Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 97
Filtrar
1.
Skin Res Technol ; 30(5): e13727, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38711343

RESUMEN

Wound healing is a complex, intricate, and dynamic process that requires effective therapeutic management. The current study evaluates the wound healing potentials of methanolic extract of Cuminum cyminum L. seeds (CCS) in rats. Sprague Dawley (24) rats were distributed into four cages, wounds produced on the back of the neck, and received two daily topical treatments for 14 days: A, rats received normal saline; B, wounded rats treated with intrasite gel; C and D, rats received 0.2 mL of 250 and 500 mg/kg of CCS, respectively. After that, wound area and closure percentage were evaluated, and wound tissues were dissected for histopathological, immunohistochemical, and biochemical examinations. Acute toxicity trials of methanolic extract of CCS showed the absence of any physiological changes or mortality in rats. CCS application caused a significant reduction in wound size and a statistically elevated percentage of wound contraction than those of vehicle rats. CCS treatment caused significant up-regulation of collagen fiber, fibroblasts, and fewer inflammatory cells (inflammation) in granulation tissues. TGF-ß1 (angiogenetic factor) was significantly more expressed in CCS-treated rats in comparison to normal saline-treated rats; therefore, more fibroblasts transformed into myofibroblasts (angiogenesis). CCS-treated rats showed remarkable antioxidant potentials (higher SOD and CAT enzymes) and decreased MDA (lipid peroxidation) levels in their wound tissue homogenates. Hydroxyproline amino acid (collagen) was significantly up-regulated by CCS treatment, which is commonly related to faster wound closure area. The outcomes suggest CCS as a viable new source of pharmaceuticals for wound treatment.


Asunto(s)
Cuminum , Extractos Vegetales , Ratas Sprague-Dawley , Semillas , Cicatrización de Heridas , Animales , Cicatrización de Heridas/efectos de los fármacos , Semillas/química , Ratas , Extractos Vegetales/farmacología , Cuminum/química , Masculino , Piel/lesiones , Piel/efectos de los fármacos , Piel/patología , Factor de Crecimiento Transformador beta1/metabolismo
2.
PLoS One ; 19(4): e0301992, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38640098

RESUMEN

BACKGROUND AND OBJECTIVE: Diabetic neuropathy (DN) is a complex type of diabetes. The underlying cause of diabetic nephropathy remains unclear and may be due to a variety of pathological conditions resulting in kidney failure. This study examines the protective effect of the methanolic extract of Spilanthes filicaulis leaves (MESFL) in fructose-fed streptozotocin (STZ)-induced diabetic nephropathy and the associated pathway. METHODS: Twenty-five rats were equally divided randomly into five categories: Control (C), diabetic control, diabetic + metformin (100 mg/kg), diabetic + MESFL 150 mg/kg bw, and diabetic + MESFL 300 mg/kg bw. After 15 days, the rats were evaluated for fasting blood glucose (FBG), alanine aminotransferase (ALT), aspartate aminotransferase (AST), alkaline phosphatase (ALP), urea, uric acid, serum creatinine, reduced glutathione (GSH), superoxide dismutase (SOD), catalase (CAT), and lipid peroxidation (MDA). Gene expression levels of cyclic adenosine monophosphate (cAMP), protein kinase A (PKA), cAMP response element-binding (CREB), cFOS and the antiapoptotic protein Bcl-2 were examined. RESULTS: We observed that MESFL at 150 and 300 mg/kg bw significantly downregulated the protein expression of cAMP, PKA, CREB, and cFOS and upregulated the Bcl-2 gene, suggesting that the nephroprotective action of MESFL is due to the suppression of the cAMP/PKA/CREB/cFOS signaling pathway. In addition, MESFL increases SOD and CAT activities and GSH levels, reduces MDA levels, and reduces renal functional indices (ALP, urea, uric acid, and creatinine). CONCLUSION: Therefore, our results indicate that MESFL alleviates the development of diabetic nephropathy via suppression of the cAMP/PKA/CREB/cFOS pathways.


Asunto(s)
Diabetes Mellitus , Nefropatías Diabéticas , Ratas , Animales , Nefropatías Diabéticas/tratamiento farmacológico , Nefropatías Diabéticas/prevención & control , Nefropatías Diabéticas/metabolismo , Estreptozocina/farmacología , Riñón/patología , Ácido Úrico/metabolismo , Superóxido Dismutasa/metabolismo , Estrés Oxidativo , Diabetes Mellitus/patología
3.
Front Mol Biosci ; 11: 1348277, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38516192

