Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 1 de 1
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Materials (Basel) ; 17(4)2024 Feb 17.
Artículo en Inglés | MEDLINE | ID: mdl-38399185

RESUMEN

Solid by-products with lignocellulosic structures are considered appropriate substrates for solid-state fermentation (SSF) to produce enzymes with diverse industrial applications. In this work, brewer's spent grain (BSG), rice husk (RH), and vine shoot trimmings (VSTs) were employed as substrates in SSF with Aspergillus niger CECT 2088 to produce cellulases, xylanases, and amylases. The addition of 2% (NH4)2SO4 and 1% K2HPO4 to by-products had a positive effect on enzyme production. Substrate particle size influenced enzyme activity and the overall highest activities were achieved at the largest particle size (10 mm) of BSG and RH and a size of 4 mm for VSTs. Optimal substrate composition was predicted using a simplex centroid mixture design. The highest activities were obtained using 100% BSG for ß-glucosidase (363 U/g) and endo-1,4-ß-glucanase (189 U/g), 87% BSG and 13% RH for xylanase (627 U/g), and 72% BSG and 28% RH for amylase (263 U/g). Besides the optimal values found, mixtures of BSG with RH or VSTs proved to be alternative substrates to BSG alone. These findings demonstrate that SSF bioprocessing of BSG individually or in mixtures with RH and VSTs is an efficient and sustainable strategy to produce enzymes of significant industrial interest within the circular economy guidelines.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...