RESUMEN
Relativistic coupled-cluster calculations of the ionization potential, dissociation energy, and excited electronic states under 35 000 cm-1 are presented for the actinium monofluoride (AcF) molecule. The ionization potential is calculated to be IPe = 48 866 cm-1, and the ground state is confirmed to be a closed-shell singlet and thus strongly sensitive to the T,P-violating nuclear Schiff moment of the Ac nucleus. Radiative properties and transition dipole moments from the ground state are identified for several excited states, achieving a mean uncertainty estimate of â¼450 cm-1 for the excitation energies. For higher-lying states that are not directly accessible from the ground state, possible two-step excitation pathways are proposed. The calculated branching ratios and Franck-Condon factors are used to investigate the suitability of AcF for direct laser cooling. The lifetime of the metastable (1)3Δ1 state, which can be used in experimental searches of the electric dipole moment of the electron, is estimated to be of order 1 ms.
RESUMEN
The compound-tunable embedding potential (CTEP) method developed in [Lomachuk et al., Phys. Chem. Chem. Phys., 2020, 22, 17922; Maltsev et al., Phys. Rev. B, 2021, 103, 205105] to describe the electronic structure of fragments and point defects in materials is applied to crystals containing periodically arranged lanthanide atoms, which can have an open 4f-shell. We consider YbF2, YbF3, YbCl2, and YbCl3 crystals for the pilot CTEP studies such that 4f-electrons are not treated explicitly at the CTEP generation stages. Instead, the pseudopotentials with 60 and 59 electrons in the core for Yb(II) and Yb(III), correspondingly, are applied and the latter treats the "4f-hole-in-core". At the final stage, the two-component embedded cluster study of fragments of YbHaln crystals (Hal = F, Cl; n = 2, 3) is performed using the CTEP method and a relativistic pseudopotential with 28 electrons in the core for the central Yb atom. Remarkable agreement of the electronic densities within the YbHal2 fragments with those of the original periodic crystal calculation is demonstrated. The calculated interatomic distances between the central Yb and nearest halide atoms are in pretty good agreement with the experimental data, the deviations are within 0.015 Å for all the studied crystals. Thus, the overall accuracy for the crystal characteristics evaluated using CTEP in the combined periodic-structure and embedded cluster study is comparable with that of Yb-containing molecular calculations.
RESUMEN
Recently, a breakthrough has been achieved in laser-spectroscopic studies of short-lived radioactive compounds with the first measurements of the radium monofluoride molecule (RaF) UV/vis spectra. We report results from high-accuracy ab initio calculations of the RaF electronic structure for ground and low-lying excited electronic states. Two different methods agree excellently with experimental excitation energies from the electronic ground state to the 2Π1/2 and 2Π3/2 states, but lead consistently and unambiguously to deviations from experimental-based adiabatic transition energy estimates for the 2Σ1/2 excited electronic state, and show that more measurements are needed to clarify spectroscopic assignment of the 2Δ state.
RESUMEN
The existence of the fundamental CP-violating interactions inside the nucleus leads to the existence of a nuclear Schiff moment. The Schiff moment potential corresponds to the electric field localized inside the nucleus and directed along its spin. This field can interact with electrons of an atom and induce the permanent electric dipole moment (EDM) of the whole system. The Schiff moment and the corresponding electric field are enhanced in the nuclei with octupole deformation leading to an enhanced atomic EDM. There is also a few-order enhancement of the T,P-violating effects in molecules due to the existence of energetically close levels of opposite parity. We study the Schiff moment enhancement in the class of diatomic molecules with octupole-deformed lanthanide and actinide nuclei: 227AcF, 227AcN, 227AcO+, 229ThO, 153EuO+ and 153EuN. Projecting the existing experimental achievements to measure the EDM in diamagnetic molecules with a spherical nucleus (205TlF) to the considered systems one can expect very high sensitivity to the quantum chromodynamics parameter [small theta, Greek, macron] and other hadronic CP-violation parameters surpassing the current best limits by several orders of magnitude. It can have a dramatic impact on the modern understanding of the nature of CP-violating fundamental interactions.
RESUMEN
Modern strategies for the safe handling of high level waste (HLW) and its long-term disposal in deep geological formations include the immobilization of radionuclides in the form of mineral-like matrices. The most promising matrices for the immobilization of actinides are ceramic forms of waste based on phosphate minerals such as monazite, xenotime, and cheralite. However, the mechanism of substitution of lanthanides and Y by actinides in phosphate minerals is not entirely clear. We formulated a theoretical model, compound-tunable embedding potential (CTEP), that allows one to predict properties of such crystals with point defects. The reliability of the model is validated by a good agreement of calculated geometry parameters with available experimental data. The substitution of Y in the xenotime crystal by Th and U is studied by relativistic DFT in the framework of the CTEP method, based on constructing the embedding potential as the linear combination of short-range "electron-free" spherical "tunable" pseudopotentials. It is shown on the basis of the proposed model that oxidation state +3 is energetically more profitable than +4 not only for thorium but also for uranium as solitary point defects. This atypical oxidation state of U in the mineral is discussed.
RESUMEN
The results of electronic structure modeling of plutonium and americium higher oxide molecules (actinide oxidation states VI through VIII) by two-component relativistic density functional theory are presented. Ground-state equilibrium molecular structures, main features of charge distributions, and energetics of AnO3, AnO4, An2On (An=Pu, Am), and PuAmOn, n = 6-8, are determined. In all cases, molecular geometries of americium and mixed plutonium-americium oxides are similar to those of the corresponding plutonium compounds, though chemical bonding in americium oxides is markedly weaker. Relatively high stability of the mixed heptoxide PuAmO7 is noticed; the Pu(VIII) and especially Am(VIII) oxides are expected to be unstable.