RESUMEN

The heterocycle compounds, with their diverse functionalities, are particularly effective in inhibiting Janus kinases (JAKs). Therefore, it is crucial to identify the correlation between their complex structures and biological activities for the development of new drugs for the treatment of rheumatoid arthritis (RA) and cancer. In this study, a diverse set of 28 heterocyclic compounds selective for JAK1 and JAK3 was employed to construct quantitative structure-activity relationship (QSAR) models using multiple linear regression (MLR). Artificial neural network (ANN) models were employed in the development of QSAR models. The robustness and stability of the models were assessed through internal and external methodologies, including the domain of applicability (DoA). The molecular descriptors incorporated into the model exhibited a satisfactory correlation with the receptor-ligand complex structures of JAKs observed in X-ray crystallography, making the model interpretable and predictive. Furthermore, pharmacophore models ADRRR and ADHRR were designed for each JAK1 and JAK3, proving effective in discriminating between active compounds and decoys. Both models demonstrated good performance in identifying new compounds, with an ROC of 0.83 for the ADRRR model and an ROC of 0.75 for the ADHRR model. Using a pharmacophore model, the most promising compounds were selected based on their strong affinity compared to the most active compounds in the studied series each JAK1 and JAK3. Notably, the pharmacokinetic, physicochemical properties, and biological activities of the selected compounds (As compounds ZINC79189223 and ZINC66252348) were found to be consistent with their therapeutic effects in RA, owing to their non-toxic, cholinergic nature, absence of P-glycoprotein, high gastrointestinal absorption, and ability to penetrate the blood-brain barrier. Furthermore, ADMET properties were assessed, and molecular dynamics and MM/GBSA analysis revealed stability in these molecules.

4.
Saudi Pharm J ; 32(5): 102023, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38550333

RESUMEN

The escalation of many coronavirus variants accompanied by the lack of an effective cure has motivated the hunt for effective antiviral medicines. In this regard, 18 Saudi Arabian medicinal plants were evaluated for SARS CoV-2 main protease (Mpro) inhibition activity. Among them, Terminalia brownii and Acacia asak alcoholic extracts exhibited significant Mpro inhibition, with inhibition rates of 95.3 % and 95.2 %, respectively, at a concentration of 100 µg/mL. Bioassay-guided phytochemical study for the most active n-butanol fraction of T. brownii led to identification of eleven compounds, including two phenolic acids (1, and 2), seven hydrolysable tannins (3-10), and one flavonoid (11) as well as four flavonoids from A. asak (12-15). The structures of the isolated compounds were established using various spectroscopic techniques and comparison with known compounds. To investigate the chemical interactions between the identified compounds and the target Mpro protein, molecular docking was performed using AutoDock 4.2. The findings identified compounds 4, 5, 10, and 14 as the most potential inhibitors of Mpro with binding energies of -9.3, -8.5, -8.1, and -7.8 kcal mol-1, respectively. In order to assess the stability of the protein-ligand complexes, molecular dynamics simulations were conducted for a duration of 100 ns, and various parameters such as RMSD, RMSF, Rg, and SASA were evaluated. All selected compounds 4, 5, 10, and 14 showed considerable Mpro inhibiting activity in vitro, with compound 4 being the most powerful with an IC50 value of 1.2 µg/mL. MM-GBSA free energy calculations also revealed compound 4 as the most powerful Mpro inhibitor. None of the compounds (4, 5, 10, and 14) display any significant cytotoxic activity against A549 and HUVEC cell lines.

5.
Pharmaceuticals (Basel) ; 17(3)2024 Mar 18.
Artículo en Inglés | MEDLINE | ID: mdl-38543172

RESUMEN

The emergence of drug-resistant microorganisms presents a substantial global public health threat. The increase in pathogens resistant to commonly prescribed antibiotics underscores the urgent requirement to explore alternative treatment strategies. This study adopts a novel approach by harnessing natural resources, specifically essential oils (EO), to combat bacterial pathogenicity. The primary aim of this research was to analyze the chemical composition of the aerial part of the Matricaria aurea (M. aureas) EO and evaluate its potential for inhibiting quorum sensing (QS) and disrupting biofilm formation in Pseudomonas aeruginosa (P. aeruginosa). The gas chromatography-mass spectrometry (GCMS) analysis unveiled that α-bisabolol oxide A constituted the predominant portion, comprising 64.8% of the total, with ß-bisabolene at 6.3% and α-farnesene at 4.8% following closely behind. The antibiofilm efficacy was observed at concentrations of 0.3, 0.15, and 0.08 mg/mL, demonstrating negligible effects on cell viability. Furthermore, the EO from M. aurea effectively inhibited the formation of P. aeruginosa biofilms by diminishing aggregation, hydrophobicity, and swarming motility. Significantly, the EO treatment resulted in a conspicuous decrease in the production of pyocyanin, rhamnolipid, and extracellular polymeric substances (EPS), along with a reduction in the enzymatic activity of protease and chitinase. The EO effectively hindered QS by disrupting QS mechanisms, resulting in a marked decline in the secretion of N-Acyl homoserine lactone (AHL) molecules and the expression of phazA1 and aprA genes. This investigation offers compelling evidence supporting the potential of M. aurea EO as a promising therapeutic candidate for addressing infectious diseases induced by biofilm formation.

6.
Saudi Pharm J ; 32(3): 101967, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38362039

RESUMEN

Phytotherapy, which involves the use of plant extracts and natural compounds for medicinal purposes, is indeed a promising alternative for managing urinary lithiasis. Many plants have been studied for their potential to prevent and treat kidney stones, and they may offer a more natural and potentially less harmful approach compared to conventional treatments. Additionally, phytotherapy may be more cost-effective. The aim of the present study was to investigate the antilithic potential of extracts and essential oils of Saussurea costus (Falc) Lipsch in two in vivo models, one on ethylene glycol-induced calcium oxalate crystal formation and the other to assess the effects of these extracts on magnesium oxide-induced struvite crystal formation. The experiment involved the administration of different doses of aqueous and ethanolic extracts of S. costus (200 and 400 mg/kg) and essential oils (25 and 50 mg/kg) to male Wistar rats, followed by the evaluation of various physiological, biochemical and histopathological parameters. The results demonstrated that the administration of S. costus essential oils and extracts had significant effects on the rats, influencing body weight, urine volume, crystal deposition, cytobacteriological examination of urine, and serum biochemical parameters. Histopathological examinations revealed varying impacts on the kidneys and livers of the treated rats. The findings suggest that S. costus extracts and essential oils may hold promise in inhibiting calcium oxalate crystal formation in vivo and influencing various physiological and biochemical parameters in rats. Overall, the 200 mg/kg ethanolic extract of S. costus demonstrated antilithiatic efficacy, did not exhibit signs of toxicity and reduced the number of crystals in the kidneys. Furthermore, the study did not find a significant effect on reducing struvite crystals.

7.
Saudi Pharm J ; 32(4): 101994, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38405040

RESUMEN

Schizophrenia, a global mental health disorder affecting approximately 1 % of the population, is characterized by neurotransmitter dysregulation, particularly dopamine, serotonin, and glutamate. Current antipsychotic therapies, despite their efficacy, are accompanied by adverse effects, which has motivated researchers to investigate more secure substitutes. This study examines the potential antipsychotic effects of esculetin, a natural coumarin derivative recognized for its wide-ranging pharmacological activities (anti-inflammatory, antioxidant, anti-pathogenic, anticancer, and neuroprotective), in animal model of schizophrenia induced by ketamine. In order to induce disease, acute and chronic ketamine administration was performed on Swiss albino mice, supplemented with esculetin (as the test substance) and clozapine (as the reference standard). Behavioral studies and biochemical assays were performed to evaluate positive, negative, and cognitive symptoms of schizophrenia, as well as antioxidant and oxidant levels in various brain regions. Esculetin demonstrated significant improvements in behavioral symptoms, attenuated oxidative stress and neuroinflammation, and modulated neurotransmitter levels. Afterwards, ELISA was performed to evaluate levels of schizophrenia biomarkers AChE, BDNF. Moreover, proinflammatory cytokines (IL-6 and TNF-α) and NF-κB were also determined. Histopathological parameters of under study brain parts i.e., hippocampus, cortex and striata were also assessed. Esculetin and clozapine significantly (***p < 0.0001) altered ketamine induced behavioral symptoms and attenuated ketamine induced oxidative stress and neuroinflammation. Additionally, esculetin significantly (***p < 0.0001) altered neurotransmitter (dopamine, serotonin, glutamate) levels. ELISA analysis depicts ketamine reduced BDNF levels in hippocampus, cortex and striata while esculetin significantly (***p < 0.0001) increased BDNF levels in under study three parts of brain. Histopathological changes were seen in test groups. The findings of this study indicate that esculetin may have therapeutic potential in the treatment of schizophrenia induced by ketamine. As a result, esculetin may have the potential to be utilized as a treatment for schizophrenia.

8.
Heliyon ; 10(1): e23581, 2024 Jan 15.
Artículo en Inglés | MEDLINE | ID: mdl-38173533

RESUMEN

Sinomenine (SN) is a well-documented unique plant alkaloid extracted from many herbal medicines. The present study evaluates the wound healing potentials of SN on dorsal neck injury in rats. A uniform cut was created on Sprague Dawley rats (24) which were arbitrarily aligned into 4 groups receiving two daily topical treatments for 14 days as follows: A, rats had gum acacia; B, rats addressed with intrasite gel; C and D, rats had 30 and 60 mg/ml of SN, respectively. The acute toxicity trial revealed the absence of any toxic signs in rats after two weeks of ingestion of 30 and 300 mg/kg of SN. SN-treated rats showed smaller wound areas and higher wound closure percentages compared to vehicle rats after 5, 10, and 15 days of skin excision. Histological evaluation of recovered wound tissues showed increased collagen deposition, fibroblast content, and decreased inflammatory cells in granulated tissues in SN-addressed rats, which were statistically different from that of gum acacia-treated rats. SN treatment caused positive augmentation of Transforming Growth Factor Beta 1 (angiogenetic factor) in wound tissues, denoting a higher conversion rate of fibroblast into myofibroblast (angiogenesis) that results in faster wound healing action. Increased antioxidant enzymes (SOD and CAT), as well as decreased MDA contents in recovered wound tissues of SN-treated rats, suggest the antioxidant potentials of SN that aid in faster wound recovery. Wound tissue homogenates showed higher hydroxyproline amino acid (collagen content) values in SN-treated rats than in vehicle rats. SN treatment suppressed the production of pro-inflammatory cytokines and increased anti-inflammatory cytokines in the serum of wounded rats. The outcomes present SN as a viable pharmaceutical agent for wound healing evidenced by its positive modulation of the antioxidant, immunohistochemically proteins, hydroxyproline, and anti-inflammatory cytokines.

9.
Saudi Pharm J ; 32(1): 101911, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-38226346

RESUMEN

In recent years, there has been a focus on developing and discovering novel Bruton's tyrosine kinase (BTK) inhibitors, as they offer an effective treatment strategy for B-cell malignancies. BTK plays a crucial role in B cell receptor (BCR)-mediated activation and proliferation by regulating downstream factors such as the NF-κB and MAP kinase pathways. To address this challenge and propose potential therapeutic options for B-cell lymphomas, researchers conducted 2D-QSAR and ADMET studies on pyrrolopyrimidine derivatives that act as inhibitors of the BCR site in cytochrome b. These studies aim to improve and identify new compounds that could serve as more potent potential BTK inhibitors, which would lead to the identification of new drug candidates in this field. In our study, we used 2D-QSAR (multiple linear regression, multiple nonlinear regression, and artificial neural networks), molecular docking, molecular dynamics, and ADMET properties to investigate the potential of 35 pyrrolopyrimidine derivatives as BTK inhibitors. A molecular docking study and molecular dynamics simulations of molecule 13 over 10 ns revealed that it establishes multiple hydrogen bonds with several residues and exhibits frequent stability throughout the simulation period. Based on the results obtained by molecular modeling, we proposed six new compounds (Pred1, Pred2, Pred3, Pred4, Pred5, and Pred6) with highly significant predicted activity by MLR models. A study based on the in silico evaluation of the predicted ADMET properties of the new candidate molecules is strongly recommended to classify these molecules as promising candidates for new anticancer agents specifically designed to target Bruton's tyrosine kinase (BTK) inhibition.

10.
Life (Basel) ; 13(11)2023 Oct 29.
Artículo en Inglés | MEDLINE | ID: mdl-38004275

RESUMEN

Juncus acutus, acknowledged through its indigenous nomenclature "samar", is part of the Juncaceae taxonomic lineage, bearing considerable import as a botanical reservoir harboring conceivable therapeutic attributes. Its historical precedence in traditional curative methodologies for the alleviation of infections and inflammatory conditions is notable. In the purview of Eastern traditional medicine, Juncus species seeds find application for their remedial efficacy in addressing diarrhea, while the botanical fruits are subjected to infusion processes targeting the attenuation of symptoms associated with cold manifestations. The primary objective of this study was to unravel the phytochemical composition of distinct constituents within J. acutus, specifically leaves (JALE) and roots (JARE), originating from the indigenous expanse of the Nador region in northeastern Morocco. The extraction of plant constituents was executed utilizing an ethanol-based extraction protocol. The subsequent elucidation of chemical constituents embedded within the extracts was accomplished employing analytical techniques based on high-performance liquid chromatography (HPLC). For the purpose of in vitro antioxidant evaluation, a dual approach was adopted, encompassing the radical scavenging technique employing 2,2-diphenyl-1-picrylhydrazyl (DPPH) and the total antioxidant capacity (TAC) assay. The acquired empirical data showcase substantial radical scavenging efficacy and pronounced relative antioxidant activity. Specifically, the DPPH and TAC methods yielded values of 483.45 ± 4.07 µg/mL and 54.59 ± 2.44 µg of ascorbic acid (AA)/mL, respectively, for the leaf extracts. Correspondingly, the root extracts demonstrated values of 297.03 ± 43.3 µg/mL and 65.615 ± 0.54 µg of AA/mL for the DPPH and TAC methods. In the realm of antimicrobial evaluation, the assessment of effects was undertaken through the agar well diffusion technique. The minimum inhibitory concentration, minimum bactericidal concentration, and minimum fungicidal concentration were determined for each extract. The inhibitory influence of the ethanol extracts was observed across bacterial strains including Staphylococcus aureus, Micrococcus luteus, and Pseudomonas aeruginosa, with the notable exception of Escherichia coli. However, fungal strains such as Candida glabrata and Rhodotorula glutinis exhibited comparatively lower resistance, whereas Aspergillus niger and Penicillium digitatum exhibited heightened resistance, evincing negligible antifungal activity. An anticipatory computational assessment of pharmacokinetic parameters was conducted, complemented by the application of the Pro-tox II web tool to delineate the potential toxicity profile of compounds intrinsic to the studied extracts. The culmination of these endeavors underpins the conceivable prospects of the investigated extracts as promising candidates for oral medicinal applications.

11.
Molecules ; 28(21)2023 Nov 04.
Artículo en Inglés | MEDLINE | ID: mdl-37959844

RESUMEN

This study aimed to examine the therapeutic activity of the cinnamic acid derivative KAD-7 (N'-(2,4-dichlorobenzylidene)-3-(4-methoxyphenyl) acrylohydrazide) on Fe2+-induced oxidative hepatic injury via experimental and computational models. In addition, the role of ATPase and ectonucleoside triphosphate diphosphohydrolase (ENTPDase) in the coordination of cellular signals is speculated upon to proffer suitable therapeutics for metabolic stress disorder upon their inhibition. While we know little about therapeutics with flexible dual inhibitors for these protein targets, this study was designed to screen KAD-7's (N'-(2,4-dichlorobenzylidene)-3-(4-methoxyphenyl) acrylohydrazide) inhibitory potential for both protein targets. We induced oxidative hepatic damage via the incubation of hepatic tissue supernatant with 0.1 mM FeSO4 for 30 min at 37 °C. We achieved the treatment by incubating the hepatic tissues with KAD-7 under the same conditions. The catalase (CAT), glutathione (GSH), malondialdehyde (MDA), ATPase, and ENTPDase activity were all measured in the tissues. We predicted how the drug candidate would work against ATPase and ENTPDase targets using molecular methods. When hepatic injury was induced, there was a significant decrease in the levels of the GSH, CAT, and ENTPDase (p < 0.05) activities. In contrast, we found a noticeable rise in the MDA levels and ATPase activity. KAD-7 therapy resulted in lower levels of these activities overall (p < 0.05), as compared to the control levels. We found the compound to have a strong affinity for ATPase (-7.1 kcal/mol) and ENTPDase (-7.4 kcal/mol), and a better chemical reactivity than quercetin. It also met all drug-likeness parameters. Our study shows that KAD-7 can protect the liver from damage caused by FeSO4 by reducing oxidative stress and purinergic actions. Our studies indicate that KAD-7 could be developed as a therapeutic option since it can flexibly inhibit both ATPase and ENTPDase.


Asunto(s)
Antioxidantes , Estrés Oxidativo , Antioxidantes/farmacología , Antioxidantes/metabolismo , Cinamatos/farmacología , Cinamatos/metabolismo , Glutatión/metabolismo , Hígado/metabolismo , Adenosina Trifosfatasas/metabolismo
12.
Saudi Pharm J ; 31(12): 101843, 2023 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-37961069

RESUMEN

Trigonelline, an alkaloid found in the seeds of Trigonella foenum-graecum L. (fenugreek), has been recognized for its potential in treating various diseases. Notably, trigonelline has demonstrated a neuroprotective impact by reducing intrasynaptosomal calcium levels, inhibiting the production of reactive oxygen species (ROS), and regulating cytokines. Kainic acid, an agonist of kainic acid receptors, is utilized for inducing temporal lobe epilepsy and is a common choice for establishing kainic acid-induced status epilepticus, a widely used epileptic model. The neuroprotective effect of trigonelline in the context of kainic acid-induced epilepsy remains unexplored. This study aimed to induce epilepsy by administering kainic acid (10 mg/kg, single subcutaneous dose) and subsequently evaluate the potential anti-epileptic effect of trigonelline (100 mg/kg, intraperitoneal administration for 14 days). Ethosuccimide (ETX) (187.5 mg/kg) served as the standard drug for comparison. The anti-epileptic effect of trigonelline over a 14-day administration period was examined. Behavioral assessments, such as the Novel Object Recognition (NOR) test, Open Field Test (OFT), and Plus Maze tests, were conducted 2 h after kainic acid administration to investigate spatial and non-spatial acquisition abilities in rats. Additionally, biochemical analysis encompassing intrasynaptosomal calcium levels, LDH activity, serotonin levels, oxidative indicators, and inflammatory cytokines associated with inflammation were evaluated. Trigonelline exhibited significant behavioral improvements by reducing anxiety in open field and plus maze tests, along with an amelioration of memory impairment. Notably, trigonelline substantially lowered intrasynaptosomal calcium levels and LDH activity, indicating its neuroprotective effect by mitigating cytotoxicity and neuronal injury within the hippocampus tissue. Moreover, trigonelline demonstrated a remarkable reduction in inflammatory cytokines and oxidative stress indicators. In summary, this study underscores the potential of trigonelline as an anti-epileptic agent in the context of kainic acid-induced epilepsy. The compound exhibited beneficial effects on behavior, neuroprotection, and inflammation, shedding light on its therapeutic promise for epilepsy management.

13.
Saudi Pharm J ; 31(12): 101850, 2023 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-37965491

RESUMEN

Peptic ulcer disease is the greatest digestive disorder that has increased incidence and recurrence rates across all nations. Prangos pabularia (L.) has been well documented as a folkloric medicinal herb utilized for multiple disease conditions including gastric ulcers. Hence, the target study was investigation the gastro-protection effects of root extracts of Prangos pabularia (REPP) on ethanol-mediated stomach injury in rats. Sprague Dawley rats were clustered in 5 cages: A and B, normal and ulcer control rats pre-ingested with 1 % carboxymethyl cellulose (CMC)); C, reference rats had 20 mg/kg omeprazole; D and E, rats pre-supplemented with 250 and 500 mg/kg of REPP, respectively. After one hour, group A was given orally 1 % CMC, and groups B-E were given 100 % ethanol. The ulcer area, gastric acidity, and gastric wall mucus of all stomachs were determined. The gastric tissue homogenates were examined for antioxidant and MDA contents. Moreover, the gastric tissues were analyzed by histopathological and immunohistochemically assays. Acute toxicity results showed lack of any toxic effects or histological changes in rats exposed to 2 and 5 g/kg of REPP ingestion. The ulcer controls had extensive gastric mucosal damage with lower gastric juice and a reduced gastric pH. REPP treatment caused a significant reduction of the ethanol-induced gastric lacerations represented by an upsurge in gastric mucus and gastric wall glycoproteins (increased PAS), a decrease in the gastric acidity, leukocyte infiltration, positively modulated Bax and HSP 70 proteins, consequently lowered ulcer areas. REPP supplementation positively modulated oxidative stress (increased SOD, CAT, PGE2, and reduced MDA) and inflammatory cytokines (decreased serum TNF-α, IL-6, and increased IL-10) levels. The outcomes could be scientific evidence to back-up the folkloric use of A. Judaica as a medicinal remedy for oxidative stress-related disorders (gastric ulcer).

14.
Medicina (Kaunas) ; 59(10)2023 Oct 13.
Artículo en Inglés | MEDLINE | ID: mdl-37893544

RESUMEN

Background and Objectives: HIV disease is recognized to cause inconsistencies in coagulation via various pathways during infection. Some studies have indicated that HIV-infected patients are prone to developing thrombocytopenia, thrombosis, or autoantibodies that may cause difficulties in diagnosis. This study is intended to measure the trend of coagulation parameters in Sudanese patients with HIV. Materials and Methods: A cross-sectional study was carried out in patients with HIV admitted to the Sudan National AIDS Program (SNAP) from January 2018 to December 2019. Prothrombin time (PT), partial thromboplastin time (PTT), thrombin time (TT), D-dimer (DD), hemoglobin (HB), total lymphocyte count (TLC), platelet count (PLT), and a disintegrin and metalloproteinase with thrombospondin type 1 motif, member 13 (ADAMTS13), were evaluated among HIV Sudanese patients. Results: Out of the 44 HIV patients included, 6 (13.6%) were found to have thrombotic thrombocytopenic purpura-like events and 12 (27.2%) had antiphospholipid antibodies, of whom 8 (66.6%) showed anticardiolipin antibody (1gG (75%) and IgM (25%)) and 4 showed lupus anticoagulants. The HB, TLC, and PLT values were found to be significantly lower in HIV patients than in control (p = 0.000, 0.000, and 0.050, respectively). The PT and ADAMTS13 values showed no significant difference between HIV patients and control (p = 0.613 and 0.266, respectively). The PTT, TT, and DD values were found to be augmented in HIV patients versus the control (p = 0.000). Conclusions: Thrombotic thrombocytopenic purpura-like events among HIV Sudanese patients were explored. In addition, antiphospholipid antibodies were strikingly seen in these patients. Additional research is anticipated to confirm these diagnoses.


Asunto(s)
Infecciones por VIH , Púrpura Trombocitopénica Trombótica , Humanos , Púrpura Trombocitopénica Trombótica/diagnóstico , Púrpura Trombocitopénica Trombótica/etiología , VIH , Infecciones por VIH/complicaciones , Infecciones por VIH/epidemiología , Estudios Transversales , Proteínas ADAM , Anticuerpos Antifosfolípidos
16.
Biomedicines ; 11(8)2023 Aug 16.
Artículo en Inglés | MEDLINE | ID: mdl-37626778

RESUMEN

Polymorphism in cytochrome P450 (CYP) 2C9 enzyme is known to cause significant inter-individual differences in drug response and occurrence of adverse drug reactions. Different alleles of the CYP2C9 gene have been identified, but the notable alleles responsible for reduced enzyme activity are CYP2C9*2 and CYP2C9*3. No pharmacogenetic data are available on CYP2C9*2 and CYP2C9*3 alleles in the Pakistani population. In Pakistan, pharmacogenetics, which examines the relationship between genetic factors and drug response, are in the early stages of development. We, for the first time, investigated the association between the CYP2C9 variant alleles CYP2C9*2 and CYP2C9*3 and the incidence of hypoglycaemia in patients with Type 2 diabetes mellitus (T2DM) receiving sulphonylurea medications. A total of n = 400 individuals of Pashtun ethnicity were recruited from 10 different districts of Khyber Pakhtunkhwa, Pakistan to participate in the study. The study participants were divided into two distinct groups: the case group (n = 200) and the control group (n = 200). The case group consisted of individuals with T2DM who were receiving sulphonylurea medications and experienced hypoglycaemia with it, whereas the control group included individuals with T2DM who were receiving sulphonylurea medication but did not experience sulphonylurea-induced hypoglycaemia (SIH). Blood samples were obtained from study participants following informed consent. DNA was isolated from whole blood samples using a Wiz-Prep DNA extraction kit. Following DNA isolation, CYP2C9 alleles were genotyped using MassARRAY sequencing platform at the Centre of Genomics at the Rehman Medical Institute (RMI). The frequency of CYP2C9*2 (low-activity allele) was more frequent in the diabetic patients with SIH compared to the control group (17.5% vs. 6.0%, p = 0.021). The frequency of its corresponding genotype CYP2C9*1/*2 was higher in cases compared to the control group (10% vs. 6% with p = 0.036); the same was true for genotype CYP2C9*2/*2 (7% vs. 3.5% with p = 0.028). Logistic regression analysis evidenced potential association of CYP2C9*2 allele and its genotypes with SIH. When adjusted for confounding factors such as age, weight, sex, mean daily dose of sulphonylurea, and triglyceride level, the association between the CYP2C9*2 allele and hypoglycaemia remained consistent. Confounding factors played no role in SIH (insignificant p-value) because both groups (cases and controls) were closely matched in term of age, weight, sex, mean daily dose of sulphonylurea, and triglyceride levels. Our study suggests that genetic information about a patient's CYP2C9 gene/enzyme can potentially assist physicians in prescribing the most suitable and safest drug, based on their genetic make-up.

17.
Microorganisms ; 11(8)2023 Jul 29.
Artículo en Inglés | MEDLINE | ID: mdl-37630500

RESUMEN

Parasites are a significant component of biodiversity. They negatively affect fish appearance, growth, and reproduction. In this study, the prevalence of infection, diversity, and mean intensity of parasites were examined in 9 freshwater fish species (45 samples per fish species). Ecto-parasites were examined on the skin, gills, and fins with a hand lens. Wet mounts were prepared using mucosal scrapings from all the external and internal organs of the sampled fish. Microscopy, muscle compression, and the pepsin-HCL artificial digestion technique were also performed. In this study, 26 species of parasites were identified including three taxa belonging to 9 species of protozoan parasites, 11 treamtodes, and 6 monogenean parasites. The identified protozoan parasites were Entamoeba histolitica, Chilodonella sp., Coccidia sp., Costia sp., Cryptobia sp., Ichthyopthiris-multifilis, Microsporidia, Piscinoodinium sp., and Ichthyobodo necator. The identified trematode parasites were Fasciola gigantica, Echinostoma revolutum, Fasciola hepatica, Haplorchis pumilio, Brachylaima cribbi, Echinostoma cinetorchis, Neascus sp., Deropegus sp., Trematode Soldier, Centrocestus formosanus, and Clinostomum marginatum. The identified monogenean parasites were Dactylogyrus limipopoensis, Dactylogyrus anchoratus, Dactylogyrus myersi, Dactylogyrus vastator, Gyrodactylus salaris, and Ancyrocephalus. The diversity of parasites was maximum at the Okara site. The host's organs that were targeted for parasitic infection included the intestine, liver, gills, fins, skin, and kidneys. The majority of the parasites were identified in Labeo rohita followed by Hypophthalmichthys molitrix, Ctenopharyngodon idella, Oreochromis niloticus, Cyprinus carpio, and Wallagu attu. Two species appeared to be resistant species because none of the parasites were observed in Notopterus notopterus or Sperata seenghala. This study also concluded that the prevalence of parasites increased with increasing length, size, and age of fish.

18.
Nanomaterials (Basel) ; 13(16)2023 Aug 10.
Artículo en Inglés | MEDLINE | ID: mdl-37630890

RESUMEN

Exclusive physicochemical and biological properties of carbon allotrope graphene have attracted the peer attention of researchers for the synthesis and development of newer topical remedies including films, scaffolds, microspheres, and hydrogels. Here, graphene nanoplatelets (GN) were embedded into a different ratio of polymeric ERL100/ERS100 solution and fabricated in the form of a scaffold through the electrospinning process. FTIR spectra displayed characteristic similar peaks present both in GN and GN-loaded scaffold owing to the compatibility of GN and polymeric mixture. XRD curve revealed a distinct GN peak at nearly 26° whereas from DSC/TGA thermal stability was observed between polymers and graphene nanoplatelets. FESEM images showed ultrathin architecture of GN-loaded scaffold in a range of 280 ± 90 nm. The fabricated scaffold exhibited hydrophilicity (contact angle 48.8 ± 2.8°) and desirable swelling index (646% in skin pH media) which were desired criteria for the scaffold for topical application. In vitro, antifungal activity was conducted through the broth microdilution method against different virulent dermatophytes i.e., Microsporum gypseum, M. canis, M. fulvum, and Trychophyton rubrum. For in vivo evaluation, T. rubrum inoculum was applied on the dorsal surface of each group of Swiss albino mice, and the degree and intensity of mycelial growth or erythema on skin surfaces was visually investigated. The study depicted complete signs of cure after 14 days of application of G3-loaded scaffold on the infected dorsal site. Hence graphene-loaded scaffold represented a possible alternative for the treatment of topical fungal infections caused by dermatophytes.

19.
Gels ; 9(8)2023 Aug 15.
Artículo en Inglés | MEDLINE | ID: mdl-37623112

RESUMEN

Traditional otic drug delivery methods lack controlled release capabilities, making reverse gelatination gels a promising alternative. Reverse gelatination gels are colloidal systems that transition from a sol to a gel phase at the target site, providing controlled drug release over an extended period. Thermosensitive norfloxacin reverse gelatination gels were developed using a Quality by Design (QbD)-based optimization approach. The formulations were evaluated for their in vitro release profile, rheological behavior, visual appearance, pH, gelling time, and sol-gel transition temperature. The results show that the gelation temperatures of the formulations ranged from 33 to 37 °C, with gelling durations between 35 and 90 s. The drug content in the formulations was uniform, with entrapment efficiency ranging from 55% to 95%. Among the formulations, F10 exhibited the most favorable properties and was selected for a stability study lasting 60 days. Ex-vivo release data demonstrate that the F10 formulation achieved 95.6percentage of drug release at 360 min. This study successfully developed thermosensitive norfloxacin reverse gelatination gels using a QbD-based optimization approach. The selected formulation, F10, exhibited desirable properties in terms of gelling temperature, drug content, and release profile. These gels hold potential for the controlled delivery of norfloxacin in the treatment of ear infections.

20.
Saudi Pharm J ; 31(8): 101691, 2023 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-37457368

RESUMEN

This work explored the activities of bergamot oil nano-emulsion (NBG) in modulating blood biochemical parameters, redox status, immunity indices, inflammation markers, semen quality, testicular changes and the expression of HSPs genes in stressed rabbit bucks. Twenty-four mature rabbit bucks (5 months) were randomly divided into three groups; control group (NBG0) received 1 ml of distilled water, while the other two groups received NBG orally at doses of 50 and 100 mg/kg (bw) twice a week. The present study's findings revealed that treated groups had lower values of total and direct bilirubin, triglyceride, lactate dehydrogenase, and creatinine compared with NBG0 group (p < 0.05). NBG100 group recorded the greatest of total protein, albumin, GPx, T3 and T4 values as well as the lowest values of uric acid, MDA, and indirect bilirubin. Both treated groups showed significantly reduced 8-OhDG, Amyloid A, TLR 4, while significantly increased nitric oxide, IgA, IgM, TAC, and SOD levels. Semen characteristics such as volume, sperm count, sperm motility, normal sperm, and vitality were significantly higher in the NBG100 group compared to the NBG50 and NBG0 groups, whereas sperm abnormalities and dead sperm were significantly reduced. HSP70, HSP72, and HSPA9 gene overexpression showed that testicular integrity was maintained after buck received oral doses of 50 or 100 mg/kg of NBG. Existing findings indicate that oral administration of NBG improves heat tolerance in rabbit bucks primarily as e result of its antioxidant and anti-inflammatory effects.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA