Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 67
Filtrar
1.
Oncol Ther ; 2024 Apr 27.
Artículo en Inglés | MEDLINE | ID: mdl-38676786

RESUMEN

Anaplastic large cell lymphoma (ALCL) and inflammatory myofibroblastic tumor (IMT) are rare cancers observed predominantly in children and young adults. ALCL accounts for 10-15% of all pediatric non-Hodgkin lymphomas and is commonly diagnosed at an advanced stage of disease. In children, 84-91% of cases of ALCL harbor an anaplastic lymphoma kinase (ALK) gene translocation. IMT is a rare mesenchymal neoplasm that also tends to occur in children and adolescents. Approximately 50-70% of IMT cases involve rearrangements in the ALK gene. A combination of chemotherapeutic drugs is typically used for children with ALK-positive ALCL, and the only known curative therapy for ALK-positive IMT is complete surgical resection. Crizotinib, a first-generation ALK inhibitor, was approved in the USA in 2021 for pediatric patients and young adults with relapsed or refractory ALK-positive ALCL; however, its safety and efficacy have not been established in older adults. In 2022, crizotinib was approved for adult and pediatric patients with unresectable, recurrent, or refractory ALK-positive IMT. This podcast provides an overview of ALK-positive ALCL and IMT. We discuss the current treatment landscape, the role of ALK tyrosine kinase inhibitors, and areas of future research.

2.
bioRxiv ; 2024 Jan 07.
Artículo en Inglés | MEDLINE | ID: mdl-38106022

RESUMEN

Cancer immunotherapies have produced remarkable results in B-cell malignancies; however, optimal cell surface targets for many solid cancers remain elusive. Here, we present an integrative proteomic, transcriptomic, and epigenomic analysis of tumor specimens along with normal tissues to identify biologically relevant cell surface proteins that can serve as immunotherapeutic targets for neuroblastoma, an often-fatal childhood cancer of the developing nervous system. We apply this approach to human-derived cell lines (N=9) and cell/patient-derived xenograft (N=12) models of neuroblastoma. Plasma membrane-enriched mass spectrometry identified 1,461 cell surface proteins in cell lines and 1,401 in xenograft models, respectively. Additional proteogenomic analyses revealed 60 high-confidence candidate immunotherapeutic targets and we prioritized Delta-like canonical notch ligand 1 (DLK1) for further study. High expression of DLK1 directly correlated with the presence of a super-enhancer spanning the DLK1 locus. Robust cell surface expression of DLK1 was validated by immunofluorescence, flow cytometry, and immunohistochemistry. Short hairpin RNA mediated silencing of DLK1 in neuroblastoma cells resulted in increased cellular differentiation. ADCT-701, a DLK1-targeting antibody-drug conjugate (ADC), showed potent and specific cytotoxicity in DLK1-expressing neuroblastoma xenograft models. Moreover, DLK1 is highly expressed in several adult cancer types, including adrenocortical carcinoma (ACC), pheochromocytoma/paraganglioma (PCPG), hepatoblastoma, and small cell lung cancer (SCLC), suggesting potential clinical benefit beyond neuroblastoma. Taken together, our study demonstrates the utility of comprehensive cancer surfaceome characterization and credentials DLK1 as an immunotherapeutic target. Highlights: Plasma membrane enriched proteomics defines surfaceome of neuroblastomaMulti-omic data integration prioritizes DLK1 as a candidate immunotherapeutic target in neuroblastoma and other cancersDLK1 expression is driven by a super-enhancer DLK1 silencing in neuroblastoma cells results in cellular differentiation ADCT-701, a DLK1-targeting antibody-drug conjugate, shows potent and specific cytotoxicity in DLK1-expressing neuroblastoma preclinical models.

3.
Nat Commun ; 14(1): 2601, 2023 05 05.
Artículo en Inglés | MEDLINE | ID: mdl-37147298

RESUMEN

Activating point mutations in Anaplastic Lymphoma Kinase (ALK) have positioned ALK as the only mutated oncogene tractable for targeted therapy in neuroblastoma. Cells with these mutations respond to lorlatinib in pre-clinical studies, providing the rationale for a first-in-child Phase 1 trial (NCT03107988) in patients with ALK-driven neuroblastoma. To track evolutionary dynamics and heterogeneity of tumors, and to detect early emergence of lorlatinib resistance, we collected serial circulating tumor DNA samples from patients enrolled on this trial. Here we report the discovery of off-target resistance mutations in 11 patients (27%), predominantly in the RAS-MAPK pathway. We also identify newly acquired secondary compound ALK mutations in 6 (15%) patients, all acquired at disease progression. Functional cellular and biochemical assays and computational studies elucidate lorlatinib resistance mechanisms. Our results establish the clinical utility of serial circulating tumor DNA sampling to track response and progression and to discover acquired resistance mechanisms that can be leveraged to develop therapeutic strategies to overcome lorlatinib resistance.


Asunto(s)
Carcinoma de Pulmón de Células no Pequeñas , ADN Tumoral Circulante , Neoplasias Pulmonares , Neuroblastoma , Humanos , Aminopiridinas/uso terapéutico , Quinasa de Linfoma Anaplásico/genética , Carcinoma de Pulmón de Células no Pequeñas/genética , ADN Tumoral Circulante/genética , Resistencia a Antineoplásicos/genética , Lactamas Macrocíclicas/uso terapéutico , Neoplasias Pulmonares/genética , Mutación , Neuroblastoma/tratamiento farmacológico , Neuroblastoma/genética , Inhibidores de Proteínas Quinasas/uso terapéutico
5.
Nat Med ; 29(5): 1092-1102, 2023 05.
Artículo en Inglés | MEDLINE | ID: mdl-37012551

RESUMEN

Neuroblastomas harbor ALK aberrations clinically resistant to crizotinib yet sensitive pre-clinically to the third-generation ALK inhibitor lorlatinib. We conducted a first-in-child study evaluating lorlatinib with and without chemotherapy in children and adults with relapsed or refractory ALK-driven neuroblastoma. The trial is ongoing, and we report here on three cohorts that have met pre-specified primary endpoints: lorlatinib as a single agent in children (12 months to <18 years); lorlatinib as a single agent in adults (≥18 years); and lorlatinib in combination with topotecan/cyclophosphamide in children (<18 years). Primary endpoints were safety, pharmacokinetics and recommended phase 2 dose (RP2D). Secondary endpoints were response rate and 123I-metaiodobenzylguanidine (MIBG) response. Lorlatinib was evaluated at 45-115 mg/m2/dose in children and 100-150 mg in adults. Common adverse events (AEs) were hypertriglyceridemia (90%), hypercholesterolemia (79%) and weight gain (87%). Neurobehavioral AEs occurred mainly in adults and resolved with dose hold/reduction. The RP2D of lorlatinib with and without chemotherapy in children was 115 mg/m2. The single-agent adult RP2D was 150 mg. The single-agent response rate (complete/partial/minor) for <18 years was 30%; for ≥18 years, 67%; and for chemotherapy combination in <18 years, 63%; and 13 of 27 (48%) responders achieved MIBG complete responses, supporting lorlatinib's rapid translation into active phase 3 trials for patients with newly diagnosed high-risk, ALK-driven neuroblastoma. ClinicalTrials.gov registration: NCT03107988 .


Asunto(s)
Carcinoma de Pulmón de Células no Pequeñas , Neoplasias Pulmonares , Neuroblastoma , Adulto , Humanos , 3-Yodobencilguanidina/uso terapéutico , Aminopiridinas/uso terapéutico , Quinasa de Linfoma Anaplásico/genética , Carcinoma de Pulmón de Células no Pequeñas/tratamiento farmacológico , Lactamas Macrocíclicas/efectos adversos , Neoplasias Pulmonares/tratamiento farmacológico , Recurrencia Local de Neoplasia/tratamiento farmacológico , Neuroblastoma/tratamiento farmacológico , Neuroblastoma/genética , Inhibidores de Proteínas Quinasas/uso terapéutico , Niño , Lactante , Preescolar , Adolescente
6.
Cancer Res Commun ; 2(7): 616-623, 2022 07.
Artículo en Inglés | MEDLINE | ID: mdl-36381237

RESUMEN

Neuroblastomas have neuroendocrine features and often show similar gene expression patterns to small cell lung cancer including high expression of delta-like ligand 3 (DLL3). Here we determine the efficacy of rovalpituzumab tesirine (Rova-T), an antibody drug conjugated (ADC) with a pyrrolobenzodiazepine (PBD) dimer toxin targeting DLL3, in preclinical models of human neuroblastoma. We evaluated DLL3 expression in RNA sequencing data sets and performed immunohistochemistry (IHC) on neuroblastoma patient derived xenograft (PDX), human neuroblastoma primary tumor and normal childhood tissue microarrays (TMAs). We then evaluated the activity of Rova-T against 11 neuroblastoma PDX models using varying doses and schedules and compared anti-tumor activity to expression levels. DLL3 mRNA was differentially overexpressed in neuroblastoma at comparable levels to small cell lung cancer, as well as Wilms and rhabdoid tumors. DLL3 protein was robustly expressed across the neuroblastoma PDX array, but membranous staining was variable. The human neuroblastoma array, however, showed staining in only 44% of cases, whereas no significant staining was observed in the normal childhood tissue array. Rova-T showed a clear dose response effect across the 11 models tested, with a single dose inducing a complete or partial response in 3/11 and stable disease in another 3/11 models. No overt signs of toxicity were observed, and there was no treatment-related mortality. Strong membranous staining was necessary, but not sufficient, for anti-tumor activity. Rova-T has activity in a subset of neuroblastoma preclinical models, but heterogeneous expression in these models and the near absence of expression seen in human tumors suggests that any DLL3-targeting clinical trial should be only performed with a robust companion diagnostic to evaluate DLL3 expression for patient selection.


Asunto(s)
Inmunoconjugados , Neoplasias Pulmonares , Neuroblastoma , Carcinoma Pulmonar de Células Pequeñas , Humanos , Niño , Carcinoma Pulmonar de Células Pequeñas/tratamiento farmacológico , Neoplasias Pulmonares/tratamiento farmacológico , Ligandos , Inmunoconjugados/farmacología , Neuroblastoma/tratamiento farmacológico , Proteínas de la Membrana/genética , Péptidos y Proteínas de Señalización Intracelular
7.
Cancer Discov ; 12(12): 2800-2819, 2022 12 02.
Artículo en Inglés | MEDLINE | ID: mdl-36108156

RESUMEN

Neuroblastoma evolution, heterogeneity, and resistance remain inadequately defined, suggesting a role for circulating tumor DNA (ctDNA) sequencing. To define the utility of ctDNA profiling in neuroblastoma, 167 blood samples from 48 high-risk patients were evaluated for ctDNA using comprehensive genomic profiling. At least one pathogenic genomic alteration was identified in 56% of samples and 73% of evaluable patients, including clinically actionable ALK and RAS-MAPK pathway variants. Fifteen patients received ALK inhibition (ALKi), and ctDNA data revealed dynamic genomic evolution under ALKi therapeutic pressure. Serial ctDNA profiling detected disease evolution in 15 of 16 patients with a recurrently identified variant-in some cases confirming disease progression prior to standard surveillance methods. Finally, ctDNA-defined ERRFI1 loss-of-function variants were validated in neuroblastoma cellular models, with the mutant proteins exhibiting loss of wild-type ERRFI1's tumor-suppressive functions. Taken together, ctDNA is prevalent in children with high-risk neuroblastoma and should be followed throughout neuroblastoma treatment. SIGNIFICANCE: ctDNA is prevalent in children with neuroblastoma. Serial ctDNA profiling in patients with neuroblastoma improves the detection of potentially clinically actionable and functionally relevant variants in cancer driver genes and delineates dynamic tumor evolution and disease progression beyond that of standard tumor sequencing and clinical surveillance practices. See related commentary by Deubzer et al., p. 2727. This article is highlighted in the In This Issue feature, p. 2711.


Asunto(s)
ADN Tumoral Circulante , Neuroblastoma , Niño , Humanos , ADN Tumoral Circulante/genética , Mutación , Genómica/métodos , Neuroblastoma/genética , Progresión de la Enfermedad , Proteínas Tirosina Quinasas Receptoras/genética , Biomarcadores de Tumor/genética , Secuenciación de Nucleótidos de Alto Rendimiento/métodos
8.
Eur J Cancer ; 157: 198-213, 2021 11.
Artículo en Inglés | MEDLINE | ID: mdl-34536944

RESUMEN

The first (2017) and sixth (2021) multistakeholder Paediatric Strategy Forums focused on anaplastic lymphoma kinase (ALK) inhibition in paediatric malignancies. ALK is an important oncogene and target in several paediatric tumours (anaplastic large cell lymphoma [ALCL], inflammatory myofibroblastic tumour [IMT], neuroblastoma and hemispheric gliomas in infants and young children) with unmet therapeutic needs. ALK tyrosine kinase inhibitors have been demonstrated to be active both in ALK fusion-kinase positive ALCL and IMT. ALK alterations differ, with fusions occurring in ALCL, IMT and gliomas, and activating mutations and amplification in neuroblastoma. While there are many ALK inhibitors in development, the number of children diagnosed with ALK driven malignancies is very small. The objectives of this ALK Forum were to (i) Describe current knowledge of ALK biology in childhood cancers; (ii) Provide an overview of the development of ALK inhibitors for children; (iii) Identify the unmet needs taking into account planned or current ongoing trials; (iv) Conclude how second/third-generation inhibitors could be evaluated and prioritised; (v) Identify lessons learnt from the experience with ALK inhibitors to accelerate the paediatric development of other anti-cancer targeted agents in the new regulatory environments. There has been progress over the last four years, with more trials of ALK inhibitors opened in paediatrics and more regulatory submissions. In January 2021, the US Food and Drug Administration approved crizotinib for the treatment of paediatric and young adult patients with relapsed or refractory ALCL and there are paediatric investigation plans (PIPs) for brigatinib and for crizotinib in ALCL and IMT. In ALCL, the current goal is to investigate the inclusion of ALK inhibitors in front-line therapy with the aim of decreasing toxicity with higher/similar efficacy compared to present first-line therapies. For IMT, the focus is to develop a joint prospective trial with one product in children, adolescents and adults, taking advantage of the common biology across the age spectrum. As approximately 50% of IMTs are ALK-positive, molecular analysis is required to identify patients to be treated with an ALK inhibitor. For neuroblastoma, crizotinib has not shown robust anti-tumour activity. A focused and sequential development of ALK inhibitors with very good central nervous system (CNS) penetration in CNS tumours with ALK fusions should be undertaken. The Forum reinforced the strong need for global academic collaboration, very early involvement of regulators with studies seeking possible registration and early academia-multicompany engagement. Innovations in study design and conduct and the use of 'real-world data' supporting development in these rare sub-groups of patients for whom randomised clinical trials are not feasible are important initiatives. A focused and sequenced development strategy, where one product is evaluated first with other products being assessed sequentially, is applicable for ALK inhibitors and other medicinal products in children.


Asunto(s)
Quinasa de Linfoma Anaplásico/antagonistas & inhibidores , Desarrollo de Medicamentos/organización & administración , Colaboración Intersectorial , Neoplasias/tratamiento farmacológico , Inhibidores de Proteínas Quinasas/uso terapéutico , Quinasa de Linfoma Anaplásico/genética , Niño , Ensayos Clínicos como Asunto , Industria Farmacéutica/organización & administración , Unión Europea/organización & administración , Humanos , Cooperación Internacional , Oncología Médica/organización & administración , Neoplasias/genética , Pediatría/organización & administración , Inhibidores de Proteínas Quinasas/farmacología , Estados Unidos , United States Food and Drug Administration/organización & administración
9.
J Clin Oncol ; 39(31): 3506-3514, 2021 11 01.
Artículo en Inglés | MEDLINE | ID: mdl-34270348

RESUMEN

PURPOSE: 131I-metaiodobenzylguanidine (MIBG) is an active radiotherapeutic for neuroblastoma. The primary aim of this trial was to identify which of three MIBG regimens was likely associated with the highest true response rate. PATIENTS AND METHODS: Patients 1-30 years were eligible if they had relapsed or refractory neuroblastoma, at least one MIBG-avid site, and adequate autologous stem cells. Patients received MIBG 18 mCi/kg on day 1 and autologous stem cell on day 15. Patients randomly assigned to arm A received only MIBG; patients randomly assigned to arm B received intravenous vincristine on day 0 and irinotecan daily on days 0-4; patients randomly assigned to arm C received vorinostat (180 mg/m2/dose) orally once daily on days 1 to 12. The primary end point was response after one course by New Approaches to Neuroblastoma Therapy criteria. The trial was designed with 105 patients to ensure an 80% chance that the arm with highest response rate was selected. RESULTS: One hundred fourteen patients were enrolled, with three ineligible and six unevaluable, leaving 105 eligible and evaluable patients (36 in arm A, 35 in arm B, and 34 in arm C; 55 boys; and median age 6.5 years). After one course, the response rates (partial response or better) on arms A, B, and C were 14% (95% CI, 5 to 30), 14% (5 to 31), and 32% (18 to 51). An additional five, five, and four patients met New Approaches to Neuroblastoma Therapy Minor Response criteria on arms A, B, and C, respectively. On arms A, B, and C, rates of any grade 3+ nonhematologic toxicity after first course were 19%, 49%, and 35%. CONCLUSION: Vorinostat and MIBG is likely the arm with the highest true response rate, with manageable toxicity. Vincristine and irinotecan do not appear to improve the response rate to MIBG and are associated with increased toxicity.


Asunto(s)
Protocolos de Quimioterapia Combinada Antineoplásica/uso terapéutico , Resistencia a Antineoplásicos , Recurrencia Local de Neoplasia/tratamiento farmacológico , Neuroblastoma/tratamiento farmacológico , Terapia Recuperativa , 3-Yodobencilguanidina/administración & dosificación , Adolescente , Adulto , Niño , Preescolar , Femenino , Estudios de Seguimiento , Humanos , Lactante , Irinotecán/administración & dosificación , Masculino , Recurrencia Local de Neoplasia/patología , Neuroblastoma/patología , Pronóstico , Estudios Prospectivos , Tasa de Supervivencia , Vincristina/administración & dosificación , Vorinostat/administración & dosificación , Adulto Joven
10.
Artículo en Inglés | MEDLINE | ID: mdl-34250393

RESUMEN

PURPOSE: Many novel therapies for relapsed and refractory neuroblastoma require tumor tissue for genomic sequencing. We analyze our experience with image-guided biopsy in these patients, focusing on safety, yield, adequacy for next-generation sequencing (NGS), and correlation of tumor cell percent (TC%) with quantitative uptake on 123I-meta-iodobenzylguanidine (MIBG) single-photon emission computed tomography with computed tomography (SPECT/CT). MATERIALS AND METHODS: An 11-year retrospective review of image-guided biopsy on 66 patients (30 female), with a median age of 8.7 years (range, 0.9-49 years), who underwent 95 biopsies (55 bone and 40 soft tissue) of relapsed or refractory neuroblastoma lesions was performed. RESULTS: There were seven minor complications (7%) and one major complication (1%). Neuroblastoma was detected in 88% of MIBG- or fluorodeoxyglucose-avid foci. The overall NGS adequacy was 69% (64% in bone and 74% in soft tissue, P = .37). NGS adequacy within neuroblastoma-positive biopsies was 88% (82% bone and 96% soft tissue, P = .11). NGS-adequate biopsies had a greater mean TC% than inadequates (51% v 18%, P = .03). NGS-adequate biopsies had a higher mean number of needle passes (7.5 v 3.4, P = .0002). The mean tissue volume from NGS-adequate soft-tissue lesions was 0.16 cm3 ± 0.12. Lesion:liver and lesion:psoas MIBG uptake ratios correlated with TC% (r = 0.74, r = 0.72, and n = 14). Mean TC% in NGS-adequate samples was 51%, corresponding to a lesion:liver ratio of 2.9 and a lesion:psoas ratio of 9.0. Thirty percent of biopsies showed an actionable ALK mutation or other therapeutically relevant variant. CONCLUSION: Image-guided biopsy for relapsed or refractory neuroblastoma was safe and likely to provide NGS data to guide therapy decisions. A lesion:liver MIBG uptake ratio of ≥ 3 or a lesion:psoas ratio of > 9 was associated with a TC% sufficient to deliver NGS results.


Asunto(s)
3-Yodobencilguanidina , Biopsia Guiada por Imagen , Recurrencia Local de Neoplasia/patología , Neuroblastoma/genética , Neuroblastoma/patología , Radiofármacos , Tomografía Computarizada por Tomografía Computarizada de Emisión de Fotón Único , Secuenciación Completa del Genoma , 3-Yodobencilguanidina/farmacocinética , Adolescente , Adulto , Niño , Preescolar , Correlación de Datos , Femenino , Humanos , Biopsia Guiada por Imagen/efectos adversos , Lactante , Masculino , Persona de Mediana Edad , Recurrencia Local de Neoplasia/metabolismo , Neuroblastoma/metabolismo , Radiofármacos/farmacocinética , Estudios Retrospectivos , Adulto Joven
11.
Mol Cancer Ther ; 20(8): 1400-1411, 2021 08.
Artículo en Inglés | MEDLINE | ID: mdl-34088831

RESUMEN

Venetoclax is a small molecule inhibitor of the prosurvival protein BCL-2 that has gained market approval in BCL-2-dependent hematologic cancers including chronic lymphocytic leukemia and acute myeloid leukemia. Neuroblastoma is a heterogenous pediatric cancer with a 5-year survival rate of less than 50% for high-risk patients, which includes nearly all cases with amplified MYCN We previously demonstrated that venetoclax is active in MYCN-amplified neuroblastoma but has limited single-agent activity in most models, presumably the result of other pro-survival BCL-2 family protein expression or insufficient prodeath protein mobilization. As the relative tolerability of venetoclax makes it amenable to combining with other therapies, we evaluated the sensitivity of MYCN-amplified neuroblastoma models to rational combinations of venetoclax with agents that have both mechanistic complementarity and active clinical programs. First, the MDM2 inhibitor NVP-CGM097 increases the prodeath BH3-only protein NOXA to sensitize p53-wild-type, MYCN-amplified neuroblastomas to venetoclax. Second, the MCL-1 inhibitor S63845 sensitizes MYCN-amplified neuroblastoma through neutralization of MCL-1, inducing synergistic cell killing when combined with venetoclax. Finally, the standard-of-care drug cocktail cyclophosphamide and topotecan reduces the apoptotic threshold of neuroblastoma, thus setting the stage for robust combination efficacy with venetoclax. In all cases, these rational combinations translated to in vivo tumor regressions in MYCN-amplified patient-derived xenograft models. Venetoclax is currently being evaluated in pediatric patients in the clinic, including neuroblastoma (NCT03236857). Although establishment of safety is still ongoing, the data disclosed herein indicate rational and clinically actionable combination strategies that could potentiate the activity of venetoclax in patients with amplified MYCN with neuroblastoma.


Asunto(s)
Protocolos de Quimioterapia Combinada Antineoplásica/farmacología , Amplificación de Genes , Regulación Neoplásica de la Expresión Génica/efectos de los fármacos , Proteína Proto-Oncogénica N-Myc/genética , Neuroblastoma/tratamiento farmacológico , Animales , Apoptosis , Compuestos Bicíclicos Heterocíclicos con Puentes/administración & dosificación , Proliferación Celular , Ciclofosfamida/administración & dosificación , Femenino , Humanos , Ratones , Ratones Endogámicos NOD , Ratones SCID , Neuroblastoma/genética , Neuroblastoma/metabolismo , Neuroblastoma/patología , Sulfonamidas/administración & dosificación , Topotecan/administración & dosificación , Células Tumorales Cultivadas , Ensayos Antitumor por Modelo de Xenoinjerto
12.
Transplant Cell Ther ; 27(6): 490.e1-490.e8, 2021 06.
Artículo en Inglés | MEDLINE | ID: mdl-33823167

RESUMEN

Consolidation using high-dose chemotherapy with autologous stem cell transplantation (ASCT) is an important component of frontline therapy for children with high-risk neuroblastoma. The optimal preparative regimen is uncertain, although recent data support a role for busulfan/melphalan (BuMel). The Children's Oncology Group (COG) conducted a trial (ANBL12P1) to assess the tolerability and feasibility of BuMel ASCT following a COG induction. Patients with newly diagnosed high-risk neuroblastoma who did not progress during induction therapy and met organ function requirements received i.v. busulfan (every 24 hours for 4 doses based on age and weight) and melphalan (140 mg/m2 for 1 dose), followed by ASCT. Busulfan doses were adjusted to achieve to an average daily area under the curve (AUC) <5500 µM × minute. The primary endpoint was the occurrence of severe sinusoidal obstruction syndrome (SOS) or grade ≥4 pulmonary complications within the first 28 days after completion of consolidation therapy. A total of 146 eligible patients were enrolled, of whom 101 underwent BuMel ASCT. The overall incidence of protocol-defined unacceptable toxicity during consolidation was 6.9% (7 of 101). Six patients (5.9%) developed SOS, with 4 (4%) meeting the criteria for severe SOS. An additional 3 patients (3%) experienced grade ≥4 pulmonary complications during consolidation. The median busulfan AUC was 4558 µM × min (range, 3462 to 5189 µM × minute) for patients with SOS and 3512 µM × min (2360 to 5455 µM × minute) (P = .0142). No patients died during consolidation. From the time of study enrollment, the mean 3-year event-free survival for all 146 eligible patients was 55.6 ± 4.2%, and the mean 3-year overall survival was 74.5 ± 3.7%. The BuMel myeloablative regimen following COG induction was well tolerated, with acceptable pulmonary and hepatic toxicity.


Asunto(s)
Trasplante de Células Madre Hematopoyéticas , Neuroblastoma , Busulfano/efectos adversos , Niño , Humanos , Quimioterapia de Inducción , Melfalán/efectos adversos , Neuroblastoma/tratamiento farmacológico , Trasplante Autólogo
13.
Proc Natl Acad Sci U S A ; 118(10)2021 03 09.
Artículo en Inglés | MEDLINE | ID: mdl-33674381

RESUMEN

Kinases play important roles in diverse cellular processes, including signaling, differentiation, proliferation, and metabolism. They are frequently mutated in cancer and are the targets of a large number of specific inhibitors. Surveys of cancer genome atlases reveal that kinase domains, which consist of 300 amino acids, can harbor numerous (150 to 200) single-point mutations across different patients in the same disease. This preponderance of mutations-some activating, some silent-in a known target protein make clinical decisions for enrolling patients in drug trials challenging since the relevance of the target and its drug sensitivity often depend on the mutational status in a given patient. We show through computational studies using molecular dynamics (MD) as well as enhanced sampling simulations that the experimentally determined activation status of a mutated kinase can be predicted effectively by identifying a hydrogen bonding fingerprint in the activation loop and the αC-helix regions, despite the fact that mutations in cancer patients occur throughout the kinase domain. In our study, we find that the predictive power of MD is superior to a purely data-driven machine learning model involving biochemical features that we implemented, even though MD utilized far fewer features (in fact, just one) in an unsupervised setting. Moreover, the MD results provide key insights into convergent mechanisms of activation, primarily involving differential stabilization of a hydrogen bond network that engages residues of the activation loop and αC-helix in the active-like conformation (in >70% of the mutations studied, regardless of the location of the mutation).


Asunto(s)
Quinasa de Linfoma Anaplásico/química , Aprendizaje Automático , Simulación de Dinámica Molecular , Mutación , Quinasa de Linfoma Anaplásico/deficiencia , Activación Enzimática/genética , Humanos , Conformación Proteica en Hélice alfa
14.
Clin Cancer Res ; 27(10): 2938-2946, 2021 05 15.
Artículo en Inglés | MEDLINE | ID: mdl-33619171

RESUMEN

PURPOSE: Patients with relapsed pediatric solid malignancies have few therapeutic options, and many of these patients die of their disease. B7-H3 is an immune checkpoint protein encoded by the CD276 gene that is overexpressed in many pediatric cancers. Here, we investigate the activity of the B7-H3-targeting antibody-drug conjugate (ADC) m276-SL-PBD in pediatric solid malignancy patient-derived (PDX) and cell line-derived xenograft (CDX) models. EXPERIMENTAL DESIGN: B7-H3 expression was quantified by RNA sequencing and by IHC on pediatric PDX microarrays. We tested the safety and efficacy of m276-SL-PBD in two stages. Randomized trials of m276-SL-PBD of 0.5 mg/kg on days 1, 8, and 15 compared with vehicle were performed in PDX or CDX models of Ewing sarcoma (N = 3), rhabdomyosarcoma (N = 4), Wilms tumors (N = 2), osteosarcoma (N = 5), and neuroblastoma (N = 12). We then performed a single mouse trial in 47 PDX or CDX models using a single 0.5 m/kg dose of m276-SL-PBD. RESULTS: The vast majority of PDX and CDX samples studied showed intense membranous B7-H3 expression (median H-score 177, SD 52). In the randomized trials, m276-SL-PBD showed a 92.3% response rate, with 61.5% of models showing a maintained complete response (MCR). These data were confirmed in the single mouse trial with an overall response rate of 91.5% and MCR rate of 64.4%. Treatment-related mortality rate was 5.5% with late weight loss observed in a subset of models dosed once a week for 3 weeks. CONCLUSIONS: m276-SL-PBD has significant antitumor activity across a broad panel of pediatric solid tumor PDX models.


Asunto(s)
Antígenos B7/antagonistas & inhibidores , Inmunoconjugados/farmacología , Neoplasias/tratamiento farmacológico , Animales , Antígenos B7/genética , Línea Celular Tumoral , Niño , Modelos Animales de Enfermedad , Femenino , Humanos , Inmunoconjugados/uso terapéutico , Ratones , Neoplasias/diagnóstico , Neoplasias/etiología , Neoplasias/metabolismo , Pediatría , Resultado del Tratamiento , Ensayos Antitumor por Modelo de Xenoinjerto
15.
Clin Cancer Res ; 27(13): 3543-3548, 2021 07 01.
Artículo en Inglés | MEDLINE | ID: mdl-33568345

RESUMEN

PURPOSE: Anaplastic lymphoma kinase (ALK) aberrations are a promising target for patients with neuroblastoma. We assessed the activity of first-generation ALK inhibitor crizotinib in patients with no known curative treatments and whose tumors harbored an activating ALK alteration. PATIENTS AND METHODS: Twenty patients with relapsed/refractory ALK-positive neuroblastoma received crizotinib at the recommended phase II dose of 280 mg/m2/dose. A Simon two-stage design was used to evaluate the antitumor activity of crizotinib monotherapy. Response evaluation occurred after cycles 1, 3, 5, 7, and then every 3 cycles. Correlation of ALK status and response was a secondary aim of the study. RESULTS: The objective response rate for patients with neuroblastoma was 15% [95% confidence interval (CI): 3.3%-34.3%]: two with partial responses and 1 with a complete response. All three patients had a somatic ALK Arg1275Gln mutation, the most common ALK hotspot mutation observed in neuroblastoma and the only mutation predicted to be sensitive to ALK inhibition with crizotinib. Two patients had prolonged stable disease (10 and 13 cycles, respectively); both harbored an ALK Arg1275Gln mutation. Three patients with ALK Phe1174Leu mutations progressed during cycle 1 of therapy, and one patient with an ALK Phe1174Val received three cycles before disease progression. The two patients with ALK amplification had no response. The most common adverse event was a decrease in neutrophil count. CONCLUSIONS: Despite limited activity seen in this trial, we conclude that this is more likely due to an inability to reach the higher concentrations of crizotinib needed to overcome the competing ATP affinity.See related commentary by Schulte and Eggert, p. 3507.


Asunto(s)
Neoplasias Pulmonares , Neuroblastoma , Quinasa de Linfoma Anaplásico/genética , Niño , Crizotinib/uso terapéutico , Humanos , Neoplasias Pulmonares/tratamiento farmacológico , Recurrencia Local de Neoplasia/tratamiento farmacológico , Recurrencia Local de Neoplasia/genética , Neuroblastoma/tratamiento farmacológico , Neuroblastoma/genética , Inhibidores de Proteínas Quinasas/efectos adversos
16.
Cancer Res ; 81(7): 1627-1632, 2021 04 01.
Artículo en Inglés | MEDLINE | ID: mdl-33509943

RESUMEN

Effective treatment of pediatric solid tumors has been hampered by the predominance of currently "undruggable" driver transcription factors. Improving outcomes while decreasing the toxicity of treatment necessitates the development of novel agents that can directly inhibit or degrade these elusive targets. MYCN in pediatric neural-derived tumors, including neuroblastoma and medulloblastoma, is a paradigmatic example of this problem. Attempts to directly and specifically target MYCN have failed due to its similarity to MYC, the unstructured nature of MYC family proteins in their monomeric form, the lack of an understanding of MYCN-interacting proteins and ability to test their relevance in vivo, the inability to obtain structural information on MYCN protein complexes, and the challenges of using traditional small molecules to inhibit protein-protein or protein-DNA interactions. However, there is now promise for directly targeting MYCN based on scientific and technological advances on all of these fronts. Here, we discuss prior challenges and the reasons for renewed optimism in directly targeting this "undruggable" transcription factor, which we hope will lead to improved outcomes for patients with pediatric cancer and create a framework for targeting driver oncoproteins regulating gene transcription.


Asunto(s)
Antineoplásicos/aislamiento & purificación , Resistencia a Antineoplásicos , Proteína Proto-Oncogénica N-Myc/fisiología , Neoplasias/tratamiento farmacológico , Terapias en Investigación , Edad de Inicio , Antineoplásicos/historia , Antineoplásicos/uso terapéutico , Niño , Descubrimiento de Drogas/historia , Descubrimiento de Drogas/métodos , Descubrimiento de Drogas/tendencias , Resistencia a Antineoplásicos/efectos de los fármacos , Resistencia a Antineoplásicos/genética , Ensayos de Selección de Medicamentos Antitumorales/historia , Ensayos de Selección de Medicamentos Antitumorales/métodos , Ensayos de Selección de Medicamentos Antitumorales/tendencias , Regulación Neoplásica de la Expresión Génica/efectos de los fármacos , Historia del Siglo XX , Historia del Siglo XXI , Humanos , Proteína Proto-Oncogénica N-Myc/antagonistas & inhibidores , Proteína Proto-Oncogénica N-Myc/genética , Neoplasias/epidemiología , Neoplasias/genética , Terapias en Investigación/historia , Terapias en Investigación/métodos , Terapias en Investigación/tendencias
17.
Cancer Chemother Pharmacol ; 86(6): 829-840, 2020 12.
Artículo en Inglés | MEDLINE | ID: mdl-33095287

RESUMEN

PURPOSE: This phase 1 study aimed to determine the safety, tolerability and recommended phase 2 dose (RP2D) of crizotinib in combination with cytotoxic chemotherapy for children with refractory solid tumors and ALCL. METHODS: Pediatric patients with treatment refractory solid tumors or ALCL were eligible. Using a 3 + 3 design, crizotinib was escalated in three dose levels: 165, 215, or 280 mg/m2/dose BID. In Part A, patients received crizotinib oral solution (OS) in combination with topotecan and cyclophosphamide (topo/cyclo); in Part B, crizotinib OS was administered with vincristine and doxorubicin (vcr/dox). In Parts C and D, patients received topo/cyclo in combination with either crizotinib-formulated capsules (FC) or microspheres (cMS), respectively. Crizotinib pharmacokinetic evaluation was required. RESULTS: Forty-four eligible patients were enrolled, 39 were evaluable for toxicity. Parts A and B were terminated due to concerns regarding palatability and tolerability of the OS. In Part C, crizotinib, FC 215 mg/m2/dose BID, in combination with topo/cyclo was tolerated. In Part D, the maximum tolerated dose (MTD) was exceeded at 165 mg/m2/dose of crizotinib cMS. Pharmacokinetics of crizotinib in combination with chemotherapy was similar to single-agent crizotinib and exposures were not formulation dependent. CONCLUSIONS: The RP2D of crizotinib FCs in combination with cyclophosphamide and topotecan was 215 mg/m2/dose BID. The oral solution of crizotinib was not palatable in this patient population. Crizotinib cMS was palatable; however, patients experienced increased toxicity that was not explained by the relative bioavailability or exposure and warrants further investigation. CLINICAL TRIAL REGISTRY: The trial is registered as NCT01606878 at Clinicaltrials.gov.


Asunto(s)
Protocolos de Quimioterapia Combinada Antineoplásica/toxicidad , Crizotinib/toxicidad , Linfoma Anaplásico de Células Grandes/tratamiento farmacológico , Recurrencia Local de Neoplasia/tratamiento farmacológico , Administración Oral , Adolescente , Protocolos de Quimioterapia Combinada Antineoplásica/administración & dosificación , Protocolos de Quimioterapia Combinada Antineoplásica/farmacocinética , Disponibilidad Biológica , Niño , Preescolar , Crizotinib/administración & dosificación , Crizotinib/farmacocinética , Ciclofosfamida/administración & dosificación , Ciclofosfamida/toxicidad , Relación Dosis-Respuesta a Droga , Doxorrubicina/administración & dosificación , Doxorrubicina/toxicidad , Esquema de Medicación , Resistencia a Antineoplásicos , Femenino , Humanos , Lactante , Linfoma Anaplásico de Células Grandes/patología , Masculino , Dosis Máxima Tolerada , Recurrencia Local de Neoplasia/sangre , Recurrencia Local de Neoplasia/patología , Topotecan/administración & dosificación , Topotecan/toxicidad , Vincristina/administración & dosificación , Vincristina/toxicidad , Adulto Joven
18.
Cancer Cell ; 38(4): 429-432, 2020 10 12.
Artículo en Inglés | MEDLINE | ID: mdl-33049203

RESUMEN

As we continue to learn about the unique biology of pediatric and childhood cancers and as new therapies are being developed, we asked some experts to highlight the most notable advances in our understanding of these diseases and in the development of treatments in the past decade, and to point out current challenges that still need to be addressed.


Asunto(s)
Investigación Biomédica/métodos , Oncología Médica/métodos , Neoplasias/diagnóstico , Neoplasias/terapia , Patología Molecular/métodos , Investigación Biomédica/tendencias , Niño , Humanos , Oncología Médica/tendencias , Neoplasias/genética , Patología Molecular/tendencias
19.
Pediatr Blood Cancer ; 67(5): e28098, 2020 05.
Artículo en Inglés | MEDLINE | ID: mdl-31975571

RESUMEN

INTRODUCTION: WEE1 is a serine kinase central to the G2 checkpoint. Inhibition of WEE1 can lead to cell death by permitting cell-cycle progression despite unrepaired DNA damage. AZD1775 is a WEE1 inhibitor that is in clinical development for children and adults with cancer. METHODS: AZD1775 was tested using a dose of 120 mg/kg administered orally for days 1 to 5. Irinotecan was administered intraperitoneally at a dose of 2.5 mg/kg for days 1 to 5 (one hour after AZD1775 when used in combination). AZD1775 and irinotecan were studied alone and in combination in neuroblastoma (n = 3), osteosarcoma (n = 4), and Wilms tumor (n = 3) xenografts. RESULTS: AZD1775 as a single agent showed little activity. Irinotecan induced objective responses in two neuroblastoma lines (PRs), and two Wilms tumor models (CR and PR). The combination of AZD1775 + irinotecan-induced objective responses in two neuroblastoma lines (PR and CR) and all three Wilms tumor lines (CR and 2 PRs). The objective response measure improved compared with single-agent treatment for one neuroblastoma (PR to CR), two osteosarcoma (PD1 to PD2), and one Wilms tumor (PD2 to PR) xenograft lines. Of note, the combination yielded CR (n = 1) and PR (n = 2) in all the Wilms tumor lines. The event-free survival was significantly longer for the combination compared with single-agent irinotecan in all models tested. The magnitude of the increase was greatest in osteosarcoma and Wilms tumor xenografts. CONCLUSIONS: AZD1775 potentiates the effects of irinotecan across most of the xenograft lines tested, with effect size appearing to vary across tumor panels.


Asunto(s)
Protocolos de Quimioterapia Combinada Antineoplásica/farmacología , Neoplasias Renales/tratamiento farmacológico , Neoplasias Experimentales/tratamiento farmacológico , Neuroblastoma/tratamiento farmacológico , Tumor de Wilms/tratamiento farmacológico , Animales , Línea Celular Tumoral , Niño , Femenino , Humanos , Irinotecán/farmacología , Neoplasias Renales/metabolismo , Neoplasias Renales/patología , Ratones , Ratones SCID , Neoplasias Experimentales/metabolismo , Neuroblastoma/metabolismo , Neuroblastoma/patología , Pirazoles/farmacología , Pirimidinonas/farmacología , Tumor de Wilms/metabolismo , Tumor de Wilms/patología , Ensayos Antitumor por Modelo de Xenoinjerto
20.
Cancer Cell ; 36(4): 345-347, 2019 10 14.
Artículo en Inglés | MEDLINE | ID: mdl-31614113

RESUMEN

Mechanisms of acquired resistance to ALK inhibition therapy in neuroblastoma have not yet been elucidated. In a recent issue of Nature, Debruyne et al. demonstrate that resistant MYCN-amplified ALK-mutated neuroblastoma cells overexpress BORIS, resulting in wide-ranging changes in chromatin interaction and transcriptional reprogramming.


Asunto(s)
Cromatina , Neuroblastoma , Dominio AAA , Quinasa de Linfoma Anaplásico , Línea Celular Tumoral , Humanos , Proteína Proto-Oncogénica N-Myc/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA