales , Antimaláricos/administración & dosificación , Antimaláricos/uso terapéutico , Compuestos de Azabiciclo/administración & dosificación , Compuestos de Azabiciclo/síntesis química , Compuestos de Azabiciclo/farmacología , Compuestos de Azabiciclo/uso terapéutico , Azetidinas/administración & dosificación , Azetidinas/efectos adversos , Azetidinas/farmacología , Citosol/enzimología , Modelos Animales de Enfermedad , Femenino , Hígado/efectos de los fármacos , Hígado/parasitología , Macaca mulatta/parasitología , Malaria Falciparum/prevención & control , Malaria Falciparum/transmisión , Masculino , Ratones , Fenilalanina-ARNt Ligasa/antagonistas & inhibidores , Compuestos de Fenilurea/administración & dosificación , Compuestos de Fenilurea/síntesis química , Compuestos de Fenilurea/farmacología , Compuestos de Fenilurea/uso terapéutico , Plasmodium falciparum/citología , Plasmodium falciparum/enzimología , Seguridad
8.
Sci Transl Med ; 8(339): 339ra71, 2016 05 18.
Artículo en Inglés | MEDLINE | ID: mdl-27194729

RESUMEN

Intestinal bacteria may modulate the risk of infection and graft-versus-host disease (GVHD) after allogeneic hematopoietic stem cell transplantation (allo-HSCT). Allo-HSCT recipients often develop neutropenic fever, which is treated with antibiotics that may target anaerobic bacteria in the gut. We retrospectively examined 857 allo-HSCT recipients and found that treatment of neutropenic fever with imipenem-cilastatin and piperacillin-tazobactam antibiotics was associated with increased GVHD-related mortality at 5 years (21.5% for imipenem-cilastatin-treated patients versus 13.1% for untreated patients, P = 0.025; 19.8% for piperacillin-tazobactam-treated patients versus 11.9% for untreated patients, P = 0.007). However, two other antibiotics also used to treat neutropenic fever, aztreonam and cefepime, were not associated with GVHD-related mortality (P = 0.78 and P = 0.98, respectively). Analysis of stool specimens from allo-HSCT recipients showed that piperacillin-tazobactam administration was associated with perturbation of gut microbial composition. Studies in mice demonstrated aggravated GVHD mortality with imipenem-cilastatin or piperacillin-tazobactam compared to aztreonam (P < 0.01 and P < 0.05, respectively). We found pathological evidence for increased GVHD in the colon of imipenem-cilastatin-treated mice (P < 0.05), but no difference in the concentration of short-chain fatty acids or numbers of regulatory T cells. Notably, imipenem-cilastatin treatment of mice with GVHD led to loss of the protective mucus lining of the colon (P < 0.01) and the compromising of intestinal barrier function (P < 0.05). Sequencing of mouse stool specimens showed an increase in Akkermansia muciniphila (P < 0.001), a commensal bacterium with mucus-degrading capabilities, raising the possibility that mucus degradation may contribute to murine GVHD. We demonstrate an underappreciated risk for the treatment of allo-HSCT recipients with antibiotics that may exacerbate GVHD in the colon.


Asunto(s)
Enfermedad Injerto contra Huésped/microbiología , Enfermedad Injerto contra Huésped/mortalidad , Trasplante de Células Madre Hematopoyéticas/efectos adversos , Trasplante Homólogo/efectos adversos , Animales , Antibacterianos , Linfocitos T CD4-Positivos/metabolismo , Cilastatina/uso terapéutico , Combinación Cilastatina e Imipenem , Colon/microbiología , Combinación de Medicamentos , Heces/microbiología , Femenino , Citometría de Flujo , Microbioma Gastrointestinal/efectos de los fármacos , Enfermedad Injerto contra Huésped/etiología , Humanos , Imipenem/uso terapéutico , Interleucina-23 , Ratones , Ratones Endogámicos C57BL , Ácido Penicilánico/análogos & derivados , Ácido Penicilánico/uso terapéutico , Filogenia , Piperacilina/uso terapéutico , Combinación Piperacilina y Tazobactam , Verrucomicrobia/clasificación , Verrucomicrobia/efectos de los fármacos , Verrucomicrobia/genética
9.
Proc Natl Acad Sci U S A ; 112(37): 11672-7, 2015 Sep 15.
Artículo en Inglés | MEDLINE | ID: mdl-26261345

RESUMEN

In regions with high malaria endemicity, the withdrawal of chloroquine (CQ) as first-line treatment of Plasmodium falciparum infections has typically led to the restoration of CQ susceptibility through the reexpansion of the wild-type (WT) allele K76 of the chloroquine resistance transporter gene (pfcrt) at the expense of less fit mutant alleles carrying the CQ resistance (CQR) marker K76T. In low-transmission settings, such as South America, drug resistance mutations can attain 100% prevalence, thereby precluding the return of WT parasites after the complete removal of drug pressure. In French Guiana, despite the fixation of the K76T allele, the prevalence of CQR isolates progressively dropped from >90% to <30% during 17 y after CQ withdrawal in 1995. Using a genome-wide association study with CQ-sensitive (CQS) and CQR isolates, we have identified a single mutation in pfcrt encoding a C350R substitution that is associated with the restoration of CQ susceptibility. Genome editing of the CQR reference strain 7G8 to incorporate PfCRT C350R caused a complete loss of CQR. A retrospective molecular survey on 580 isolates collected from 1997 to 2012 identified all C350R mutant parasites as being CQS. This mutation emerged in 2002 and rapidly spread throughout the P. falciparum population. The C350R allele is also associated with a significant decrease in piperaquine susceptibility in vitro, suggesting that piperaquine pressure in addition to potential fitness costs associated with the 7G8-type CQR pfcrt allele may have selected for this mutation. These findings have important implications for understanding the evolutionary dynamics of antimalarial drug resistance.


Asunto(s)
Cloroquina/uso terapéutico , Resistencia a Medicamentos/genética , Evolución Molecular , Proteínas de Transporte de Membrana/genética , Mutación , Plasmodium falciparum/genética , Proteínas Protozoarias/genética , Alelos , Guyana Francesa , Marcadores Genéticos , Genoma , Genotipo , Haplotipos , Humanos , Concentración 50 Inhibidora , Malaria/tratamiento farmacológico , Fenotipo , Plasmodium falciparum/efectos de los fármacos , Prevalencia , Análisis de Componente Principal , Quinolinas/química , Estudios Retrospectivos
10.
Am J Trop Med Hyg ; 93(4): 801-9, 2015 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-26149860

RESUMEN

Large scale antibody responses in Plasmodium vivax malaria remains unexplored in the endemic setting. Protein microarray analysis of asexual-stage P. vivax was used to identify antigens recognized in sera from residents of hypoendemic Peruvian Amazon. Over 24 months, of 106 participants, 91 had two symptomatic P. vivax malaria episodes, 11 had three episodes, 3 had four episodes, and 1 had five episodes. Plasmodium vivax relapse was distinguished from reinfection by a merozoite surface protein-3α restriction fragment length polymorphism polymerase chain reaction (MSP3α PCR-RFLP) assay. Notably, P. vivax reinfection subjects did not have higher reactivity to the entire set of recognized P. vivax blood-stage antigens than relapse subjects, regardless of the number of malaria episodes. The most highly recognized P. vivax proteins were MSP 4, 7, 8, and 10 (PVX_003775, PVX_082650, PVX_097625, and PVX_114145); sexual-stage antigen s16 (PVX_000930); early transcribed membrane protein (PVX_090230); tryptophan-rich antigen (Pv-fam-a) (PVX_092995); apical merozoite antigen 1 (PVX_092275); and proteins of unknown function (PVX_081830, PVX_117680, PVX_118705, PVX_121935, PVX_097730, PVX_110935, PVX_115450, and PVX_082475). Genes encoding reactive proteins exhibited a significant enrichment of non-synonymous nucleotide variation, an observation suggesting immune selection. These data identify candidates for seroepidemiological tools to support malaria elimination efforts in P. vivax-endemic regions.


Asunto(s)
Anticuerpos Antiprotozoarios/inmunología , Malaria Vivax/inmunología , Plasmodium vivax/inmunología , Adolescente , Adulto , Anciano , Anciano de 80 o más Años , Formación de Anticuerpos , Antígenos de Protozoos/inmunología , Niño , Preescolar , Femenino , Expresión Génica/inmunología , Humanos , Masculino , Plasmodium vivax/genética , Reacción en Cadena de la Polimerasa , Polimorfismo de Nucleótido Simple/genética , Análisis por Matrices de Proteínas , Recurrencia , Adulto Joven
11.
J Infect Dis ; 211(8): 1342-51, 2015 Apr 15.
Artículo en Inglés | MEDLINE | ID: mdl-25381370

RESUMEN

BACKGROUND: Persons with blood-stage Plasmodium falciparum parasitemia in the absence of symptoms are considered to be clinically immune. We hypothesized that asymptomatic subjects with P. falciparum parasitemia would differentially recognize a subset of P. falciparum proteins on a genomic scale. METHODS AND FINDINGS: Compared with symptomatic subjects, sera from clinically immune, asymptomatically infected individuals differentially recognized 51 P. falciparum proteins, including the established vaccine candidate PfMSP1. Novel, hitherto unstudied hypothetical proteins and other proteins not previously recognized as potential vaccine candidates were also differentially recognized. Genes encoding the proteins differentially recognized by the Peruvian clinically immune individuals exhibited a significant enrichment of nonsynonymous nucleotide variation, an observation consistent with these genes undergoing immune selection. CONCLUSIONS: A limited set of P. falciparum protein antigens was associated with the development of naturally acquired clinical immunity in the low-transmission setting of the Peruvian Amazon. These results imply that, even in a low-transmission setting, an asexual blood-stage vaccine designed to reduce clinical malaria symptoms will likely need to contain large numbers of often-polymorphic proteins, a finding at odds with many current efforts in the design of vaccines against asexual blood-stage P. falciparum.


Asunto(s)
Malaria Falciparum/sangre , Malaria Falciparum/inmunología , Plasmodium falciparum/genética , Plasmodium falciparum/inmunología , Proteínas Protozoarias/sangre , Adolescente , Adulto , Anticuerpos Antiprotozoarios/inmunología , Antígenos de Protozoos/genética , Antígenos de Protozoos/inmunología , Niño , Femenino , Humanos , Vacunas contra la Malaria/inmunología , Masculino , Persona de Mediana Edad , Parasitemia/sangre , Parasitemia/inmunología , Parasitemia/parasitología , Proteínas Protozoarias/genética , Proteínas Protozoarias/inmunología , Adulto Joven
12.
Infect Immun ; 83(1): 276-85, 2015 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-25368109

RESUMEN

As the intensity of malaria transmission has declined, Plasmodium falciparum parasite populations have displayed decreased clonal diversity resulting from the emergence of many parasites with common genetic signatures (CGS). We have monitored such CGS parasite clusters from 2006 to 2013 in Thiès, Senegal, using the molecular barcode. The first, and one of the largest observed clusters of CGS parasites, was present in 24% of clinical isolates in 2008, declined to 3.4% of clinical isolates in 2009, and then disappeared. To begin to explore the relationship between the immune responses of the population and the emergence and decline of specific parasite genotypes, we have determined whether antibodies to CGS parasites correlate with their prevalence. We measured (i) antibodies capable of inhibiting parasite growth in culture and (ii) antibodies recognizing the surfaces of infected erythrocytes (RBCs). IgG obtained from volunteers in 2009 showed increased reactivity to the surfaces of CGS-parasitized erythrocytes over IgG from 2008. Since P. falciparum EMP-1 (PfEMP-1) is a major variant surface antigen, we used var Ups quantitative reverse transcription-PCR (qRT-PCR) and sequencing with degenerate DBL1α domain primers to characterize the var genes expressed by CGS parasites after short-term in vitro culture. CGS parasites show upregulation of UpsA var genes and 2-cysteine-containing PfEMP-1 molecules and express the same dominant var transcript. Our work indicates that the CGS parasites in this cluster express similar var genes, more than would be expected by chance in the population, and that there is year-to-year variation in immune recognition of surface antigens on CGS parasite-infected erythrocytes. This study lays the groundwork for detailed investigations of the mechanisms driving the expansion or contraction of specific parasite clones in the population.


Asunto(s)
Anticuerpos Antiprotozoarios/sangre , Antígenos de Protozoos/inmunología , Malaria Falciparum/inmunología , Plasmodium falciparum/inmunología , Antígenos de Protozoos/genética , Análisis por Conglomerados , Código de Barras del ADN Taxonómico , Humanos , Inmunoglobulina G/sangre , Malaria Falciparum/epidemiología , Malaria Falciparum/transmisión , Plasmodium falciparum/clasificación , Plasmodium falciparum/genética , Proteínas Protozoarias/genética , Proteínas Protozoarias/inmunología , Senegal/epidemiología
13.
Genome Biol ; 15(11): 511, 2014.
Artículo en Inglés | MEDLINE | ID: mdl-25395010

RESUMEN

BACKGROUND: Drug resistance remains a major public health challenge for malaria treatment and eradication. Individual loci associated with drug resistance to many antimalarials have been identified, but their epistasis with other resistance mechanisms has not yet been elucidated. RESULTS: We previously described two mutations in the cytoplasmic prolyl-tRNA synthetase (cPRS) gene that confer resistance to halofuginone. We describe here the evolutionary trajectory of halofuginone resistance of two independent drug resistance selections in Plasmodium falciparum. Using this novel methodology, we discover an unexpected non-genetic drug resistance mechanism that P. falciparum utilizes before genetic modification of the cPRS. P. falciparum first upregulates its proline amino acid homeostasis in response to halofuginone pressure. We show that this non-genetic adaptation to halofuginone is not likely mediated by differential RNA expression and precedes mutation or amplification of the cPRS gene. By tracking the evolution of the two drug resistance selections with whole genome sequencing, we further demonstrate that the cPRS locus accounts for the majority of genetic adaptation to halofuginone in P. falciparum. We further validate that copy-number variations at the cPRS locus also contribute to halofuginone resistance. CONCLUSIONS: We provide a three-step model for multi-locus evolution of halofuginone drug resistance in P. falciparum. Informed by genomic approaches, our results provide the first comprehensive view of the evolutionary trajectory malaria parasites take to achieve drug resistance. Our understanding of the multiple genetic and non-genetic mechanisms of drug resistance informs how we will design and pair future anti-malarials for clinical use.


Asunto(s)
Evolución Biológica , Resistencia a Medicamentos , Malaria Falciparum/tratamiento farmacológico , Plasmodium falciparum/efectos de los fármacos , Genómica , Humanos , Malaria Falciparum/genética , Malaria Falciparum/parasitología , Mutación , Piperidinas/uso terapéutico , Plasmodium falciparum/genética , Proteínas Protozoarias , Quinazolinonas/uso terapéutico , Análisis de Secuencia de ADN
14.
Proc Natl Acad Sci U S A ; 110(50): 20129-34, 2013 Dec 10.
Artículo en Inglés | MEDLINE | ID: mdl-24259712

RESUMEN

Analysis of genome sequences of 159 isolates of Plasmodium falciparum from Senegal yields an extraordinarily high proportion (26.85%) of protein-coding genes with the ratio of nonsynonymous to synonymous polymorphism greater than one. This proportion is much greater than observed in other organisms. Also unusual is that the site-frequency spectra of synonymous and nonsynonymous polymorphisms are virtually indistinguishable. We hypothesized that the complicated life cycle of malaria parasites might lead to qualitatively different population genetics from that predicted from the classical Wright-Fisher (WF) model, which assumes a single random-mating population with a finite and constant population size in an organism with nonoverlapping generations. This paper summarizes simulation studies of random genetic drift and selection in malaria parasites that take into account their unusual life history. Our results show that random genetic drift in the malaria life cycle is more pronounced than under the WF model. Paradoxically, the efficiency of purifying selection in the malaria life cycle is also greater than under WF, and the relative efficiency of positive selection varies according to conditions. Additionally, the site-frequency spectrum under neutrality is also more skewed toward low-frequency alleles than expected with WF. These results highlight the importance of considering the malaria life cycle when applying existing population genetic tools based on the WF model. The same caveat applies to other species with similarly complex life cycles.


Asunto(s)
Efecto Fundador , Flujo Genético , Modelos Genéticos , Plasmodium falciparum/genética , Plasmodium falciparum/fisiología , Selección Genética , Simulación por Computador , Frecuencia de los Genes , Genética de Población , Polimorfismo de Nucleótido Simple/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA